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Abstract 

It has long been suspected that the rate of mutation varies across the human 

genome at a large scale based on the divergence between humans and other 

species. It is now possible to directly investigate this question using the large 

number of de novo mutations (DNMs) that have been discovered in humans 

through the sequencing of trios. We show that there is variation in the 

mutation rate at the 100KB, 1MB and 10MB scale that cannot be explained by 

variation at smaller scales, however the level of this variation is modest at 

large scales – at the 1MB scale we infer that ~90% of regions have a mutation 

rate within 50% of the mean. Different types of mutation show similar levels of 

variation and appear to vary in concert which suggests the pattern of mutation 

is relatively constant across the genome and hence unlikely to generate 

variation in GC-content. We confirm this using two different analyses. We find 
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that genomic features explain less than 50% of the explainable variance in the 

rate of DNM. As expected the rate of divergence between species and the 

level of diversity within humans are correlated to the rate of DNM. However, 

the correlations are weaker than if all the variation in divergence was due to 

variation in the mutation rate. We provide evidence that this is due the effect 

of biased gene conversion on the probability that a mutation will become 

fixed. We find no evidence that linked selection affects the relationship 

between divergence and DNM density. In contrast to divergence, we find that 

most of the variation in diversity can be explained by variation in the mutation 

rate. Finally, we show that the correlation between divergence and DNM 

density declines as increasingly divergent species are considered.  

 

Author summary 

Using a dataset of 40,000 de novo mutations we show that there is large-

scale variation in the mutation rate at the 100KB and 1MB scale. We show 

that different types of mutation vary in concert and in a manner that is not 

expected to generate variation in base composition; hence mutation bias is 

not responsible for the large-scale variation in base composition that is 

observed across human chromosomes. As expected large-scale variation in 

the rate of divergence between species and the variation within species 

across the genome, are correlated to the rate of mutation, but the correlation 

between divergence and the mutation rate is not as strong as they could be. 

We show that biased gene conversion is responsible for weakening the 

correlation. In contrast we find that most of the variation across the genome in 

diversity can be explained by variation in the mutation rate. Finally, we show 

that the correlation between the rate of mutation in humans and the 

divergence between humans and other species, weakens as the species 

become more divergent. 

 

 

Introduction 

Until recently, the distribution of germ-line mutations across the genome was 

studied using patterns of nucleotide substitution between species in putatively 

neutral sequences (see [1] for review of this literature), since under neutrality 
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the rate of substitution should be equal to the mutation rate. However, the 

sequencing of hundreds of individuals and their parents has led to the 

discovery of thousands of germ-line de novo mutations (DNMs) in humans [2-

6]; it is therefore possible to begin analysing the pattern of DNMs directly 

rather than inferring their patterns from substitutions. Initial analyses have 

shown that the rate of germ-line DNM increases with paternal age [4], a result 

that was never-the-less inferred by Haldane some 70 years ago [7], varies 

across the genome [5] and is correlated to a number of factors, including the 

time of replication [3], the rate of recombination [3], GC content [5] and DNA 

hypersensitivity [5].  

 

Previous analyses have demonstrated that there is large scale variation in the 

rate of DNM in both the germ-line [3, 5] and the somatic tissue [8-12]. Here 

we focus exclusively on germ-line mutations. We use a collection of over 

40,000 germ-line DNMs to address a range of questions pertaining to the 

large-scale distribution of DNMs. First, we quantify how much variation there 

is, and investigate whether the variation in the mutation rate at a large-scale 

can be explained in terms of variation at smaller scales. We also investigate 

to what extent the variation is correlated between different types of mutation, 

and to what extent it is correlated to a range of genomic variables. 

 

We use the data to investigate a long-standing question – what forces are 

responsible for the large-scale variation in GC content across the human 

genome, the so called “isochore” structure [13]. It has been suggested that 

the variation could be due to mutation bias [14-18], natural selection [13, 19, 

20], biased gene conversion [21-24], or a combination of all three forces [25]. 

