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Abstract 

The spatial distribution of genetic variation within proteins is shaped by evolutionary 
constraint and thus can provide insights into the functional importance of protein regions 
and the potential pathogenicity of protein alterations. Here, we comprehensively evaluate 
the 3D spatial patterns of constraint on human germline and somatic variation in 4,568 
solved protein structures. Different classes of coding variants have significantly different 
spatial distributions. Neutral missense variants exhibit a range of 3D constraint patterns, 
with a general trend of spatial dispersion driven by constraint on core residues. In 
contrast, germline and somatic disease-causing variants are significantly more likely to be 
clustered in protein structure space. We demonstrate that this difference in the spatial 
distributions of disease-associated and benign germline variants provides a signature for 
accurately classifying variants of unknown significance (VUS) that is complementary to 
current approaches for VUS classification. We further illustrate the clinical utility of our 
approach by classifying new mutations identified from patients with familial idiopathic 
pneumonia (FIP) that segregate with disease.  
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Patterns of genetic variation along the human genome provide insight into functional and 

evolutionary constraints on different loci. A lack of common genetic variation in a locus 

is often indicative of functional constraint, suggesting that sequence changes negatively 

influence reproductive fitness1. The first systematic examinations of fully sequenced 

human genomes established consistently stronger constraint (i.e., less genetic variation) 

in protein-coding regions compared to non-coding sequences2–5; exons harbor 

approximately half the level of genetic variation as introns and non-coding flanking 

sequences. Furthermore, early candidate gene sequencing studies identified lower rates of 

non-synonymous variation than synonymous variation within protein-coding regions6, 

highlighting the increased constraint on protein-altering mutations. Quantifying these 

patterns of constraint improved the ability to identify functional regions and interpret the 

phenotypic effects of genetic mutations7,8. Building on exome-sequencing data from tens 

of thousands of individuals, recently-developed methods have analyzed the frequency of 

variation in coding regions to provide estimates of the constraint on genes based on 

intolerance to variation8,9. While these approaches have identified strongly constrained 

genes in which variation is likely to be pathogenic, gene-level assessment of constraint 

does not identify the specific protein regions and functions that are constrained and may 

overlook genes with such localized signatures of constraint.  

Proteins are often composed of multiple domains that perform distinct functions. 

Constraint on missense variation varies between these regions; some regions are highly 

constrained while others are more tolerant of variation. Indeed, mutations to spatially 

distinct regions within the same protein often influence risk for different diseases10,11. 

However, spatial patterns of constraint are often visualized on an ad hoc basis by 

mapping sequence-derived measures of constraint into three-dimensional protein 

structure models12. Recently, structural analyses of somatic mutations from tumor 

samples have identified spatial clusters of mutations in several proteins13–18. These 

clusters often overlap known functional regions of oncogenes and tumor suppressors, and 

may assist in identifying functional driver mutations. These studies illustrate how spatial 

constraint on mutations can identify structural regions relevant to protein function and 

disease, and suggest that similar discoveries may be derived from a comprehensive 

analysis of germline variation. Additionally, the considerable disagreement in the clusters 
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and proteins identified between analyses of somatic mutations suggests the need for a 

consistent statistical framework in which to evaluate spatial patterns of genetic variation 

in protein structures. 

The recent abundance of human population-based sequencing studies2,19,20 paired 

with growth in the number of solved structures deposited in the protein data bank (PDB) 

facilitates the systematic spatial analysis of functional constraint on naturally occurring 

germline and somatic mutations in protein structure. In this article, we describe the 

comprehensive mapping of millions of human genetic variants into 4,568 solved human 

protein structures. We then introduce an analytical method for quantifying and comparing 

spatial distributions of genetic variation within protein space. This method enables us to 

identify significant differences in the spatial distributions of specific classes of variants—

including benign and pathogenic—that reflect patterns of constraint on protein structure 

and function. We then describe PathProx, an algorithm for classifying the pathogenicity 

of missense variants of unknown significance (VUS) based on relative proximity to 

known pathogenic and benign variants, and demonstrate that its performance is 

competitive with and complementary to common pathogenicity prediction algorithms. 

Finally, we illustrate the clinical utility of PathProx 3D spatial analyses by classifying 

new mutations to the RTEL1 DNA helicase protein that segregate with disease in 

pedigrees with familial idiopathic pneumonia (FIP). 

 
Results 

Quantifying Constraint on Spatial Patterns of Genetic Variation 

We mapped genetic variants from three large data sets into 4,568 human proteins with 

available experimentally-derived protein structures. We considered: 137,352 synonymous 

and 210,007 missense variants from exome sequencing of 60,706 diverse unrelated adults 

from the Exome Aggregation Consortium (ExAC) dataset, 4,888 missense Mendelian 

disease variants from the ClinVar pathogenic dataset, and 12,230 recurrent somatic 

missense variants (observed in at least two independent human tumor samples) from the 

Catalogue of Somatic Mutations in Cancer (COSMIC) dataset. 

