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Abstract 27	

Brain computations depend on how neurons transform inputs to spike outputs. Here, to 28	
understand input-output transformations in cortical networks, we recorded spiking 29	
responses from visual cortex (V1) of awake mice of either sex while pairing sensory stimuli 30	
with optogenetic perturbation of excitatory and parvalbumin-positive inhibitory neurons.  31	
We found V1 neurons’ average responses were primarily additive (linear). We used a 32	
recurrent cortical network model to determine if these data, as well as past observations of 33	
nonlinearity, could be described by a common circuit architecture.  The model showed 34	
cortical input-output transformations can be changed from linear to sublinear with moderate 35	
(~20%) strengthening of connections between inhibitory neurons, but this change depends 36	
on the presence of feedforward inhibition.  Thus, feedforward inhibition, a common feature 37	
of cortical circuitry, enables networks to flexibly change their spiking responses via changes 38	
in recurrent connectivity. 39	

Significance statement 40	

Brains are made up of neural networks that process information by receiving input activity and 41	
transforming those inputs into output activity.  We use optogenetic manipulations in awake mice 42	
to expose how a transformation in a cortical network depends on internal network activity.  43	
Combining numerical simulations with our observations uncovers that transformation depend 44	
critically on feedforward inhibition – the fact that inputs to the cortex often make strong 45	
connections on both excitatory and inhibitory neurons. 46	

47	
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Introduction 48	

Neurons in the cerebral cortex receive thousands of synaptic inputs and transform those 49	
inputs into spike outputs.  Input-output transformations can be characterized in single cells 50	
(measuring firing rate while injecting current to produce a f-I curve, (Connors et al., 1982; 51	
Destexhe and Paré, 1999; Koike et al., 1970)), but network effects can dramatically alter 52	
input-output transformations in vivo.  For example, ongoing network activity can create 53	

supralinearities in neurons’ input-output functions (Priebe and Ferster, 2008), strong 54	
network connectivity can create entirely linear input-output functions (Brunel, 2000; van 55	
Vreeswijk and Sompolinsky, 1996), and recurrent connections can amplify inhibition to 56	
produce sublinearity (Ahmadian et al., 2013). 57	

In this work, we examine input-output transformations in vivo by first measuring spiking 58	
responses to combinations of visual and optogenetic input in the mouse visual cortex (V1).  59	
Then, to shed light on the network and circuit mechanisms of input-output transformations, 60	
we use a spiking recurrent network model.  The experimental data show that excitatory 61	
neuron stimulation gives a primarily linear (additive) input-output transformation in mouse 62	
V1, which stands in contrast to sublinearity seen in monkey V1 (Nassi et al., 2015).  The 63	
model shows that the cortical network can achieve both kinds of transformations with only 64	
moderate changes in local recurrent synaptic strengths.  The model makes a further 65	
prediction that feedforward inhibition – input that synapses not just on excitatory but also 66	
on inhibitory neurons – allows the cortex to support both kinds of transformations.   67	

Optogenetic stimulation can reveal how networks in vivo transform inputs into output.  68	

Studies using sensory stimuli alone are complicated by the fact sensory stimuli are processed 69	
by many brain regions, each of which may provide input to a cortical area under study.  70	
Combinations of sensory stimuli have, however, found that a wide range of transformations 71	
are possible, often finding evidence for normalization, a form of sublinear summation 72	
(Carandini and Heeger, 2012).  A few recent studies have used direct optogenetic input to 73	
study input-output transformations, and studies in different species have observed both 74	
normalization (Nassi et al., 2015; Sato et al., 2014) and more linear summation (Huang et 75	
al., 2014), pointing to the need to understand what features of cortical networks can change 76	
input-output transformations. 77	

Models and theoretical approaches complement experimental studies of input-output 78	
transformations, because is difficult to control connectivity in an in vivo cortical network 79	
experimentally. Rate-based models (Ahmadian et al., 2013; Rubin et al., 2015) have 80	
characterized the range of behaviors cortical networks can support.  But not all the effects 81	
seen in rate-based models may occur in biological networks, as spiking neurons have 82	
biophysical properties that can impact input-output transformations, such as refractory 83	
periods and nonlinearities due to spike threshold.  Analysis of networks of spiking neurons 84	
is most advanced for models that approximate neuronal inputs as currents and not 85	
conductances (e.g. Brunel, 2000), but input-output relationships can be modified by the 86	
changes in effective synaptic strength and Vm variability (Richardson, 2004, 2007) that 87	
occur in realistic conductance-based neurons.  Therefore, we use numerical simulations of 88	
models of conductance-based spiking neurons to determine which connectivity properties 89	
might create the input-output transformations seen in our data and in past data. 90	
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Below, we first describe the experimental results from excitatory optogenetic perturbations 91	
in mouse visual cortex (Figs. 1-2), showing near-linear responses across a wide range of 92	
firing rates and visual contrast.  We then describe results from the model, showing that 93	
feedforward inhibition can produce sublinearity (Fig. 3), and that with feedforward 94	
inhibition, local connectivity can allow networks to be either linear or sublinear (Figs. 4-5).  95	
Finally, we construct a model network (Fig. 6) that fits the observations, and show it is 96	
consistent with data from optogenetic perturbations of inhibitory neurons (Fig. 7).  The 97	
observations are together best described by a model with feedforward inhibition.  98	

99	
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Materials and Methods 100	

Neurophysiology 101	

All experimental animal procedures were conducted in accordance with NIH standards and were 102	
approved by the IACUC at Harvard Medical School.   Animal breeding and surgery were 103	
performed according to the methods described previously (Glickfeld et al., 2013; Histed and 104	
Maunsell, 2013).  105	

Neurophysiological data from Emx1-Cre animals (N=4, of both sexes but sex not recorded) were 106	
collected using the methods used in Glickfeld et al. (2013) for extracellular recordings. Briefly, 107	
animals kept on a monitored water schedule were given small drops of water (~1 µL) every 60-108	
120 s during recording to keep them awake and alert.  The visual stimulus, a Gabor patch with 109	
spatial frequency 0.1 cycles/deg and sigma 12.5 deg, were presented for 115 ms (FWHM 110	
intensity) and successive visual stimuli were presented every 1 s.  Optogenetic light pulses were 111	
delivered on alternating sets of 10 stimulus presentations (light onset 500 ms before first 112	
stimulus, offset 500ms after end of last stimulus; total light pulse duration 10.2s).  A 1 s delay 113	
was added after each set of 10 stimulus presentations.  Extracellular probes were 32-site silicon 114	
electrodes (Neuronexus, Inc., probe model A4x8).  Recording surfaces were treated with PEDOT 115	
to lower impedance and improve recording quality.  On each recording day, electrodes were 116	
introduced through the dura and left stationary for approximately 1 hour before recording to give 117	
more stable recordings. ChR2 was expressed in excitatory neurons (as described in Histed and 118	
Maunsell, 2013) using viral injections into the Emx1-Cre (Gorski et al., 2002), (Stock #5628, 119	
Jackson Laboratory, Bar Harbor, ME USA) line.  Virus (0.25-1.0 µL) was injected into a cortical 120	
site whose retinotopic location was identified by imaging autofluorescence responses to small 121	
visual stimuli.  Light powers used for optogenetic stimulation were 500 µW/mm2 on the first 122	
recording session; in later sessions dural thickening was visible and changes in firing rate were 123	
smaller, so power was increased (maximum 3 mW/mm2) to give mean spontaneous rate 124	
increases of approximately ~5 spikes/s in that recording session.  Optogenetic light spot diameter 125	
was 400-700µm (FWHM) as measured by imaging the delivered light on the cortical surface.  126	
Spike waveforms were sorted after the experiment using OfflineSorter (Plexon, Inc.).  Single 127	
units were identified as waveform clusters that showed clear and stable separation from noise 128	
and other clusters, unimodal width distributions, and inter-spike interval histograms consistent 129	
with cortical neuron absolute and relative refractory periods.  Multiunits were clusters that were 130	
distinct from noise but did not meet one or more of those criteria, and thus these multiunits likely 131	
group together a small number of single neuron waveforms.   132	