There is now convincing evidence that biased gene conversion plays a role in 

the generating at least some of the variation in GC-content [26-28]. However, 

this does not preclude a role for mutation bias or selection. With a dataset of 

DNMs we are able to test explicitly whether mutation bias causes variation in 

GC-content.  

 

The rate of divergence between species is known to vary across the genome 

at a large scale [1]. As expected this appears to be in part due to variation in 
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the rate of mutation [3]. However, the rate of mutation at the MB scale is not 

as strongly correlated to the rate of nucleotide substitution between species 

as it could be if all the variation in divergence between 1MB windows was due 

to variation in the mutation rate [3]. Instead, the rate of divergence appears to 

correlate to the rate of recombination as well. This might be due to one, or a 

combination, of several factors. First, recombination might affect the 

probability that a mutation becomes fixed by the process of biased gene 

conversion (BGC) (review by [26]). Second, recombination can affect the 

probability that a mutation will be fixed by natural selection; in regions of high 

recombination deleterious mutations are less likely to be fixed, whereas 

advantageous mutations are more likely. Third, low levels of recombination 

can increase the effects of genetic hitch-hiking and background selection, 

both of which can reduce the diversity in the human-chimp ancestor, and the 

time to coalescence and the divergence between species. There is evidence 

of this effect in the divergence of humans and chimpanzees, because the 

divergence between these two species is lower nearer exons and other 

functional elements [29]. And fourth, the correlation of divergence to both 

recombination and DNM density might simply be due to limitations in multiple 

regression; spurious associations can arise if multiple regression is performed 

on two correlated variables that are not known without error. For example, it 

might be that divergence only depends on the mutation rate, but that the 

mutation rate is partially dependent on the rate of recombination. In a multiple 

regression, divergence might come out as being correlated to both DNM 

density and the recombination rate, because we do not know the mutation 

rate without error, since we only have limited number of DNMs. Here, we 

introduce a test that can resolve between these explanations. 

 

As with divergence, we might expect variation in the level of diversity across a 

genome to correlate to the mutation rate. The role of the mutation rate 

variation in determining the level of genetic diversity across the genome has 

long been a subject of debate. It was noted many years ago that diversity 

varies across the human genome at a large scale and that this variation is 

correlated to the rate of recombination [30-32]. Because the rate of 

substitution between species is also correlated to the rate of recombination, 
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Hellmann et al. [30, 31] inferred that the correlation between diversity and 

recombination was at least in part due to a mutagenic effect of recombination. 

A number of recent studies have shown that recombination is mutagenic [3, 

33, 34]. However, no investigation has recently been made as to whether this 

explains all the variation in diversity, or whether biased gene conversion, 

direct and linked selection have a major influence on diversity at a large scale. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2017. ; https://doi.org/10.1101/110452doi: bioRxiv preprint 

https://doi.org/10.1101/110452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

 

Results 

De novo mutations 

To investigate large scale patterns of de novo mutations in humans we 

compiled data from four studies which between them had discovered 43,433 

autosomal DNMs: 26,939 mutations from Wong et al. [6], 11016 mutations 

from Francioli et al. [3], 4931 mutations from Kong et al. [4] and 547 mutations 

from Michaelson et al. [5]. We divided the mutations up into 9 categories 

reflecting the fact that CpG dinucleotides have higher mutation rates than 

non-CpG sites, and the fact that we cannot differentiate which strand the 

mutation had occurred on: CpG C>T (a C to T or G to A mutation at a CpG 

site), CpG C>A, CpG C>G and for non-CpG sites C>T, T>C, C>A, T>G, 

C<>G and T<>A mutations.  

 

The proportion of mutations in each category in each of the datasets is shown 

in figure 1. We find that the pattern of mutation differs significantly between 

the 4 studies (Chi-square test of independence on the number of mutations in 

each of the 9 categories, p < 0.0001). This appears to be largely due to the 

relative frequency of C>T transitions in both the CpG and non-CpG context. In 

the data from Wong et al. [6] and Michaelson et al. [5] the frequency of C>T 

transitions at CpG sites is ~13% whereas it is ~17% in the other two studies, a 

discrepancy which has been noted before [35, 36]. For non-CpG sites the 

frequency of C>T transitions is ~24% in all studies except that of Wong et al. 

in which it is 26%. It is not clear whether these patterns reflect differences in 

the mutation rate between different cohorts of individuals, possibly because of 

age [3, 4, 6] or geographical origin [37] or whether the differences are due to 

methodological problems associated with detecting DNMs.  
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Figure 1. The proportion of DNMs in each of the mutational types in the four 

datasets. 