To quantify and contrast patterns of spatial constraint on different variant sets, we 

developed a statistic for evaluating deviations from a random spatial distribution based on 
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Ripley’s K (see Methods). Genetic variation in a protein can deviate from an 

unconstrained spatial distribution in two ways: it may be significantly more clustered or 

significantly more dispersed than expected (Figure 1a). By quantifying the density of 

variation around each variant in increasingly larger neighborhoods, this method identifies 

clustering and dispersion at any distance scale (Figure 1b). We determined the 

significance of observed distributions using a permutation procedure that accounts for the 

overall protein fold (Figure 1c-e; Methods). Finally, the method produces a Z-score-

based statistic that quantifies whether the observed variants are more clustered (positive 

value) or more dispersed (negative value) than expected in the absence of spatial 

constraint (Figure 1d-e). This approach allows for direct comparison of results across 

structurally distinct proteins.  
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Figure 1: Schematic of our framework for evaluating the spatial distribution of genetic variants. (a) Spatial 
distributions can diverge from random in two ways; they may have fewer neighbors than expected by chance 
(dispersed) or more neighbors than expected by chance (clustered). Example distributions are illustrated in reference to 
a random spatial distribution in 2D. Below each set of points, the resulting K statistic at multiple distance thresholds 
(red) is plotted in reference to the expected K distribution under a random distribution (gray). K values below the range 
expected at random indicate dispersion, and K values above indicate clustering. (b) Definition of the K statistic. For a 
range of distance thresholds (t), the number of variants neighboring each variant is normalized by the total number of 
pairs. Two variants are considered neighbors if the distance between them (Dij) is less than t. I is an indicator function 
that evaluates to 1 when the condition is true and 0 otherwise. (c) The observed K values are evaluated in reference to 
an empirical null distribution generated from 100,000 random permutations of variant locations within the protein 
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structure. (d) The spatial distribution trend for each protein is summarized by calculating the area between the observed 
K values (red points) and the median permuted K values (black points). (e) This process is repeated for the K values 
resulting from each permuted set to generate an empirical null distribution. From this distribution, we calculate a Z-
score and P-value for the observed area. Positive Z-scores indicate clustering, negative Z-scores indicate dispersion, 
and Z-scores near zero indicate a lack of spatial constraint. 

Synonymous and missense variants have different spatial distributions 

Synonymous genetic variants can have functional effects, e.g., by influencing gene 

regulation, mRNA stability, or translational efficiency; however, they rarely influence 

protein structural conformation21,22. Thus, we hypothesized that the distribution of 

synonymous variants in protein structure is not subject to significant spatial constraint. 

Consistent with this hypothesis, synonymous variants from the ExAC dataset are nearly 

randomly distributed in protein space (Figure 2a) and exhibit very modest clustering 

(median Z = 0.07; P = 0.0005, sign test). Individually, only one protein out of 4,483—

Myomesin-1 (MYOM1), a long repetitive filamentous protein expressed in muscle 

cells—showed significant evidence of a non-random synonymous variant distribution 

(FDR<0.1). These results indicate that synonymous genetic variation is generally 

randomly distributed in the context of protein structure. 

In contrast, the spatial distribution of nonsynonymous (missense) variants is likely 

constrained by the functional consequences of amino acid substitutions. Thus, we 

hypothesized that missense variants from the ExAC dataset are non-randomly distributed 

within protein structure. Indeed, missense variants displayed significant constraint on 

their spatial distribution (Figure 2b). There was a strong overall trend towards spatial 

dispersion (median Z = –0.45; P = 1.1x10–106, sign test), though we also identified 

instances of  significant clustering in individual proteins (Figure 2b; Table S1). 

Comparing the observed Z-score distributions of missense and synonymous variants 

revealed a significant difference in their spatial patterns (Figure 2a vs. 2b; P = 2.71x10-

120, Mann-Whitney U test).  

Residues tolerant of missense variation had increased solvent accessibility compared 

to all residues (Figure S2, P ≈ 0, Mann-Whitney U test), consistent with previous analysis 

of missense variants from the 1000 Genomes Project23. Furthermore, significantly 

dispersed missense variants had greater solvent accessibility than missense variants 

overall (Figure S2, P = 5x10–54). In contrast, significantly clustered missense variants 

were no more or less solvent accessible than all residues. (P = 0.39). These results 
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suggest that significant missense dispersion reflects constraint against substitutions in the 

core of a protein.  Missense clustering, however, can occur at any location regardless of 

proximity to the protein core or surface.  

 

 
Figure 2: Different types of protein-coding variants have different spatial constraints. Each panel summarizes the 
spatial constraints on a different variant set. For each set, the distribution of protein-summary Z-scores over all proteins 
analyzed is plotted above the axis, and the Z-scores for proteins with significant constraint (FDR < 10%) are plotted 
with circles below the axis. Positive and negative Z-scores indicate clustering and dispersion, respectively. (a) 
Synonymous variants from ExAC are approximately randomly distributed, as indicated by a Z-score distribution with 
median near 0 (Z = 0.07). (b) In contrast, missense variants from ExAC trend towards spatial dispersion (median Z = –
0.45). (c) Pathogenic missense variants from ClinVar are the most strongly clustered variant set (Z = 1.01), with 
significant clustering in 126 out of 446 proteins with a sufficient number of variants. (d) COSMIC recurrent somatic 
missense variants show weak clustering overall (Z = 0.1), but 16proteins exhibit significant clustering. These 
differences in the spatial distributions of neutral and pathogenic variants suggest strong spatial constraint on protein-
coding variation. 