Experimental Design and Statistical Analysis 133	

Spike histograms were smoothed using piecewise splines (LOWESS smoothing).  To compute 134	
neurons’ visual responses (e.g. Fig. 1D, 2A), we counted spikes over a 175 ms period beginning 135	
25 ms after stimulus onset, with a matched baseline period 175 ms long ending at stimulus onset.  136	
To test for non-linearity, for each cell we found the response count with and without optogenetic 137	
stimulation by taking the stimulus response count and subtracting the baseline count.  Neurons 138	
were classified as significantly non-linear if the p-value of a two-sample two-tailed Kolmogorov-139	
Smirnov test on the counts with and without stimulation was less than 0.01.  Comparing the 140	
percent of units significant to 1% (the percentage was much higher) controls for multiple 141	
comparisons.  The Emx1 dataset includes data from 100 shank penetrations (~25 recording 142	
sessions with a 4-shank electrode).  Because the inter-shank spacing was 200-400 µm, our 143	
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stimuli in fixed retinotopic locations could not activate neurons on all shanks.  Therefore, we 144	
included only shanks in which an average visual response > 0.2 spikes/s was measured (38/100 145	
shanks).  This gave 417 single and multi-units.  We examined only units that showed a visual 146	
stimulus response (N=289; mean stimulus response-mean spontaneous > 0.2) in the absence of 147	
ChR2 stimulation.  Because ChR2 expression was highest at the site of viral injection and fell off 148	
with distance, we took advantage of this variation to sort units into three groups based on the 149	
strength of local ChR2 activation (Fig. 1C).  We found the average change in spontaneous rate 150	
induced by ChR2 stimulation for all units on a shank and rank-ordered the shanks.  Dividing 151	
shanks into three groups based on small, medium, or large ChR2 effects yielded three nearly-152	
equal sized groups of units receiving small, medium or large ChR2 activation.  The group sizes 153	
differ by a few units because we sorted by shank, not by individual unit.   154	

To test whether units were non-linear, we subtracted spike count around visual responses 155	
described above, subtracted  156	

Conductance-based spiking network model 157	

The cortical model is a recurrent network of conductance-based leaky integrate-and-fire neurons.    158	
Example Python code and a Jupyter notebook (http://jupyter.org) are provided at [url redacted 159	
for review; code provided on request] that run the network simulation with all its inputs, 160	
replicating spike counts shown in Fig. 6C, bottom row.  To recover the rest of the simulations in 161	
Fig. 3-7, this code can be run in parallel on a larger cluster.   162	

Each model neuron is connected randomly to each other neuron with fixed probability (sparsity).  163	
For example, for a 10% sparsity network, each cell receives input from 10% of the excitatory 164	
cells and thus gets 0.1*8000 = 800 E inputs.  Similarly, at 10% sparsity, each cell receives 165	
0.1*2000 = 200 I inputs.  As seen in the cortex, we chose the inhibitory synaptic strength to be  166	
larger than the excitatory synaptic strength.  We varied both synaptic strengths and found that 167	
our conclusions are not affected by changes in E/I synaptic strength ratio.  (See also Fig. 5 for 168	
effects of changing together E and I recurrent synaptic weights by an order of magnitude).  We 169	
refer to this baseline set of random, sparse connections as the balancing connections.  For 170	
convenience, to change local connectivity, we change the strength of a second added set of 171	
connections with the same sparsity while keeping the strength of the balancing connections 172	
constant.  For example, when I->I connectivity is varied in the 2% sparsity network (e.g. Fig. 4), 173	
each I cell receives an extra 40 synapses from other I cells, and the y-axis in Fig. 4AB shows the 174	
effects of varying the weight of those 40 synapses from zero to ~20% of the weight of the 175	
standard recurrent I->I synapses.   176	

Each simulated neuron’s membrane potential evolves according to the following equation: 177	

 178	

 179	

dVm

dt
= � 1

⌧m

h
gleak(Vm � Erest) + gChR2(Vm � Ee)

+ ge(Vm � Ee) + gi(Vm � Ei)
i
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When the membrane potential 𝑉" crosses a threshold (-50 mV), a spike is recorded and 𝑉" is 180	
reset to  𝐸$%&' (-60 mV) for the absolute refractory period (3 ms).   181	

Beyond the recurrent inputs from other neurons in the network (described in the model 182	
architecture above), model neurons can receive two kinds of external inputs: external 183	
feedforward inputs simulating e.g. sensory input from thalamus, and external ChR2 inputs. 184	
Feedforward (sensory) inputs are simulated as Poisson spike trains whose rates are changed by 185	
stepping to a new value, with values chosen to approximate visually-evoked changes seen in the 186	
data.  ChR2 input is simulated by linearly ramping 𝑔)*+, to a new value over 2 ms, a timescale 187	
consistent with ChR2 𝑡./ (Nikolic et al., 2009), and 𝑔)*+, amplitude is varied to reproduce 188	
experimental changes in firing rate (see below).  Synaptic conductances 𝑔% and 𝑔0 are 189	
incremented instantaneously by a constant excitatory or inhibitory synaptic weight when a spike 190	
is fired by a recurrent or feedforward input. The conductances decay with time constants 𝜏2% =191	

5	𝑚𝑠 and 𝜏20 = 10	𝑚𝑠, described by: 192	

 193	

Other constants are: excitatory reversal 𝐸% = 0 mV, inhibitory reversal 𝐸0 = -80 mV, membrane 194	
time constant 𝜏" = 20 ms. Post-synaptic potential (PSP) amplitudes can vary with network 195	
activity and synaptic weight because the model neurons are conductance-based.  As we varied 196	
sparsity in the network, the excitatory PSP amplitude varied over an approximately tenfold range 197	
(0.3-3.0 mV for sparsity 20% - 2%, if calculated assuming that the mean membrane potential of 198	
network neurons is -65mV.)   199	