 

 

Distribution of rates 

To investigate whether there is large scale variation in the mutation rate we 

divided the genome into non-overlapping windows of 10KB, 100KB, 1MB and 

10MB and fit a gamma distribution to the number of mutations per region, 

taking into account the sampling error associated with the low number of 

mutations per region. We focussed our analysis at the 1MB scale since this 

has been extensively studied before. However, we show that the variation at 

1MB forms part of a continuum of variation. We repeated almost all our 

analyses at the 100KB scale with qualitatively similar results (these results are 

reported in supplementary tables). 

 

We find that the amount of variation differs significantly between the four 

studies (likelihood ratio tests: p < 0.001) with the level of variation being far 

greater in the Michaelson dataset, than in the Wong, Francioli and Kong 

datasets (Figure 2; Figure S1 for 100KB). The latter three datasets also show 

significantly different levels of variation (likelihood ratio test: p < 0.001). 

However, the differences between the three largest datasets are quantitatively 

small at the 1MB scale (Figure 2).  
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Figure 2. The gamma distribution fitted to the four datasets at the 1MB 

scales. Blue: Michaelson, Purple: Wong, Olive: Kong and Francioli (coincident 

distributions), Green: all data. 

 

 

The variation between datasets might be due to differences in age or ethnicity 

between the individuals in each study, or methodological problems – for 

example, there might be differences between studies in the ability to identify 

DNMs. We can test whether callability is an issue in the largest of our 

datasets because Wong et al. [6] estimated the number of trios at which a 

DNM was callable at each site. If we reanalyse the Wong data using the sum 

of the callable trios per MB, rather than the number of sites in the human 

genome assembly, we obtain very similar estimates of the distribution: the 

coefficient of variation (CV) for the distribution is 0.27 when we use the 

number of sites and 0.25 when we use the sum of callable trios. 

 

As expected the number of DNMs per site is significantly correlated between 

the Francioli and Wong datasets (1MB r =0.15, p<0.001). The correlation is 

weak, but this is likely to be in part due to sampling error. If we simulate data 
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assuming a common distribution, estimating the shape parameter as the 

mean CV of the distributions fit to the individual datasets, the mean simulated 

correlation is 0.22. This suggests that much of the variation is common to the 

two datasets. However, subsequent analyses, reported below, show some 

important differences between the two datasets, and as a consequence we 

repeated all analyses on the Francioli and Wong datasets individually. 

 

The CV of the gamma distribution fitted to the density of DNMs is 0.18 and 

0.27 for the Francioli and Wong datasets respectively (Table 1). The level of 

variation is significant (i.e. the lower 95% confidence interval of the CV is 

greater than zero) (Table 1), however the level of variation is quite modest 

(Figure 3A, B). A gamma distribution with a coefficient of variation of 0.18 is 

one in which 90% of regions have a mutation rate within 30% of the mean (i.e. 

if the mean is one, between 0.7 and 1.3); for a gamma with a CV of 0.27, 95% 

of regions lie within 43% of the mean. The gamma distribution fits the 

distribution of rates qualitatively well (Figure S2), even though a goodness-of-

fit test rejects the model at both the 100KB and 1MB scales (p<0.001). At both 

the 1MB and 100KB scales, there are some regions that have more DNMs 

than expected under the gamma distribution, and at the 1MB scale there are 

too many regions with no DNMs. 

 

If we include estimates of the distribution for 10KB, 100KB and 10MB we find 

that the log of the CV of the gamma distribution is approximately linearly 

related to the log of the scale (Figure 3C). This suggests that the variation at 

the 1MB scale is part of a continuum of variation at different scales. The 

linearity of the relationship suggests that a simple phenomenon underlies the 

variation. However, the slope of this relationship differs between the Francioli 

(slope = -0.25) and Wong (-0.10) datasets suggesting that there are some 

systematic differences between these two studies.  