Pathogenic missense variants are often significantly spatially clustered 

Amino acids that are evolutionarily conserved across diverse species (and thus likely 

functional) are spatially constrained and significantly clustered within protein structure 

(Figure S4)24,25. Thus, we hypothesized that missense variants causing Mendelian disease 

are also likely to be spatially clustered. We evaluated this hypothesis by quantifying the 

spatial distribution of germline pathogenic missense variants in proteins with three or 

more pathogenic variants in ClinVar (Figure 2c).  

ClinVar pathogenic variants are the most clustered of all variant sets analyzed 

(median Z = 1.01, P = 3.32x10–31, sign test), and 126 of 446 (28%) proteins exhibited 

significant clustering at FDR < 10% (Figure 2c). We also evaluated a previously curated 

set of missense variants from the HGMD dataset26,27 and observed clustering of both 

dominant and recessive variants (Figure S5). Dominant variants on average formed more 

focal clusters than recessive variants, possibly due to a greater proportion of localized, 
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gain-of-function mutations (Supplementary Results). The frequent clustering of 

pathogenic missense variants underscores the spatial constraint on protein-coding 

variation and highlights regions in protein structures that are functionally and clinically 

relevant. 

Several studies of tumor-derived somatic mutations have identified clusters of 

missense variants that are presumed to highlight structural regions important for 

tumorigenesis13–18.  In contrast to germline pathogenic variants, recurrent somatic 

missense variants from the COSMIC database exhibit only a modest overall trend 

towards spatial clustering (Figure 2d; median Z = 0.1; P = 0.39, sign test). However, 

consistent with previous studies, a small fraction of proteins tested (16 of 1,960, 0.8%) 

exhibited significant clustering. This set includes many known cancer proteins28, 

including 13 proteins identified by at least one previous study of somatic mutation 

clustering13,14,16–18 (Figure S6).  The lack of overall clustering of recurrent somatic 

variants is in stark contrast to ClinVar pathogenic variant patterns and may reflect 

differences in spatial constraint and phenotypic effects of variation outside of the 

germline10. 

 

Contrasting spatial patterns of missense constraint within protein structure 

Given broad evidence of spatial constraint on both putatively neutral and pathogenic 

variants, we contrasted the distributions of these two variant sets within individual 

proteins. Specifically, we evaluated whether proteins with clustering (or dispersion) of 

neutral variation were also likely to exhibit clustering (or dispersion) of pathogenic 

variation. To examine this, we plotted each protein’s Z-score for putatively neutral 

missense variants from ExAC against the Z-score for pathogenic missense variants from 

ClinVar (Figure 3a) and recurrent somatic missense variants from COSMIC (Figure 3b).  

There was no significant linear relationship between ExAC-derived and ClinVar-

derived Z-scores (Figure 3a; P = 0.71). However, their relative distributions may be 

informative of protein-level constraint. As expected from our comparison of the ExAC 

missense and ClinVar Z-score distributions (Figure 2b, c), many proteins exhibit 

clustering of pathogenic germline variation on a background of ExAC variant dispersion 

(Figure 3a, lower right). For example, pathogenic variation in Filamin-B (FLNB), a 
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protein that links the cellular membrane to the actin cytoskeleton, is clustered in the 

second calponin-homology domain, which is responsible for actin binding, while neutral 

variants are dispersed throughout the structure (Figure 3c). In contrast, several structures 

with extreme clustering of ClinVar variants also show moderate clustering of ExAC 

variants (upper right). We observed a notable depletion of structures with extreme 

dispersion from both ExAC and ClinVar analyses (lower left). 

Based on these observations, we hypothesized that accounting for the background 

distribution of putatively neutral missense variants could identify spatial patterns unique 

to pathogenic variation. To test this, we calculated the D statistic, a bivariate form of the 

K statistic, which evaluates whether one variant set (e.g. ClinVar) is significantly more 

clustered (or dispersed) than another set (e.g. ExAC)29. Many of the outliers from the K 

analyses (especially those with clustering of ClinVar variants) were significant in the 

bivariate analysis. The bivariate analysis demonstrates that even when both datasets 

exhibit clustering, pathogenic variants are often significantly more clustered than the 

neutral background (Figure 3a, b). Additionally, the analysis yielded many proteins in 

which pathogenic and neutral distributions were significantly different, despite neither 

having significant univariate K statistics (Figure 3a). However, 21% of proteins with 

significant clustering of pathogenic variation were no longer significant when compared 

to the distribution of neutral variants. These results demonstrate that accounting for the 

background distribution of neutral variants enables the detection of uniquely pathogenic 

patterns of constraint. 