The sparse recurrent connections yield spontaneous activity in the network in the absence of 200	
external input (van Vreeswijk and Sompolinsky, 1998; Vogels and Abbott, 2005).  To equate the 201	
spontaneous firing state of the network across different sparsity and synaptic strength, we adjust 202	
network spontaneous rate.  We use an additional external Poisson excitatory input to either 203	
excitatory or inhibitory neurons to respectively raise or lower the spontaneous rate.  The rate of 204	
this Poisson input is chosen via stepwise optimization to give a mean spontaneous rate across 205	
excitatory neurons of 5 spk/s.  (In the 2% sparsity network, these added excitatory synapses 206	
account for only approximately 2% of the total mean conductance).  For many networks, a local 207	
minimum of the parameter can be found repeatably, but for extreme values of sparsity and 208	
synaptic strength, the network is unstable and spontaneous rates are either sensitive to small 209	
perturbations or diverge.  In these cases network response is not shown (e.g. gray regions, Fig. 210	
5B-C). 211	

Simulations were performed with the Brian package (Brette et al., 2007) on a multi-CPU cluster 212	
(the NIH HPC Biowulf cluster, http://hpc.nih.gov, or Orchestra, http://rc.hms.harvard.edu) with 213	
an integration time step of 50 µs. 214	

dge
dt

= � ge
⌧ge

dgi
dt

= � gi
⌧gi
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Results 215	

 216	
Experimental measurements in mouse V1 show linear summation 217	

We combined visual and excitatory optogenetic input (Fig. 1A-B) by expressing 218	
channelrhodpsin-2 (ChR2) in V1 excitatory neurons using a transgenic mouse line and a 219	
Cre-dependent virus, and we used blue light pulses several seconds in duration (4-6 sec) to 220	
shift neurons’ firing rates to a new baseline.  We delivered the same visual stimulus 221	
repeatedly, with and without ChR2 stimulation.  We kept animals alert by giving them 222	
drops of fluid approximately once a minute, and we measured neurons’ spiking via 223	
extracellular recording with multi-site probes. 224	

When we presented the same visual stimulus with and without optogenetic stimulation, we 225	
found that V1 neurons’ responses scaled nearly linearly (Fig. 1C) – that is, nearly the same 226	
size response was produced even as the optogenetic stimulus changed the baseline firing 227	
rate. Even for relatively large optogenetic baseline shifts (~10 spk/s, roughly the same 228	
magnitude as the average visual response), the visual response was similar with and without 229	
ChR2 stimulation.  This response implies the input-output transformation is linear (also 230	
called additive, e.g. Huang et al., 2014), meaning the sensory response produces a fixed 231	
change in firing rate above the changing baseline rate.  (In contrast, if the response was 232	
sublinear, higher baseline rates would produce a smaller sensory response.) We saw nearly 233	
linear responses across a range of intensities of the visual stimulus (contrast range: 8%-90%, 234	
Fig. 1D), and we saw linear responses both in averages across single units (N=50) and 235	
multi-units (N=239).   Responses became slightly sublinear in cells with the largest baseline 236	
shifts (Fig. 1E), but responses were on average within a few percent of linear (for maximum 237	
contrast, as in Fig. 1D: average sensory response changed from 10.6 spk/s to 10.2 spk/s, a -238	
4.4% change; for single units -4.8%, for multi-units -4.1%; in contrast the average baseline 239	
rate almost doubled: 5.8 to 10.8 spk/s; change +86%). 240	

While average neuronal responses were nearly linear, individual recorded units were often 241	
either supra- or sub-linear (Fig. 2).  Units with large and small ChR2 effects are non-linear 242	
(points lie above or below the horizontal line that shows a perfectly linear response, Fig. 243	
2A).  And both SU and MU are non-linear (Fig. 2A; example timecourses in Fig 2B). With 244	
the 90% contrast visual stimulus, 34% of single units are significantly non-linear (17/50, 245	
p<0.01, KS test; Fig. 2A), and 28% of multi-units are significantly non-linear (67/239, 246	
p<0.01, KS test).  Such heterogeneity in responses could arise because each neuron has 247	

slightly different local connectivity.  Heterogeneity due to local recurrent connections would 248	
suggest the population average linear response is a network effect, arising from connections 249	
between excitatory and inhibitory neurons that cause them to dynamically respond to each 250	
others’ activity (van Vreeswijk and Sompolinsky, 1996).  Below, using a spiking network 251	
model, we test how connectivity might lead to these observed responses. 252	

Other experimental work finds sublinear summation in macaque visual cortex  253	

In contrast to this average linear scaling in mouse primary visual cortex, recent work in the 254	
monkey primary visual cortex (Nassi et al., 2015) found neural responses that were at times 255	
highly sublinear, and averages across neurons were also sublinear.  (Previous work in the 256	
tree shrew and mouse has also found linearity and sublinearity, Huang et al., 2014; Sato et 257	
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al., 2014).  The experimental approach used by Nassi et al. does not seem to differ in 258	
important ways from our approach -- they expressed ChR2 primarily in excitatory neurons 259	
(using a CaMKII-alpha promoter strategy), stimulated an area of the cortex a few hundred 260	
microns in diameter, and they paired ChR2 and visual stimulation.  Because the different 261	
results may stem from differences in cortical architecture across species, rather than 262	
differences in experimental methods, we sought to determine whether there were features of 263	
local cortical circuits that could change response scaling from linear to sublinear.   264	

Model network simulations identify circuit properties controlling input summation 265	

Since it is difficult to manipulate neural connectivity in vivo, we used numerical simulations 266	

of conductance-based model neurons to understand how network connectivity might change 267	
response scaling.  We constructed networks of 10,000 conductance-based leaky integrate-268	
and-fire neurons, 8,000 excitatory (E) and 2,000 inhibitory (I).  We chose realistic 269	
parameters for the model neurons, including sparse connectivity (initially 2%), and chose 270	
moderate synaptic strengths such that a few tens of EPSPs were required to push a neuron 271	
over threshold.  (We explore a range of values of sparsity and synaptic strength below.) 272	
These sparse, randomly connected networks produce irregular and asynchronous 273	
spontaneous activity (Fig. 3A) similar to that observed experimentally (Destexhe et al., 274	
2003; Steriade et al., 2001) and show stable responses to external inputs (Vogels and Abbott, 275	
2005).  For all simulations, we set the spontaneous average rate of the network to 5 spk/s.  276	
There are a variety of single-cell properties that could set neurons’ spontaneous rate, but we 277	
changed the spontaneous rate by supplying a small, constant amount of excitatory input that 278	
does not vary with network activity or input, to either excitatory or inhibitory neurons (see 279	
Methods).  280	

To determine how different sorts of feedforward inputs affect neurons’ responses, we 281	
simulated external inputs to E and I cells using two input groups of Poisson spike trains 282	
whose rates could be varied independently.  As expected, when we varied the external input 283	
rates, increasing input to E cells (x-axis) monotonically increased the average network 284	
response (Fig. 3B, contour lines; average of all excitatory cells in the network, a measure 285	
similar to that obtained by multi-electrode recordings) and increasing input to I cells (y-axis) 286	
monotonically decreased the average network response.  However, we could hold the 287	
average response constant by adjusting the two feedforward inputs.  When the average 288	
response was constant (along contour lines in Fig. 3B), we still observed changes in response 289	
scaling, and those changes depended on the amount of I input.  290	