 

If all the variation at the larger scales is explainable by variation at a smaller 

scale, then the CV at scale x should be equal to the CV at some finer scale, y, 

divided by the square-root of x/y; on a log-log scale this should yield a slope 

of -0.5. This therefore suggests that there is variation at a larger scale that 
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cannot be explained by variation at smaller scale. To test whether this is the 

case, we ran a series of one-way ANOVAs; in all comparisons, testing 

variation at the 100KB scale using 10KB windows, 1MB using 100KB 

windows and 10MB using 1MB windows the results were significant for the 

combined data and for the Wong and Francioli datasets individually (p<0.001 

in all cases).  
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A) 

 

B) 

 

C) 

 

 

Figure 3. The gamma distribution fitted to the number of DNMs per window at 

the 10KB (blue) 100KB (purple), 1MB (olive) and 10MB (green) for the A) 

Francioli data and B) Wong data, and C) the coefficient of variation plotted 
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against the window size, both on a log scale, for the Francioli (blue) and 

Wong (orange) datasets separately. 

 

 

Mutational types 

If we estimate the distribution for individual mutational types we find that in 

many cases the lower CI on the CV is zero; this might be because we do not 

have enough data to reliably estimate the distribution for each individual 

mutational type. We therefore combined mutations into a variety of non-

mutually exclusive categories. In each case we estimated the distribution for 

the relevant category of sites – e.g. in considering the distribution of CpG 

rates we consider the number of CpG DNMs at CpG sites, not at all sites. We 

find that the estimated distributions are similar for different mutational types 

although there is rather more variation at CpG sites in the Francioli dataset 

(Table 1; 100KB results Table S1). Although the distributions are fairly similar 

for different mutational types, likelihood ratio tests demonstrate that there is 

significantly more variation at CpG sites than nonCpG sites and for S>W than 

W>S changes in the Francioli dataset (Table S2 for 1MB and 100KB results). 

We also find significant differences between non-CpG transitions and 

transversions at 100KB scale in both datasets. Never-the-less the differences 

between different mutational categories are relatively small. 
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Mutation type Francioli Wong 

Overall 0.18 (0.13, 0.22) 0.27 (0.25, 0.29) 

CpG 0.46 (0.35, 0.55) 0.29 (0.21, 0.36) 

nonCpG 0.17 (0.11, 0.22) 0.26 (0.24, 0.28) 

CpG transitions 0.43 (0.30, 0.53) 0.29 (0.20, 0.36) 

CpG transversions 0.50 (0, 0.56) 0.53 (0, 0.88) 

nonCpG transitions 0.20 (0.10, 0.26) 0.24 (0.20, 0.26) 

nonCpG transversions 0.20 (0, 0.30) 0.29 (0.25, 0.33) 

S>W 0.25 (0.19, 0.32) 0.25 (0.22, 0.28) 

W>S 0.063 (0, 0.21) 0.24 (0.20, 0.28) 

Table 1. The coefficient of variation for a gamma distribution fitted to the 

density of DNMs at the 1MB scale, and the 95% confidence intervals of the 

coefficient of variation. Strong(S) refers to G:C base pairs Weak(W) to A:T. 

 

 

 

Correlations between mutational types 

Given that there is variation in the mutation rate at the 1MB scale and that this 

variation is quite similar in magnitude for different mutational types, it would 

seem likely that the rate of mutation for the different mutational types are 

correlated. We find that this is indeed the case. We observe significant 

correlations between all categories of mutations in both the Francioli and 

Wong datasets, except between CpG transitions and transversions in the 

Wong dataset (Table 2; Table S3 for 100KB). The correlations are weak but 

this is to be expected given the large level of sampling error. To compare the 

correlation to what we might expect if the two categories of mutation shared a 

common distribution and were perfectly correlated, we simulated data under a 

common distribution, estimating the CV of the common distribution as the 

mean of the distributions fitted to the two mutational categories. We find that 

generally the observed correlations are similar, and not significantly different, 

to the expected correlations. 
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Comparison Observed 

correlation 

Expected 

correlation 

Proportion of 

simulated 

correlations 

> observed 

Francioli    

CpG v. nonCpG 0.097*** 0.11 0.72 

CpG ts v. CpG tv 0.039* 0.028 0.3 

nonCpG ts v. nonCpG tv 0.052** 0.062 0.57 

S>W v. W>S 0.061** 0.037 0.10 

    