There was also no significant linear relationship between the K statistic Z-scores 

for ExAC missense variants and recurrent somatic missense variants from COSMIC 

(Figure 3b). The most common spatial pattern was modest clustering of the COSMIC 

variants and slight dispersion of ExAC variants. Seven proteins harbored significant 

patterns of somatic constraint once accounting for neutral missense variation (Figure 3b). 

Three of these have not been identified in previous analyses of cancer mutation 

clustering: CBL, TET2, and DICER1. CBL is an E3 ubiquitin-protein ligase, and our 

analyses reveal a significant cluster of recurrent COSMIC mutations in the RING-type 

zinc finger domain (Figure 3d). Dominant-negative germline variants in this domain 
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impair CBL-mediated ubiquitination and decrease the ability to negatively regulate 

EGFR signaling30,31; somatic variants in this region may have similar effects. 

 

 
Figure 3: Comparison of the ExAC missense Z-scores against ClinVar pathogenic (a) and COSMIC recurrent somatic 
(b) univariate Z-scores. Large circles indicate proteins with significant differences in the spatial distribution of the two 
sets of variants (FDR < 10%; from the bivariate analysis). Bivariate Z-scores indicate whether pathogenic/somatic 
variants (red) or ExAC missense variants (blue) were more clustered. The dashed lines indicate +/- one standard 
deviation in each dimension. (c,d) Examples of proteins with significantly different variant distributions: (c) Pathogenic 
variation in Filamin-B (FLNB) is clustered in the calponin-homology domain, responsible for actin binding. (d) 
Recurrent somatic variation in CBL, an E3 ubiquitin ligase, is clustered in the RING-type zinc finger domain, which 
mediates binding to E2 ubiquitin-conjugating enzymes. 
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Spatial proximity to pathogenic variant clusters is predictive of pathogenicity 

Given the distinct spatial patterns observed for putatively neutral and pathogenic 

missense variants within many proteins (Figures 2b,c and 3a), we hypothesized that 

accounting for the spatial distribution of known variants could improve our ability to 

predict the phenotypic impact of VUS. To explore this potential, we defined a simple 

pathogenic proximity metric (PathProx) that ranks protein residues by their relative 

proximity to known pathogenic and neutral missense variants (Figure 4a and Methods). 

We applied PathProx to 89 proteins in which ClinVar pathogenic variants were 

significantly clustered (K statistic) and significantly more clustered than ExAC missense 

variants (D statistic). In leave-one-out cross validation, PathProx performed significantly 

better than random (Figure 4b; median ROC AUC = 0.75, P = 2.4x10-23, sign test) and 

was comparable to the predictive performance of SIFT, PolyPhen2, and evolutionary 

conservation (P = 0.128, ANOVA). PathProx performance was also consistent across 

different protein folds as represented by CATH domains (Figure S8; P = 0.28, ANOVA).  

Despite similar overall performance among the prediction methods (Figure 4b), 

on a protein-by-protein basis PathProx performance was only modestly correlated with 

the performance of SIFT, PolyPhen2, and evolutionary conservation (Pearson’s r = 0.13, 

0.24, and 0.35, respectively, Figure 4c). PathProx outperformed evolutionary 

conservation for 35 of 89 proteins and outperformed all methods for 25 proteins (Figure 

4d, Figure S9). These results demonstrate that the spatial distributions of pathogenic and 

neutral variants contribute distinct predictive information not captured by existing 

methods. However, this strong performance is contingent on clustered pathogenic 

variants; applying the PathProx approach without filtering for clustering yielded 

significantly reduced performance (N = 398, median ROC AUC = 0.55, P = 2.46x10–17, 

Mann-Whitney U test). These results suggest that proximity to pathogenic clusters, not to 

individual pathogenic variants, is predictive of variant pathogenicity. Thus, integrating 

spatial constraint with other informative features is likely to improve pathogenicity 

prediction. 
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Figure 4: Proximity to clusters of pathogenic variants is predictive of pathogenicity. (a) Using ExAC (blue) and 
ClinVar pathogenic (red) missense variants, we calculated the pathogenic proximity (PathProx) score for all residues, 
indicating whether they are closer to putatively neutral (blue) or pathogenic (red) missense variants. (b) The overall 
predictive performance (ROC AUC) of the pathogenic proximity score was statistically comparable with other variant 
pathogenicity prediction methods when applied to proteins with pathogenic variant clustering. (c) Comparing the 
difference in performance of PathProx and other methods across proteins demonstrates that different methods perform 
better for different proteins. PathProx performance was only modestly correlated with evolutionary conservation 
(Pearson’s r = 0.35, P = 0.0008), and it was even more weakly correlated with the performance of the other methods (r 
= 0.13, P = 0.24 for SIFT; r = 0.24, P = 0.025 for PolyPhen2). (d) PathProx outperformed (Delta AUC) evolutionary 
conservation on many proteins. This was true in comparisons of PathProx with all methods tested (Supplementary 
Figure S9) and suggests the value of integrating information about variant spatial distributions into pathogenicity 
prediction methods. 
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PathProx Aids in the Interpretation of Missense Variants of Unknown Significance in 