To assess response scaling in the model (Fig. 3), we began with a combination of E and I 291	
input that produced a 15 spk/s response (chosen because we measured experimentally an 292	
average response that peaked near 15 spk/s, Fig. 1C,D).  Then, we multiplied both input 293	
rates by a single constant and measured the size of the response to the scaled input.  We 294	
found that when feedforward I input is small, responses are near-linear (Fig. 3C).  This is 295	
not surprising, as previous theoretical work using strong local synaptic coupling in models 296	
with binary (van Vreeswijk and Sompolinsky, 1996) or current-based neurons (Brunel, 2000) 297	
showed that networks can produce linear responses even though individual neurons in 298	
cortical networks are nonlinear (Priebe and Ferster, 2008).  However, these models did not 299	
characterize the effects of varying feedforward E and I input separately, and so we varied 300	
feedforward I input in the conductance-based model.  Indeed, when feedforward I input was 301	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2017. ; https://doi.org/10.1101/109736doi: bioRxiv preprint 

https://doi.org/10.1101/109736
http://creativecommons.org/licenses/by-nc/4.0/


 10  

varied, we observed deviations from linearity.  Even though the spontaneous spike rate and 302	
the spike rate response to a single stimulus alone were both held constant with and without 303	
feedforward inhibition, increasing stimulus strength showed more sublinear response scaling 304	
when feedforward inhibition was present.  305	

Local connectivity changes summation only in the presence of feedforward inhibition 306	

While adding feedforward inhibition induced some sublinearity, we wished to know if more 307	
dramatic nonlinearities were possible.  Therefore, we next (Fig. 4) changed local recurrent 308	
connectivity between and amongst E and I populations, and measured how those 309	
connectivity changes affected response scaling.  Fig. 4 shows the effects of varying two local 310	
connections (first, strength of synapses from E to I, and second, strength of synapses from I 311	
to I) to illustrate the range of effects we observed.  To implement varying connectivity in the 312	
model, we added additional connections between two neuronal populations (e.g, E to I, or I 313	
to I) with the same sparsity as the network. We then varied the strength of those additional 314	
connections and measured effects on response scaling.   315	

With only feedforward input to E cells (Fig. 4A,C,E), we found that changing network 316	
connections did not dramatically affect response scaling.  Changing the connectivity could 317	
change the gain of the network (the size of the response to a constant input, Fig. 4A, 318	
contour lines), but response scaling was nearly linear (Fig. 4A, plot is yellow throughout; 319	
Fig. 4C-D: black lines lie close to horizontal dotted line).  At high firing rates, we 320	
consistently saw moderate increases in sublinearity, which seems likely to be due to effects 321	
of the 3 ms absolute refractory period.  (To focus on rates well below the refractory period, 322	
we show rates above 50 spk/s as light gray lines in Fig. 4CD).  We also varied all pairwise 323	
combinations of E to I connectivity, as well as feedforward E and I input strength, and 324	
found that without feedforward inhibition, responses never showed substantial nonlinearity.  325	
Thus, the linear scaling we had observed in the model when delivering input to E cells only 326	
was robust to changes in local connectivity.  In sum, without feedforward inhibition, scaling 327	
was approximately linear, and local connectivity changes had little effect. 328	

Near-linear scaling was consistently seen when feedforward input arrived to E cells, but 329	
when feedforward input arrived to both E and I cells, responses could be either linear or 330	
sublinear.  When we increased local I to I connection strength (Fig 4B, y-axis), sublinearity 331	
was observed (Fig. 4D; plot parameters correspond to pink asterisk in Fig. 4B, in blue region 332	
of plot).  But increased E to I connection strength (Fig. 4B, x-axis) led to increasingly linear 333	
scaling (Fig. 4E; plot parameters correspond to pink ‘|’ symbol in Fig. 4B).  The sublinear 334	
scaling produced by stronger I to I connectivity was dramatic.  As with all the timecourse 335	
plots (Fig. 4C-F), we chose input strength so the first firing rate response was 15 spk/s, but 336	
when I to I connectivity was increased, subsequent firing rate responses fell as low as 1 337	
spk/s (Fig. 4D).  The mechanism by which increased I to I coupling produces increased 338	
sublinearity is not yet understood.  Such unintuitive changes might possibly arise from 339	
network-level effects, similar to the way E-I tracking may cause inhibitory neurons to 340	
actually decrease their activity when inhibitory neurons are excited by stimulation 341	
(Ahmadian et al., 2013), or might arise from cell-autonomous changes in conductance that 342	
leads to shunting in individual cells (Chance et al., 2002; Richardson, 2004).  Further 343	
theoretical work will be required to understand why increased I-I coupling leads to 344	
increased sublinearity in spiking networks.  However, it is likely that I-I connectivity 345	
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changes can be achieved in cortical inhibitory neurons, as inhibitory cells modify their 346	

dendritic structure over time (Chen et al., 2011).  In sum, the numerical simulations show 347	
that local connectivity changes can dramatically affect response scaling, but only in the 348	
presence of feedforward I input.  349	

Connectivity effects on summation do not depend on connection sparsity or strength  350	

We next examined whether synaptic strength and connection sparsity can change the role of 351	
feedforward inhibition in response scaling.  We expected that varying the total recurrent 352	
input that neurons receive would change non-linearity of responses (as predicted by theory, 353	
Ahmadian et al., 2013; van Vreeswijk and Sompolinsky, 1996), as long as the network 354	
remained stable.  Therefore, we varied total input in two ways, by varying connection 355	
sparsity and by varying synaptic strength (Fig. 5).  Experimental estimates of local 356	
connection sparsity range as high as 10-20% (i.e. each neuron connects to 10-20% of nearby 357	

neurons, Braitenberg and Schüz, 2001; Lefort et al., 2009).  But the effective sparsity of 358	
connections might be lower, as connection probability in cortical networks is known to fall 359	
off with distance.  Average network connection probabilities might thus be lower than the 360	
measurements, which were obtained for nearby neurons.  Therefore, to examine the effects 361	
of changing connection probability, we varied sparsity between 2-20%.  We found that in all 362	
these cases, adding feedforward inhibitory drive allowed more sublinear responses (Fig. 5; 363	
green lines always lie below blue lines in Fig. 5A). We observed more linear scaling when 364	
we increased the strength of all synapses together, and a bigger range of possible scaling 365	
(from supralinear to sublinear) when we decreased synaptic strength.  These results show 366	
that, in networks that use a range of connection strength and sparsity, feedforward 367	
inhibition enables local E and I connectivity to have similar effects on response scaling, 368	
though the networks became more linear as connectivity strength increased. 369	

Summation in our data and past data can be explained by a model with feedforward 370	
inhibition  371	