Wong    

CpG v. nonCpG 0.16*** 0.17 0.65 

CpG ts v. CpG tv 0.035 0.053 0.77 

nonCpG ts v. nonCpG tv 0.22*** 0.20 0.23 

S>W v. W>S 0.22*** 0.19 0.15 

 

Table 2. The correlation between different mutational types at the 1MB 

scales. The observed correlation is given along with the mean correlation from 

data simulated under the assumption that the two categories have the same 

distribution and are perfectly correlated. *  0<0.05, **p<0.01, ***p<0.001 

 

 

Variation in base composition 

The fact that the rates of S>W and W>S mutation covary suggests that 

mutational biases are unlikely to generate much variation in GC-content 

across the genome. To investigate this further, we used two approaches to 

test whether there was variation in the pattern of mutation that could generate 

variation in GC content. First, we used the DNM data for each window to 

predict the equilibrium GC content to which the sequence would evolve, fitting 

a model by maximum likelihood (ML) in which this equilibrium GC-content 

could vary across the genome. For the Francioli data the ML model is one in 

which the equilibrium GC content has a mean of 0.32 and a standard 
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deviation of 0.02. The Wong dataset yields similar estimates but the ML 

estimate of the standard deviation is 0.001. In both cases, the upper estimate 

on the standard deviation is small – 0.060 in Francioli and 0.036 in Wong 

suggesting that variation in the pattern of mutation is unlikely to generate 

much variation in GC content. 

 

However, the ML method does not rule out the possibility that there is some 

variation in the pattern of mutation. Furthermore, the method does not take 

into account the difference in the mutation rate between CpG and non-CpG 

sites. We therefore used a second approach in which we ranked regions by 

their current GC-content and grouped regions together. We then estimated 

the mutation rates for all categories of mutation using the DNM data and used 

these estimated mutation rates in a simulation of sequence evolution, in which 

we evolved the sequence to its equilibrium GC content. We find no correlation 

between the equilibrium GC content to which the sequence evolves and the 

current GC content (Figure 4; Figure S3 for 100KB). 
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Figure 4. The predicted equilibrium GC content against the current GC 

content for the Francioli (blue) and Wong (orange) datasets. Note the right-

most point is coincident for the two datasets. 

 

 

Mutation models 

It has been suggested that the mutation rate at a site is predictable based on 

genomic features, such as replication time [5], or the 7-mer sequence in which 

a site is found [38]. To investigate whether these models can explain the 

variation at large scales we used the models to predict the average mutation 

rate for each 100KB or 1MB region and correlated these predictions against 

the observed number of DNMs per site.  

 

We find that the density of DNMs is significantly correlated to the rates 

predicted under the 7-mer model of Aggarwala et al. [38]. This correlation is 

significantly positive for the combined and Wong datasets, as we might 

expect, but significantly negative for the Francioli dataset (Table 3; Table S4 

for 100KB results). To compare these correlations to what we might expect if 

the Aggarwala model explained all the variation at large scales, we simulated 

the appropriate number of DNMs across the genome according to this model. 

The observed correlation is significantly smaller than the expected correlation 
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for all datasets, however, the observed and expected correlations are quite 

similar for the Wong dataset suggesting that much of the variation in DNM 

density in this dataset is explainable by the model of Aggarwala et al. [38] 

 

In contrast, although the density of DNMs is significantly positively correlated 

to the predictions of the Michaelson model for the Francioli dataset, but not for 

the Wong dataset, the correlation is substantially and significantly smaller 

than it could be if the model explained all the variation (Table 3; Table S4 for 

100KB results). 