Individuals with Familial Interstitial Pneumonia 

To evaluate the practical utility of PathProx in identifying disease-causing variants in 

clinical applications, we applied the approach to classify missense VUS identified in 

patients with FIP. We first compiled 15 known pathogenic missense variants from the 

literature and 29 putatively neutral missense variants from the 1000 Genomes Project 

(Figure 5a,b). The protein structure for RTEL1 has not been experimentally determined, 

so we constructed two homology models covering the N- and C-terminal regions of 

RTEL1 (Methods). Pathogenic clustering was not detected in the small C-terminal model, 

so we focus on the N-terminal model here and provide results for the C-terminal model in 

the Supplementary Results. In cross-validation using known pathogenic and putatively 

neutral variants, PathProx achieved a ROC AUC of 0.82 (Figure 5c). PathProx’s 

performance was competitive with other pathogenicity prediction methods, including 

SIFT and PolyPhen2. 

Next, we assayed 184 FIP kindreds with targeted Sanger sequencing of RTEL1, a 

DNA helicase involved in DNA repair and telomere maintenance associated with 

pulmonary fibrosis32,33 (Supplementary Results) and identified 10 missense VUS. 

PathProx predicted seven of the VUS to be deleterious (Table 1). Five of these seven 

VUS (T55S, W512C, F559I, S688C, D719G) fully segregated with disease and were 

found in subjects with short telomeres in peripheral blood mononuclear cells, a biomarker 

of reduced RTEL1 activity34–36 (Figure 5d). The other two variants (A528E, R574W) did 

not co-segregate with disease and were found in subjects with normal length telomeres. 

The three VUS predicted to be benign by PathProx (H161Q, P1107L, and F1110L) did 

not segregate with disease. For comparison, no other approach correctly identified all five 

segregating variants, and both PathProx false positive variants were also misclassified by 

all evaluated prediction methods (Table 1).  

To explore the mechanistic basis for the association of RTEL1 mutations with 

disease, we mapped mutagenesis data from two studies of a homologous protein, 

XPD37,38, to our human model of RTEL1. Proximity to pathogenic variants in RTEL1 is 

significantly correlated with decreased ATPase activity in XPD (Figure S10; Spearman ρ 
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= –0.62, P = 0.001); this suggests that pathogenic mutations in RTEL1 may similarly 

perturb ATPase activity in a manner that leads to disease. Detailed molecular hypotheses 

about how the individual segregating missense variants disrupt the structure and function 

of RTEL1—e.g., by disrupting protein-protein interactions (W512C) or DNA binding 

(F559I)—are provided in the Supplementary Results (Figure S11). These results 

demonstrate that the spatial proximity of missense VUS to variants of known effect can 

assist with VUS classification, even in the absence of a solved structure.  

 
Pos Ref Alt Inheritance PolyPhen2 SIFT ConSurf PathProx Model 

55 T S Segregating 0.00 1.00 -0.56 0.02 N-terminal 
512 W C Segregating 0.17 0.48 0.31 0.35 N-terminal 
559 F I Segregating 1.00 0.00 -1.11 0.39 N-terminal 
688 S C Segregating 0.91 0.14 -0.62 0.31 N-terminal 
719 D G Segregating 0.03 0.22 0.21 0.19 N-terminal 
161 H Q Non-Segregating 0.40 0.16 -0.35 -0.08 N-terminal 
528 A E Non-Segregating 0.62 0.05 -0.75 0.23 N-terminal 
574 R W Non-Segregating 0.95 0.00 -0.53 0.08 N-terminal 

1107 P L Non-Segregating 0.63 0.01 NA -0.12 C-terminal 
1110 F L Non-Segregating 0.00 1.00 NA -0.15 C-terminal 

Table 1: Pathogenicity predictions for newly identified RTEL1 missense variants of unknown significance from 
FIP patients. Scores highlighted in red indicate deleterious predictions. PathProx was the only method to identify all 
segregating variants as pathogenic. The two non-segregating missense VUS misclassified by PathProx were also 
misclassified by all other prediction methods. All thresholds were applied as recommended by each method. 
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Figure 5: Identification and classification of novel pathogenic familial interstitial pneumonia (FIP) variants in 
RTEL1. (a) Genotyping 184 FIP patients identified 10 new missense variants of unknown significance (VUS) in 
RTEL1 (Table 1). The locations of ClinVar pathogenic (red), putatively neutral 1000 Genomes (blue), and new 
candidate FIP (yellow) missense variants are plotted in the context of the RTEL1 protein sequence and known domains. 
(b) The locations of pathogenic, putatively neutral, and candidate variants in the RTEL1 N-terminal structural model. 
(c) Leave-one-out cross validation of PathProx applied to characterized RTEL1 variants yielded a comparable area 
under the ROC curve (AUC) to PolyPhen2, improved on SIFT, and was outperformed by evolutionary conservation 
scores. (d) Analysis of pedigrees of FIP patients demonstrated that five VUS segregate with disease. PathProx provided 
the most accurate classification of these RTEL1 VUS (Table 1). These results demonstrate how considering the spatial 
distribution of known pathogenic and neutral variants can identify pathogenic hotspots and assist in the classification of 
VUS. 
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Discussion 