Next, we asked whether a model that incorporates realistic optogenetic input shows the 372	
same scaling dependence on feedforward inhibition we have observed.  Up to this point, we 373	
have examined the behavior of simulated networks only by scaling a feedforward input 374	
(Figs. 3-5).  We have implemented this feedforward input to simulate the way input spikes 375	
change conductance in neurons, by modulating the firing rate of a (Poisson) stochastic point 376	
process.  Using these input spike trains, the sum of feedforward synaptic inputs in a given 377	
network neuron has substantial fluctuations about its mean.  In contrast, experimental 378	
ChR2 stimulation activates many channels, and produces conductance changes with much 379	
smaller fluctuation about the mean.  Thus, it might be possible that the scaling behavior we 380	
studied experimentally, with ChR2 combined with visual stimuli, would differ from the 381	
combinations of feedforward input we simulated in Figs. 3-5.  To determine if there was a 382	
difference, we simulated ChR2 input by changing conductance and combined this with 383	
feedforward input (Fig. 6), and found that combinations of ChR2 and visual inputs 384	
produced qualitatively similar effects to the effects we had previously seen.  Combinations 385	
of simulated ChR2 and visual input (Fig. 6A) showed slightly increased sublinearity when 386	
compared to a single scaled visual input (cf. Fig. 3B).  (We also saw some slight sublinearity 387	
in our measurements of responses to combined ChR2 and visual input in mouse V1, Fig. 1)  388	
However, as with simulated visual input (Figs. 3-5), we found that with paired conductance 389	
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(ChR2) and spiking (visual) inputs, more sublinearity is possible when the feedforward input 390	
combines inhibitory and excitatory targets than when feedforward input targets only 391	
excitatory neurons (Fig. 6B-C).  And, in the presence of feedforward inhibition, moderate 392	
changes in network connectivity can modify scaling behavior (Fig. 6D).  In sum, in the 393	
models that simulate visual input alone (Figs. 3-5), and the models that simulate combined 394	
visual and ChR2 (conductance) inputs (Fig. 6), the role of feedforward inhibition and I-I 395	
connectivity in response scaling is similar. 396	

We next asked what combinations of connectivity and feedforward input could describe 397	
both our data and past measurements.  We constructed a model with combined visual 398	
(spiking) and ChR2 (conductance) inputs, and fit evoked rates to our data. Our data (Fig. 399	
6E) was well-matched by the simulations that showed small sublinearity (Fig. 6A-D).  The 400	
data was similar to two different sets of network simulation parameters.  Networks with 401	
only feedforward excitation showed responses that paralleled the data (Fig. 6B).  But 402	
networks with both feedforward excitation and inhibition could also describe our data when 403	
the network local connectivity was adjusted (Fig. 6D).  Since feedforward inhibition is a 404	
common feature of cortical networks in many species (Douglas and Martin, 2004), a model 405	
using feedforward inhibition seems a good choice to describe experimentally measured 406	
response scaling.  Further, with feedforward inhibition, changes in local (e.g. I-I) 407	
connectivity can change response scaling from linear to sublinear, describing not just our 408	
data but also past data.  These simulations show that a wide regime of cortical scaling 409	
behavior, from linear (as seen here in mouse V1 and also in the tree shrew (Huang et al., 410	
2014)), to strongly sublinear (as seen in primate V1, Nassi et al., 2015), can be achieved by a 411	
model with feedforward inhibition.  In sum, the simulations show that a model with 412	
feedforward inhibition can describe both our data and past observations.   413	

PV neuron stimulation effects are explained by the model with feedforward inhibition 414	

We next tested the model against data obtained by pairing visual and optogenetic 415	
stimulation of parvalbumin-positive (PV) cells.  A majority of cortical PV inhibitory neurons 416	
are soma-targeting fast-spiking basket cells (Kawaguchi and Kubota, 1997; Tremblay et al., 417	
2016), which are well-positioned to act as the balancing population in the network models.  418	
We found that stimulating PV neurons with ChR2 in awake mice produces a moderate 419	
suppression of visual responses, with a larger change in baseline rates than in stimulus 420	
responses.  As before, we measure the visual response relative to the preceding baseline 421	
firing rate, which is changed by optogenetic stimulation.  The optogenetic stimulation 422	
lowered the baseline firing rate by a substantial amount (from 5.4 spk/s to 2.4 spk/s, a 57% 423	
reduction), and reduced the response to a high contrast visual stimulus by a smaller amount 424	
(from 7.6 to 5.3 spk/s or 29%; Fig. 7A-B).   425	

We then used this PV-ChR2 stimulation data to determine which models in Fig. 6 fit both 426	
the excitatory and PV stimulation mouse V1 data.  As with the simulations in which 427	
excitatory neurons received ChR2 (conductance) input, we simulated the effects of 428	
optogenetic stimulation of PV cells by delivering a conductance input to PV neurons in the 429	
models.  We adjusted the size of the conductance input to match the firing rate changes we 430	
saw in the data (Fig. 7C).  The two models that fit the near-linear responses to excitatory 431	
stimulation (Fig. 6) are the model without feedforward inhibition (Fig. 6B), and the model 432	
with feedforward inhibition and local synapses adjusted to produce near-linear responses 433	
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(Fig. 6D).  For each of those two models, we simulated optogenetic input to PV cells, and 434	
measured the change in visual response size with and without optogenetic PV input.  We 435	
found that the model without feedforward inhibition disagreed with the PV-ChR2 data, 436	
displaying very strong suppression (Fig. 7C).  Only the model with feedforward inhibition 437	
(Fig. 7D) showed the same scaling (moderate suppression) seen in the PV-ChR2 data.  The 438	
reduced suppression in the model with feedforward inhibition might be due to a smaller 439	
proportion of PV total input coming from optogenetic stimulation in that model, compared 440	
to the model where PV cells receive no direct feedforward input.  In sum, optogenetic 441	
perturbations of excitatory and PV-positive cells are described by a cortical recurrent 442	
network model that requires feedforward inhibition. 443	

In sum, our data shows that average response summation for excitatory input in mouse V1 444	
is close to linear, even though individual cells can be nonlinear.  Linear summation holds 445	
even for substantial shifts in firing rate (ChR2-induced firing rate changes of 10-15 spk/s, 446	
approximately the same size as the maximum visual response, Fig. 1).  Using a numerical 447	
model of conductance-based spiking neurons, we find that response scaling is affected 448	
dramatically by synaptic connectivity.  Moderate changes in synaptic coupling (~20%) 449	
between inhibitory cells can change response scaling from linear to sublinear (Figs. 4-6).  450	
Further, the change in inhibitory-to-inhibitory (I-I) connectivity that leads to sublinear 451	
summation only yields such sublinear summation in the presence of feedforward inhibition.    452	
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Discussion 453	