 

 

 Aggarwala  Michaelson  

 Observed Expected Observed Expected 

Francioli -0.16*** 0.16*** 0.084*** 0.41*** 

Wong 0.18*** 0.25*** 0.018 0.58*** 

 

Table 3. Correlation between the density of DNMs and the mutation rate 

estimates of Aggarwala et al and Michaelson et al. at the 1MB scale. The 

expected values are the mean correlations observed from 1000 simulations *p 

< 0.05 **p < 0.01 *** p < 0.001  

 

 

Correlations with genomic variables 

To try and understand why there is large scale variation in the mutation rate, 

we compiled a number of genomic variables which have previously been 

shown to correlate to the rate of germline or somatic DNM, or divergence 

between species: male and female recombination rate, GC content, 

replication time, nucleosome occupancy, transcription level, DNA 

hypersensitivity and several histone methylation and acetylation marks [3, 5, 

9, 39, 40].  

 

Unfortunately, the Wong and Francioli datasets yield different patterns of 

correlation. The overall density of DNMs is significantly positively correlated to 
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male and female recombination rates, but many of the other significant 

correlations are in opposite directions (Table 4; 100KB results Table S5).  

 

Many of the genomic variables are correlated to each other. If we use 

principle components to reduce the dimensionality, the first principle 

component (PC) explains 58% of the variation, the second 13%, the third and 

fourth 6.9 and 5.7% of the variation. We find that the density of DNMs is 

significantly correlated to the first PC in both datasets, but the correlation is 

negative for the Francioli data (r = -0.14, p<0.001) and positive for Wong (r = 

0.14, p<0.001). Both are significantly positive correlated to the second PC 

(Francioli, r = 0.14, p<0.001; Wong, r = 0.27, p<0.001), uncorrelated to the 

third component and Wong is significantly correlated to the fourth component 

(r -0.059, p = 0.005). 

 

It is possible that the differences between the Wong and Francioli datasets 

are due to biases in the ability to call DNMs. However, analysing the Wong 

data using the number of callable trios at each site does not qualitatively alter 

the pattern of correlation in the Wong dataset (Table 4) or the correlations to 

the principle components of the genomic features (PC1, r=0.11 p<0.001; PC2, 

r=0.25, p<0.001; PC3, r=-0.019, p=0.37; PC4, r=-0.048, p =0.019)..  

 

To investigate whether these patterns are consistent across mutational types, 

we calculated the correlation between the density of each mutational type 

(e.g. CpG C>T mutations at CpG sites) and the first two PCs of the genomic 

features. For the Francioli data the patterns are perfectly consistent; all 

mutational types, if they show a significant correlation, are significantly 

negatively correlated to the first PC, and significantly positively correlated to 

the second (Table S6). For the Wong data the patterns are more 

heterogeneous; all mutational types are positively correlated to the second 

PC, but some mutational types are significantly positively correlated to the first 

PC and others negatively correlated. 
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 Francioli Wong Wong 

(callable) 

W<>W & 

S<>S subs 

Male 

recombination 

rate 

0.072*** 0.225*** 0.208*** 0.254*** 

Female 

recombination 

rate 

0.06*** 0.240*** 0.215*** 0.116*** 

H3K4me1 -0.097*** 0.156*** 0.123*** -0.136*** 

H3K4me3 -0.176*** -0.012 -0.032 -0.424*** 

H3K27me3 -0.080*** 0.039 0.027 -0.199*** 

H3K27ac -0.134*** 0.10*** 0.070** -0.396*** 

Transcription 

rate 

-0.122*** -0.033 -0.043* -0.214*** 

H3K4me1PB -0.119*** 0.105*** 0.080*** -0.385*** 

H3K9me3PB 0.106*** -0.169*** -0.133*** 0.420*** 

Nucleosome 

occupancy 

-0.070** 0.224*** 0.184*** -0.357*** 

DNAse 

hypersensitivity 

-0.144*** 0.086*** 0.062** -0.302*** 

Replication 

time 

-0.154*** 0.045* 0.019 -0.474*** 

GC content -0.110*** 0.167*** 0.132*** -0.324*** 

 