By projecting missense variation into the three-dimensional context of experimentally-

derived protein structures, we quantified patterns of spatial constraint on genetic variation 

within human proteins. As expected, synonymous variants are nearly randomly 

distributed within protein structures. Reflecting the diversity of constraints on protein 

structure and function, missense variants exhibit significant dispersion in some proteins 

and significant clustering in others. However, variant-intolerance in core buried regions 

leads to a general trend towards spatial dispersion. In contrast, more than three quarters of 

proteins with ClinVar pathogenic variation display some degree of spatial clustering, and 

over a quarter exhibit significantly more clustering than expected in the absence of 

constraint. These clusters highlight protein regions that are particularly sensitive to amino 

acid substitutions, and capture spatial relationships that may be missed by traditional 

methods.  

Motivated by previous analyses of tumor-derived somatic variation13–18, we also 

evaluated spatial patterns of constraint on COSMIC recurrent missense variants. As 

expected, we found several proteins with significant clustering of COSMIC variation, 

including known cancer proteins. However, in general, the somatic variants were under 

little spatial constraint; only 15 of 1,960 proteins tested had significant deviations from a 

random distribution. Several factors likely contribute to the weaker clustering of the 

cancer mutations compared to germline pathogenic mutations. It may reflect fundamental 

differences in variant tolerance between germline and somatic contexts. Germline 

variants are present in all tissues and are constrained to be compatible with proper 

development. In contrast, somatic variants influence only a subset of tissues, and thus 

may be tolerated in contexts that would be lethal in the germline10. However, technical 

factors may also contribute to this difference. Even though we limited our analyses to 

recurrent COSMIC mutations seen in multiple tumors, the set is likely is a mixture of 

driver and passenger mutations, and thus maybe less enriched for pathogenic mutations 

than the germline set.  

Our direct comparison of the spatial distributions of pathogenic and neutral 

variation within individual protein structures identified many regions tolerant and 
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intolerant of missense variation. From this analysis, we discovered that proteins fall on a 

continuum of relative constraint; for example, FLNB has a single cluster of pathogenic 

variants on a background of widely dispersed neutral variants, while CBL exhibits 

clustering of both pathogenic and neutral variants within different regions of the protein. 

This result has important implications for the estimation of constraint. First, across all 

proteins, the spatial distribution of neutral missense variants is often different than the 

distribution of pathogenic variation. Second, directly comparing the spatial distributions 

of neutral and pathogenic variation reveals patterns that are not evident from examining 

either pathogenic or neutral variation alone, including uniquely pathogenic patterns of 

spatial constraint. For example, in 21% of protein structures with significant clustering of 

pathogenic variants, the pathogenic variants were not significantly more clustered than 

neutral missense variants in the same protein. The remaining 79% of proteins exhibit 

clustering of pathogenic variation that cannot be explained by the general patterns of 

missense variation within the structure.  

Knowledge of constrained regions within proteins structures is informative for the 

identification of pathogenic variants. Indeed, the differences we discovered in the spatial 

distributions of disease-causing and non-pathogenic variants can be exploited to predict 

variant pathogenicity. Our PathProx metric performs competitively with other common 

pathogenicity prediction methods on proteins with a sufficient number of characterized 

variants, yet its predictions are only modestly correlated with existing methods. This 

suggests that the spatial relationships between variants provide unique insights into 

variant pathogenicity. The clinical utility of this approach is illustrated by the case study 

in which we accurately classify RTEL1 VUS that co-segregate with disease in FIP-

affected pedigrees.  

The spatial patterns we detect are influenced by differences in evolutionary 

constraint and provide a unique perspective from which to study protein function and the 

phenotypic effects of coding variation. However, there are limitations to our approach. 

First, the utility of PathProx requires protein structural information. Solved structures are 

available for approximately 25% of human proteins; however, the success of PathProx on 

RTEL1 highlights the potential of using homology-based computational models for genes 

without experimentally-derived protein structures. Homology-based models are available 
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for more than 80% of human protein structures. Second, our analyses cannot be applied 

to proteins that lack known variants with characterized effects. We anticipate that 

mapping mutations across homologous protein families, and potentially even from model 

organisms, will significantly increase the number of human proteins with sufficient 

mutations with known effects. Nonetheless, while spatial information may not be 

available in all contexts, the information captured is largely independent from the 

pathogenic signatures used by other methods, some of which incorporate structural 

features of single variants. Thus, there is great potential for the incorporation of the 

spatial distribution of variants into existing pathogenicity prediction algorithms. 