It might seem surprising that we observed linear responses and not divisive normalization, 454	
where adding an additional stimulus yields reduction of the responses to a single stimulus.  455	
This form of sublinear summation has been observed in different visual cortical areas of 456	
several species. Linear summation, on the other hand, is also commonly seen at various 457	
stages of sensory systems, and both linear and sublinear responses may be useful at different 458	
levels (Carandini and Heeger, 2012).  Linear summation may be more desirable when 459	
responses at different locations should receive equal weight, as when an organism must 460	
sensitively detect a distant predator, or when spikes that occur at different times should 461	
produce the same downstream effect.  In fact, computer vision systems often use both linear 462	
and normalization steps in distinct layers or networks (Carandini and Heeger, 2012; Yamins 463	
and DiCarlo, 2016).  Experimentally, normalization is usually measured with sensory 464	
stimuli, not with direct cortical input, and thus normalization might partially depend on 465	
subcortical (e.g. thalamic gain control, Bonin et al., 2006) or feedback effects. 466	

In fact, the linear responses we observed with excitatory optogenetic stimulation in mouse 467	
primary visual cortex are similar to those seen in tree shrew visual cortex (Huang et al., 468	
2014), but are different than the sublinear responses seen in macaque visual cortex (Nassi et 469	
al., 2015).  Our simulations show that a broadly similar cortical architecture can support 470	
both kinds of scaling of feedforward input, subject to moderate adjustments in local 471	
connectivity.  The linear responses we saw in the mouse differ from those of Sato et al. 472	
(2014), who also delivered combinations of excitatory optogenetic and visual input to 473	
mouse V1 neurons and found sublinearity under certain conditions.  However, Sato et al. 474	
used an experimental approach different than the other three studies (macaque, tree shrew 475	
and our study in mouse), in which they optogenetically elicited antidromic input spikes by 476	
stimulating the contralateral hemisphere from which they were recording.  Comparing these 477	
two types of input may shed additional light on how cortical circuits transform inputs to 478	
outputs. 479	

To stimulate many V1 neurons, we delivered optogenetic input to multiple neurons 480	
simultaneously.  We used a blue light spot a few hundred µm in diameter, comparable to the 481	
region of mouse V1 activated by our small visual stimulus.  Many neurons in the cortex 482	
change their firing rate in response to even small sensory stimuli (Bonin et al., 2011; Van 483	
Essen et al., 1984).   Anatomically, sensory input that arrives to multiple cells is common, as 484	
in the case of divergent feedforward thalamic input to the cortex (Reid, 2001).  Single axons 485	
from the thalamus often ramify across several hundred microns of the cortex (Braitenberg 486	
and Schüz, 2001; Garraghty and Sur, 1990), and thalamic axons projecting to the visual 487	
cortex can make synapses on dozens of excitatory cortical cells (Freund et al., 1989).  488	

Optogenetic stimuli may lead to firing rate changes in other parts of the brain besides the 489	
area stimulated.  But perhaps because the majority of synapses made by cortical neurons are 490	
within the same cortical area, local intracortical effects for optogenetic stimuli like these 491	
have been observed to be larger than effects on the visual thalamus (Li et al., 2013; Olsen et 492	
al., 2012).  This is true even though the visual thalamus (dorsal lateral geniculate) receives a 493	
large proportion of all projections out of V1 (Reid, 2001).  Thus, the neurons best suited to 494	
act as the recurrent population in the model may be other V1 neurons, and perhaps even 495	
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neurons within a few hundred microns of the neurons receiving input, where the probability 496	
of recurrent connectivity is highest (Lefort et al., 2009).  However, other neurons in the 497	
brain could also in principle contribute to the recurrent population. 498	

Our results show that network mechanisms can contribute to response summation.  The 499	
model neurons are leaky integrate-and-fire neurons, so individual model neurons sum their 500	
subthreshold inputs linearly, and the nonlinear spiking responses we characterize likely arise 501	
from how E and I neurons interact.  We chose this model architecture because we judged it 502	
the simplest model that could capture both excitatory-inhibitory interactions and also single-503	
cell nonlinearities due to refractory period, Vm fluctuations, spike threshold, and 504	
conductance changes (Chance et al., 2002; Richardson, 2004).  There are, however, other 505	
single-cell mechanisms, such as short-term synaptic plasticity or dendritic nonlinearity 506	
(Häusser et al., 2000; Silver, 2010) that might additionally contribute to even more 507	
nonlinear summation, both below threshold and in spike responses.  On the other hand, 508	
dendritic nonlinearities might also have roles that do not affect scaling, as for example 509	
nonlinearities can be used to amplify distant input synapses so that different synapses 510	
produce equal responses at the soma (Katz et al., 2009).  511	

We adjusted synaptic coupling between (E and/or I) populations by changing the strength 512	
of a set of fixed connections between the desired populations.  Because in sparse networks 513	
like this neurons share only a small fraction of their input, we expected increases in synaptic 514	
strength to achieve the same qualitative result as adding new synapses, even if the two types 515	
of changes may not have exactly proportional effects on the behavior of the network.  Fig. 5 516	
shows that feedforward inhibition allows more sublinearity across changes in both synaptic 517	
strength and synapse number.  518	

Feedforward inhibition is included in the canonical cortical microcircuit framework 519	
(Douglas and Martin, 2004) because it is a stereotypical feature of many cortical areas.  In 520	
sensory cortical areas, including the visual cortex, it has been observed that input thalamic 521	
neurons make synapses both onto excitatory principal cells and onto inhibitory basket cells.  522	
Such feedforward inhibitory connectivity has been observed both with anatomical and 523	
physiological methods (Isaacson and Scanziani, 2011). Since inhibitory basket cells project 524	
strongly back to excitatory cells, inhibitory changes due to thalamic input arrive to principal 525	
cells a few milliseconds after the first excitatory changes.  This delay of a few milliseconds 526	
between the arrival of excitation and inhibition can be used to align spike outputs of cortical 527	
neurons (Cruikshank et al., 2007; Gabernet et al., 2005; Swadlow, 2003; Tiesinga et al., 528	
2008).  Beyond shaping the timing of spike responses, however, it has been previously noted 529	
that feedforward inhibition might also be used to control the magnitude of spiking responses 530	
to thalamic input.  Douglas et al. (Douglas et al., 1995) proposed that spike responses can be 531	
shaped by preferential amplication of either excitation or inhibition in cortical recurrent 532	
networks, where amplification might arise by connections within populations of excitatory 533	
or inhibitory neurons.  Ahmadian and Miller (2013) later showed that rate-based networks 534	
with an excitatory and inhibitory term that are stable (so that the network does not e.g. 535	
diverge and become epileptic) have regimes of both linearity and sublinearity, although it is 536	
not yet clear which of these regimes spiking networks operate in, and which cellular or 537	
synaptic parameters affect summation.  In Ahmadian and Miller’s model, individual cells 538	
can be supralinear (Priebe and Ferster, 2008), but when external drive arrives to multiple 539	
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cells, supralinearity is also seen when recurrent connections are weak and thus excitation 540	
and inhibition are not strongly coupled.  This may explain why we saw supralinear 541	
responses only in the model network with the weakest synaptic connectivity (Fig. 5).   542	