Table 4. The correlation between the density of DNMs in the two largest 

datasets and various genomic variables at the 1MB scale. Also shown are the 

correlations when the number of DNMs in the Wong dataset divided by the 

sum of the callable trios and the number of W<>W and S<>S substitutions per 

site between human and chimpanzee. * p<0.05 **p<0.01 ***p<0.001. 
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In order to try and disentangle which factors might be most important in 

determining the rate of mutation we used stepwise regression. We find, as 

expected, that the models selected for the Francioli and Wong datasets have 

some commonalities but some differences as well (Table 5); in both cases the 

density of DNMs is correlated to female recombination rate and negatively 

correlated to the density of H3K4me3. However, they are both correlated to 

DNAse hypersensitivity but in opposite directions and they have their own 

unique signatures; for example, in Francioli the density of DNMs is correlated 

to replication time whereas it is correlated to nucleosome occupancy in the 

Wong data. The differences are not due to variation in the ability to call DNMs 

in the Wong dataset since repeating the analyses using the sum of callable 

trios rather than sites, does not alter the patterns (Table 5). Intriguingly the 

regression models fitted to the Francioli and Wong data are quite similar at 

the 100KB scale (Table S7) despite the fact that the Francioli data is 

significantly negatively correlated to the first principle component, whereas 

Wong is significantly positively correlated. 

 

The amount of variation explained by the multiple regression models is small 

– 0.044 and 0.10 for Francioli and Wong respectively - but this might be 

expected given the small number of DNMs per MB and hence the large 

sampling error. To investigate how much of the explainable variance the 

model explains we sampled rates from the gamma distribution fitted to the 

distribution of DNMs across the genome and generated DNMs using these 

rates and then correlated these simulated rates to the true rates (i.e. those 

sampled from the gamma distribution). The average coefficient of 

determination for the simulated data is 0.12 and 0.24 for the Francioli and 

Wong datasets respectively suggesting that the regression model explains 

~37% and ~42% of the explainable variance for the two datasets. In both 

cases none of the simulated datasets have a coefficient of determination that 

is as low as the observed.  
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 Francioli Wong Wong 

(callable) 

Male recombination rate  0.10*** 0.10*** 

Female recombination rate 0.069** 0.091** 0.084** 

H3K4me1 0.12**   

H3K4me3 -0.084* -0.13*** -0.13*** 

H3K27me3    

H3K27ac    

Transcription rate    

H3K4me1PB    

H3K9me3PB    

Nucleosome occupancy  0.49*** 0.44*** 

DNAse hypersensitivity -0.12** 0.14* 0.15* 

Replication time -0.12**   

GC content  -0.39** -0.38** 

    

r2 0.044 0.10 0.084 

 

Table 5. The standardised regression coefficients from a stepwise multiple 

regression with forward variable selection (parameter has to be significant at 

p<0.05 to be added to the model). 

 

 

Correlation with divergence 

The rate of divergence between species is expected to depend, at least in 

part, on the rate of mutation. To investigate whether variation in the rate of 

substitution is correlated to variation in the rate of mutation we calculated the 

divergence between humans and chimpanzees, initially by simply counting 

the numbers of differences between the two species. There are at least three 

different sets of human-chimpanzee alignments: pairwise alignments between 

human and chimpanzee (PW)[41] found on the University of California Santa 

Cruz (UCSC) Genome Browser, the human-chimp alignment from the multiple 
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alignment of 46 mammals (MZ)[42] from the same location, and the human-

chimp alignment from the Ensembl Enredo, Pecan and Ortheus primate 

multiple alignment (EPO) [43]. We find that the correlation depends upon the 

human-chimpanzee alignments used and the amount of each window (either 

1MB or 100KB) covered by aligned bases (Figure 5). The correlation is 

significantly negative if we include all windows for the UCSC PW and MZ 

alignments at the 1MB scale (similar results are obtained at 100KB), but 

becomes more positive as we restrict the analysis to windows with more 

aligned bases. In contrast, the correlations are always positive when using the 

EPO alignments, and the strength of this correlation does not change once we 

get above 200,000 aligned bases per 1MB. Further analysis suggests there 

are some problems with the PW and MZ alignments because divergence per 

MB window is inversely correlated to mean alignment length (r = -0.31, p < 

0.0001) for the PW alignments and positively correlated (r = 0.57, p < 0.0001) 

for the MZ alignments (Figure S4). The EPO alignment method shows no 

such bias and we consider these alignments to be the best of those available. 