In summary, our work provides a consistent statistical framework in which to 

identify significantly constrained spatial regions in protein structures and demonstrates 

significant differences in the spatial distribution of synonymous, non-synonymous, and 

disease-associated protein-coding variation. To facilitate further analyses, we provide 

ASTRID (http://astrid.icompbio.net/), a web-interface for viewing the structural locations 

of all ExAC, ClinVar, and COSMIC variants, along with the results of all spatial and 

predictive analyses, in a representative set of 4,568 solved human protein structures. 
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Online Methods  

Genetic Variant and Protein Structure Datasets 

We analyzed single-nucleotide variants (SNV) from Exome Aggregation Consortium20 

(ExAC) r0.3, ClinVar (01-07-2016), and COSMIC version 74. Variant consequences and 

annotations were determined using v82 of the Ensembl Variant Effect Predictor for 

genomic build GRCh3739. Missense variants from the 1000 Genomes Project19 were used 

to supplement known benign variants for evaluation of variants of unknown significance 

in RTEL1. Synonymous SNVs in ExAC were included for comparison with ExAC 

missense SNVs. All other datasets were filtered to include only missense SNVs. 

Genetic variants where mapped into representative protein structures through 

Ensembl40 transcripts, which were matched with UniProt41 accession and Protein Data 

Bank42 (PDB, 01-07-2016) IDs using cross-reference tables provided by UniProt. 

Reference protein sequences were aligned with observed sequences in the PDB using 

SIFTS43. Discrepancies were corrected by Needleman-Wunsch pairwise alignment with 

Biopython44,45. Proteins were represented by the subset of minimally overlapping PDB 

structures described by Kamburov et al.14.  

Quantifying and comparing the spatial distributions of protein-coding mutations 

We developed a framework for evaluating hypotheses about the spatial distributions of 

genetic variants in protein structures based on Ripley’s K, a spatial descriptive statistic 

commonly used in ecology and epidemiology29,46,47. The univariate (single dataset) K 

quantifies the spatial heterogeneity of a set of variants by comparing the proportion of 

variants within a given distance from one another to the expectation under a random 

spatial distribution. Variants are considered clustered if the proportion of neighbors 

exceeds expectation and dispersed if the number of neighbors is lower than the 

expectation. K is calculated across a range of distance thresholds (t), enabling the 

identification of clustering or dispersion at any scale (Figure 1a). We define K as  

𝐾(𝑡) =  
∑  ∑  𝐼(𝐷𝑖𝑖 < 𝑡)𝑁

𝑗!=𝑖
𝑁
𝑖

𝑁(𝑁 − 1)
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where N is the number of variants in the protein structure, Dij is the Euclidean distance 

between variants i and j, and I is an indicator function that evaluates to 1 when Dij is less 

than the distance threshold t and 0 otherwise. N(N-1) is a normalization factor for the 

number of variant pairs; as a result, K can be interpreted as the proportion of variant pairs 

within distance t of one another. This normalization also allows for comparison between 

proteins with different variant counts. Variant positions are defined as the centroid of the 

reference amino acid (Figure 1b). 

Missense variants are constrained to the positions of amino acids in a protein 

structure, so complete spatial randomness is not a valid null model for randomly 

distributed variants (Figure 1c). To account for these constraints, we calculate the 

empirical null distribution of K through 100,000 random permutations of variant 

positions within the structure. Two-tailed P-values are derived from the proportion of 

permuted K values more extreme than the observed K value. Z-scores are calculated to 

quantify the direction (clustering or dispersion) and magnitude of the effect. 

To evaluate the spatial distribution of real-valued attributes (e.g., evolutionary 

conservation, solvent accessibility) we compute a weighted form of the univariate 

analysis. We define the weighted K as 

 

𝐾𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡(𝑡,𝒘) =  
∑  ∑  𝐼�𝐷𝑖𝑖 < 𝑡�𝑤𝑗𝑁

𝑗!=𝑖
𝑁
𝑖

∑  ∑  𝑤𝑗𝑁
𝑗!=𝑖

𝑁
𝑖

 

 

where wj is the weight associated with protein position j. We use this approach to 

assesses whether the weights exhibit significant spatial constraint (clustered or dispersed) 

beyond what is explained by position. Thus, we evaluate the significance of the weighted 

K by permuting the weights over the fixed amino acid positions and empirically 

computing P-values. When N is small, the ability to assess the significance of the 

weighted K is limited by the number of unique permutations. 

This framework can quantify spatial distributions across a range of distances, 

capturing clustering or dispersion at any scale. To focus on spatial patterns at biologically 

relevant distance scales, we evaluated distances between the minimum observed distance 

between variants to half the maximum observed distance between variants. In proteins for 
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which the minimum distance is greater than half the maximum distance, we extend the 

range to the maximum distance. The distance threshold that yields the most extreme Z-

score marks the scale at which the spatial distribution differs most from expectation. 