Substantial recurrent intracortical response is elicited by sensory input, with approximately 543	
2/3rd of synaptic input after a sensory stimulus arising from recurrent synapses (Li et al., 544	
2013; Lien and Scanziani, 2013).  If recurrent connectivity is very strong, previous modeling 545	
results (Renart et al., 2010; van Vreeswijk and Sompolinsky, 1996) predict that excitatory 546	
and inhibitory populations are forced by the strong coupling to track each others’ activity 547	
closely, resulting in linear responses.  In accord with this prediction about strongly-coupled 548	
networks, we observed increasing linearity when we increased synaptic strength (Fig. 5) as 549	
long as the network remained stable.  However, for very strong recurrent connectivity, 550	
feedforward connectivity must also be very strong to drive any response (Ahmadian et al., 551	
2013; see also our Fig. 5), which appears non-physiological (Li et al., 2013; Lien and 552	
Scanziani, 2013).  Our simulations use synapses of moderate size (order 1mV with 2% 553	
sparsity as in Figs. 3,4,6 and Fig. 5 row 4; see Methods), requiring tens of PSPs to combine 554	
to produce a spike, as seen in cortical neurons (Barral and Reyes, 2016).  These observations 555	
suggest that the differences in scaling we observed occur in a range of moderate synaptic 556	
strengths: low enough to avoid obligate linearity, and high enough to allow recurrent 557	
connections to contribute substantially to network input-output functions. 558	

We found that a network model can link local connectivity to network physiological 559	
responses in ways that might be difficult to predict without the model.  It has been difficult 560	
to measure many of the synapses in a brain volume, but connectomic methods (Briggman et 561	
al., 2011; Lee et al., 2016) promise to make such comprehensive synaptic mapping possible 562	
even in column-sized volumes of the cortex.  Combining approaches for controlling input 563	
with methods to measure connectivity will be useful to shed light on an important part of 564	
brain computation – the input-output transformations of populations of connected cells.  565	

566	
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 693	

Figure 1: Near-linear scaling with excitatory optogenetic stimulation in mouse V1.  A. 694	

Schematic of experimental stimulus protocol.  If scaling is linear, the same input pulse 695	
produces the same response when baseline (spontaneous) rate is changed.  B.  We raise 696	

baseline rates using ChR2 in excitatory (E) neurons (Cre-dependent virus in Emx1-Cre 697	
mouse line.)  C, Population histograms showing responses to combined ChR2 and visual 698	

(90% contrast) stimuli.  Top row: columns show three groups of neurons, divided based on 699	
size of ChR2 baseline firing rate changes, left: smallest ChR2 effects (N=94; 36 single, 58 700	
multi-units), middle: intermediate ChR2 effects (N=101; 31 single-, 70 multi-units), right: 701	
largest ChR2 effects (N=94; 28 single-, 66 multi-units), Brown: responses to visual stimulus 702	
with no optogenetic stimulus.  Cyan: responses to visual stimulus when baseline rates are 703	
changed by sustained optogenetic stimulus.   Bottom row: Same data as top row, with 704	
spontaneous firing rates subtracted.  Visual responses differ somewhat between columns 705	
because each column is a different group of neurons, but within each group there is little 706	
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response change as spontaneous rate varies.  D, Linear scaling is seen across a wide contrast 707	

range.  Top row: responses without baseline subtraction.  Bottom row: baseline subtracted.  708	
Errorbars: SEM of pooled unit responses.  E, Linear scaling is seen on average, across 709	

neurons with a variety of ChR2-induced baseline rate changes, with some weak sublinearity 710	
at the highest rate changes and highest contrasts.  Y axes: difference in visual responses 711	
(relative to baseline) with and without ChR2 stimulation; dashed line at zero shows a 712	
perfectly linear response.  Red: lowess regression, shaded region is a bootstrapped 95% 713	
confidence interval.  Two outlier points in 90% contrast plot are omitted for visual clarity 714	
although they are included in the regression; the two outliers are shown in Fig. 2A.   715	

716	
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Figure 2:  Different units can be sub- or supra-linear, though mean of population is near-717	

linear.  A, Unit responses to excitatory neuron optogenetic (Emx1-ChR2) stimulation, 718	

showing that many individual units are significantly supra- or sub-linear. X-axis: average 719	
firing rate change with ChR2 stimulus, Y-axis: difference between visual responses (90% 720	
contrast; each visual response measured from preceding baseline) with and without 721	
optogenetic stimulus.  Errorbars: SEM.  Points that are at least 1 SEM away from 722	
horizontal line at zero (linear response) are colored blue (single units; SU) or black (multi-723	
units; MU).  Points within 1 SEM of linear are gray.  Data are as in Fig. 1E for 90% 724	
contrast, here with std. err. for each point, and adding on the negative Y-axis the few units 725	
that are suppressed by stimulation.  34% of single units are significantly non-linear (17/50, 726	
p<0.01, KS test), and 28% of multi-units are significantly non-linear (67/239, p<0.01, KS 727	

test).  B, Four example units.  Pink region shows visual stimulus presentation time.  Shaded 728	

regions around mean response: SEM. 729	

730	
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Figure 3: Spiking model shows 731	
sublinear scaling with 732	
feedforward inhibition.  733	

A, Schematic of network 734	

architecture.  Blue: E cells, 735	
green: I cells.  The conductance-736	
based spiking model produces 737	
stochastic Vm and spikes as seen 738	
in vivo, and an example 739	

membrane potential (Vm) trace 740	
from one excitatory cell is 741	
shown.  B, Response scaling as 742	

feedforward (FF) input to E and 743	
I cells is varied.  To measure 744	
response scaling, inputs to E 745	
and/or I cells with rate given by 746	
X,Y axes are delivered, and 747	
average response over all E cells 748	
is measured.  Then, the E and I 749	
input rates are multiplied by a 750	
constant (here, 2) and the size of 751	
the second response is compared 752	
to the first.  Percent change 753	
shown by color, yellow: second 754	
response is similar (linear), blue: 755	
second response is smaller 756	
(sublinear).  Contour lines show 757	
first response (spk/s).  Response 758	
rates below 5 spk/s and above 759	
20 spk/s are masked (gray). 760	
Average spontaneous rate is 761	
adjusted to 5 spk/s (Methods), 762	
and 33% of network neurons 763	
receive external input, to 764	
approximate the sparse set of 765	
cortical neurons that typically 766	
respond to sensory inputs (Fig. 767	
1).  Pink points show E and I 768	
rate combinations used in C,D.  769	
C, Near-linear responses to a 770	

range of input sizes when 771	
feedforward input is provided to 772	
E cells only.  Parameters here are indicated by pink dot in B, and first two responses here 773	
are the same two responses used to compute percent change shown in color there.  Left 774	
panel: average rates, right panel: same data replotted showing change (spk/s) in response (y-775	
axis) as a function of prior response (x-axis).  For these plots, a linear response is a 776	
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horizontal line (dashed gray line).  Heavy lines: prior rates less than 50 spk/s, highlighting 777	
for visual clarity rates far from potential saturation caused by absolute refractory period (3 778	
ms).  D, Sublinear responses to a range of input sizes when input provided to both E and I 779	

cells.  Same conventions as C.  In this case, heavy green line in right panel lies farther below 780	
horizontal than heavy blue line in C, showing more sublinear scaling.       781	