To summarize spatial patterns into a protein-level summary statistic, we computed the 

area between the observed K curve and the median empirical null K curve using 

Simpson’s rule (Figure 1d). This summarization captures the general spatial tendencies 

for each protein. This process is repeated for each permuted K-curve to generate an 

empirical null distribution. From this distribution, we calculate a permutation P-value and 

Z-score for the observed area (Figure 1e). Positive Z-scores indicate clustering, negative 

Z-scores indicate dispersion, and Z-scores near zero indicate spatial randomness (e.g. a 

lack of spatial constraint). We controlled the False Discovery Rate (FDR) at 10% by 

computing q-values from the protein-summary P-value distribution in each analysis48 

(github.com/nfusi/qvalue). 

 

Bivariate D for spatial comparisons between variant datasets 

The univariate K quantifies constraint on the spatial distribution of a single set of 

variants, but many biological questions involve comparisons between variants of 

different types (e.g., neutral and pathogenic). We adapted the bivariate D statistic29 to 

enable these comparisons. The bivariate analysis evaluates whether one set of variants is 

more or less clustered than another by computing the difference in their univariate K. 

 

𝐷� =  𝐾�𝑁 −  𝐾�𝑀 

 

where N and M are two sets of variants. Similar to the weighted univariate K, the 

bivariate D evaluates whether the process by which dataset labels (e.g. pathogenic, 

neutral) are determined is spatially constrained. We determined the Z-score and 

significance of the bivariate D through random permutation of the class labels over fixed 

variant positions.  
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Relative proximity to pathogenic variation as a predictor of pathogenicity 

To measure the average proximity of a variant x to a set of known variants Y, we identify 

the proportion of variants in Y within some distance of x. The average proximity of x to Y 

is defined as 

 

𝑃𝑥,𝑌 = �
𝐼�𝐷𝑥𝑥 < 𝑡�

|𝑌|
𝑦∈𝑌

 

 

where I is an indicator variable that evaluates to 1 if variants x and y are within distance t 

and |Y| is the number of variants in dataset Y. For each protein structure, we selected the 

distance threshold at which the bivariate Z-score between pathogenic and neutral variants 

was most extreme, indicating the distance at which their spatial distributions are most 

different. The pathogenic proximity (PathProx) score for each variant was then defined as 

the difference in average proximity to pathogenic and neutral variation. 

 

∆𝑃𝑥 =  𝑃𝑥,𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑥,𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

 

such that values of ∆𝑃𝑥 greater than 0 indicate that variant x has greater spatial proximity 

to pathogenic variants than neutral variants.  

To evaluate the ability of the pathogenic proximity score to classify pathogenic 

and neutral mutations, we performed leave-one-out cross validation of ClinVar 

pathogenic and ExAC missense variants in proteins for which ClinVar pathogenic 

variants were determined to be significantly clustered by both univariate and bivariate 

analyses. We then calculated receiver-operator-characteristic (ROC) and precision-recall 

(PR) curves from the pathogenic proximity score of each variant and summarized 

predictive performance by computing the area under the ROC and PR curves (AUC). We 

used Analysis of Variance (ANOVA) to compare pathogenic proximity performance with 

evolutionary conservation49 and pathogenicity scores from SIFT50 and PolyPhen251. 

Default thresholds for each method were used in predicting variant pathogenicity. 
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Subjects and Specimens 

The Institutional Review Boards from Vanderbilt University, Duke University, 

University of Colorado and National Jewish Hospital approved this investigation and 

subjects or their surrogates provided written informed consent prior to enrollment in the 

study.  Subjects were identified from the Familial Interstitial Pneumonia (FIP)/Familial 

Pulmonary Fibrosis (FPF) registries at Vanderbilt University, the University of Colorado, 

and National Jewish Hospital32.  FIP was defined by the presence of Idiopathic Interstitial 

Pneumonia (IIP) in two or more family members, including Idiopathic Pulmonary 

Fibrosis (IPF) in at least 1 individual. Phenotypes of subjects selected for sequencing 

were ascertained using ATS/ERS criteria for IIP52. The affected status of deceased 

individuals was determined by review of available medical records, autopsy material, or 

by death certificates. DNA was isolated from blood and/or paraffin-embedded lung tissue 

using a PureGene Kit (Gentra Systems, Minneapolis, MN). Whole exome sequencing and 

Sanger sequencing of RTEL1 in extended pedigrees and probands from FIP kindreds was 

performed as previously described32. 

Constructing the Structural Model of RTEL1 

We applied nine computational modeling algorithms to the RTEL1 protein sequence: 

GeneSilico53, HHpred54, I-TASSER55, M4T56, Pcons557, Phyre258, RaptorX59, Robetta60, 

and SWISS-MODEL61. RaptorX produced the highest-coverage model, which consisted 

of two well-folded domains spanning residues 1–769 and 881–1151. This model was 

based on seven PDB structures: 4a1562, 3crv38, 2fi763, 2gm764, 4pjq65, 2vrw66, 4a6467. To 

improve quality, the model was relaxed using Rosetta version 2015.1968, then subjected 

to 1000 rounds of loop modeling69 using perturb_kic_with_fragments. This new 

structural model of RTEL1 is available as Supplementary File 1. 
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