782	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2017. ; https://doi.org/10.1101/109736doi: bioRxiv preprint 

https://doi.org/10.1101/109736
http://creativecommons.org/licenses/by-nc/4.0/


 26  

Figure 4: With feedforward inhibition, network model can produce linear or sublinear 783	

responses.   A, Simulations with feedforward input to E cells only, while local network 784	

connectivity is varied.  X-axis: E to I connection strength, y-axis, I to I connection strength.  785	
Axes give percent change in total synaptic input that a single cell receives from one (E or I) 786	
population (see Methods), where zero is a balanced network (e.g. Fig. 3) with equal 787	
probability of synapses onto E and I cells.  Other conventions as in Fig. 3B (contour lines 788	
show evoked response to first stimulus, color shows percent difference in response to 789	
doubled external stimulus).  Spontaneous rate and external stimulus rates are constant for 790	
entire panel.  B, Simulations with feedforward input to E and I cells while local connectivity 791	

is varied.  Pink symbols show parameter regions where scaling is sublinear (stronger I->I 792	
connectivity) or linear (stronger E->I connectivity).  C, Scaling plot (response size as a 793	

function of previous rate) for parameters shown by pink dot in A: no extra local 794	
connections, feedforward E only, same parameters as Fig. 3C.  Inset: timecourse of 795	
responses to the step stimulus; subtracting each rate from rate at the previous step gives y-796	
axis in main panel.  D-F, same plots, using parameters shown by corresponding pink dots in 797	

B.  Comparing D and E shows that large sublinearity can be produced by extra I->I 798	
connections only with feedforward inhibition.  Comparing D and F shows that linearity can 799	
also be achieved with feedforward inhibition if E->I connectivity is strengthened.800	
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 801	

Figure 5: Feedforward inhibition leads to sublinearity in networks with a range of 802	

recurrent synaptic sparsities and synaptic strengths.  Top row: Simulations in the 803	

conductance-based network with 10% connectivity, with strong synapses (each cell receives 804	
10x more E and I input than in the networks of Figs. 3-4).  Other rows show networks with 805	
different sparsity and synaptic strength.  The network of Figs. 3-4 is the fourth row (2% 806	
sparsity, 1x strength).  A, Scaling plots showing network response as a function of prior rate 807	

before stimulus.  Blue: feedforward E input only, parameters shown in column B.  Green: 808	
feedforward E and I input, corresponding parameters are shown in column C.  In all rows, 809	
feedforward inhibition (green) allows more sublinearity than feedforward excitation alone 810	
(blue).  Dashed line, top row: network instability (rates diverge).  B, Average network 811	

response as I-I synaptic strength (x-axis) and feedforward E input (y-axis) are varied.  No 812	
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feedforward inhibition. Black dot shows parameters used to plot blue line in A (parameters 813	
chosen to maximize sublinearity).  Gray regions mask areas where evoked rates are less 814	
than 5 spk/s or greater than 20 spk/s, or where network was unstable (rates diverged to 815	
maximum rate given by refractory period).  Other conventions as in Fig. 3B, 4AB. C, 816	

network response as a function of I->I and feedforward E input, in the presence of 817	
feedforward inhibition. Individual gray squares seen in fifth row (20% sparsity) column B, 818	
inside the 5-20 spk/s contours indicate strongly irregular (non-monotonic) response scaling: 819	
strong sublinearity for at least one stimulus step, when both previous and later responses 820	
were linear or supralinear. Feedforward inhibition arrival rate to stimulated cells for each 821	
row, from top: 14k, 14k, 19k, 11k, 17k spk/s, chosen to give a 15 spk/s response for 3x the 822	
feedforward excitatory rate that alone produces a 15 spk/s response (see Fig. 3B).  Fourth 823	
row (2% sparsity, same network as Figs. 3-4) uses 40% extra I->E connections to show 824	
linear responses are robust to many forms of connectivity variation. 825	

826	
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Figure 6: Experimental linear scaling can be replicated in networks receiving 827	

feedforward inhibition.  A, Simulation where conductance steps (ChR2 input) and 828	

feedforward Poisson trains (visual input) are combined.  Strength of feedforward E input (x-829	
axis) and feedforward I input (y-axis) are varied while spontaneous rate is set to 5 spk/s.  830	
Connection sparsity is 2%.  Other conventions as in Fig. 3B. Symbols (+) show values of E,I 831	
input used in panels B-D.  B, network responses when feedforward input is supplied to E 832	

cells only.  Top row: network responses (mean of E cell rates).  Brown: feedforward Poisson 833	
(visual) input only.  Cyan: conductance (ChR2) input combined with visual input.  834	
Conductance increase lasts for the full duration of the cyan trace.  Visual input duration is 835	
shown by black bar (bottom of plot).  Dotted line indicates rates return to previous baseline 836	
when feedforward input ends.  Second row: same data as top row, with baseline rate 837	
subtracted.   Third row: response (y-axis) as a function of rate before feedforward input 838	
begins (x-axis).  C, same network simulations with feedforward input to both E and I cells 839	

(parameters marked by C in panel A).  D, network receiving feedforward input to both E 840	

and I cells, but with stronger local connections from E to I cells (cf. Fig. 4, with similar 841	
effect for two feedforward Poisson inputs instead of feedforward input paired with 842	
conductance step as shown here).  E, data from Fig. 1C plotted to show how responses scale 843	

as baseline is changed.  Three lines (brown: no ChR2, cyan: with ChR2) are the three 844	
groups of recorded neurons shown in Fig. 1C.   845	

846	
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 847	
Figure 7: PV-ChR2 stimulation data support the recurrent model with feedforward 848	

inhibition. A, Moderately sublinear scaling of visual responses is seen when PV neurons 849	

are optogenetically stimulated.  (Data set previously reported in Glickfeld et al., 2013).  850	
Same conventions as in Fig. 1D.  N=43 units, 6 SU, 37 MU.  B, response sizes plotted as a 851	

function of baseline rate; same conventions as bottom panels in Fig. 6B-D.  Stimulation of 852	
PV inhibitory neurons lowers baseline firing rates (here 2.3X reduction), so visual + ChR2 853	
response (blue point) is to the left of visual only (brown). C-D, Model (with feedforward 854	

inhibition) that best fits E neuron stimulation data also describes moderate sublinearity seen 855	
in PV-ChR2 stimulation.  C, model with feedforward input to E cells only (same model as 856	
in Fig. 6B) shows very strong sublinearity.  Two lines show two different strengths of 857	
optogenetic input to I cells (chosen to produce 2X or 3X decrease in baseline rates).  D, 858	
model with feedforward input to E and I cells and stronger local E to I connectivity (same 859	
model as in Fig. 6D), shows a range of sublinear scaling similar to that seen in the 860	
experimental data (A-B). 861	
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