Therefore, we use the EPO alignments for the rest of this analysis. 

 

 

Figure 5. The correlation between the divergence from human to chimpanzee 

and the density of DNMs in humans as a function of the number of aligned 

sites per window for three sets of alignments: UCSC pairwise alignments 

(PW, blue), UCSC multi-way aligments (MZ, orange) and EPO multi-species 

alignments alignments (EPO, green).  
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To gain a more precise estimation of the number of substitutions we used the 

method of Duret and Arndt [21], which is a non-stationary model of nucleotide 

substitution that allows the rate of transition at CpG dinucleotides to differ to 

than that at other sites. As expected the divergence along the human lineage 

(since humans split from chimpanzees) is significantly correlated to the rate of 

DNMs (Francioli = 0.21 p<0.001; Wong = 0.11, p<0.001). However, the 

correlation between the rate of DNMs and divergence is not expected to be 

perfect even if variation in the mutation rate is the only factor affecting the rate 

of substitution between species; this is because we have relatively few DNMs 

and hence our estimate of the density of DNMs is subject to a large amount of 

sampling error. To investigate how strong the correlation could be, we follow 

the procedure suggested by Francioli et al. [3]; we assume that variation in 

the mutation rate is the only factor affecting the variation in the substitution 

rate across the genome between species and that we know the substitution 

rate without error (this is an approximation, but the sampling error associated 

with the substitution rate is small relative to the sampling error associated with 

DNM density because we have so many substitutions). We generated the 

observed number DNMs according to the rates of substitution, and then 

considered the correlation between these simulated DNM densities and the 

observed substitution rates. We repeated this procedure 1000 times to 

generate a distribution of expected correlations. Performing this simulation, 

we find that we would expect the correlation between divergence and DNM 

density to be 0.33 and 0.48 for the Francioli and Wong datasets respectively, 

considerably greater than the observed values of 0.21 and 0.11 respectively. 

In none of the simulations was the simulated correlation as low as the 

observed correlation.  

 

There are several potential explanations for why the correlation is weaker 

than it could be; the pattern of mutation might have changed [37, 44-46], or 

there might be other factors that affect divergence. Francioli et al. [3] showed 

that including recombination in a regression model between divergence and 

DNM density significantly improved the coefficient of determination of the 
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model; a result we confirm here; the coefficient of determination when 

recombination is included in a regression of divergence versus DNM density 

increases from 0.042 to 0.074 and from 0.013 to 0.041 for the Francioli and 

Wong datasets respectively. 

 

As detailed in the introduction there are at least four explanations for why 

recombination might be correlated to the rate of divergence independent of its 

effect on the rate of DNM: (i) biased gene conversion, (ii) recombination 

affecting the efficiency of selection, (iii) recombination affecting the depth of 

the genealogy in the human-chimpanzee ancestor and (iv) problems with 

regressing against correlated variables that are subject to sampling error. We 

can potentially differentiate between these four explanations by comparing the 

slope of the regression between the rate of substitution and the recombination 

rate (RR), and the rate DNM and the RR. If recombination affects the 

substitution rate, independent of its effects on DNM mutations, because of 

GC-biased gene conversion (gBGC), then we expect the slope between 

divergence and the RR to be greater than the slope between DNM density 

and the RR for Weak>Strong (W>S), smaller for S>W, and unaffected for 

S<>S and W<>W changes. The reason is as follows; gBGC increases the 

probability that a W>S mutation will get fixed but decreases the probability 

that a S>W mutation will get fixed. This means that regions of the genome 

with high rates of recombination will tend to have higher substitution rates of 

W>S mutations than regions with low rates of recombination hence increasing 

the slope of the relationship between divergence and recombination rate. The 

opposite is true for S>W mutations, and S<>S and W<>W mutations should 

be unaffected by gBGC. If selection is the reason that divergence is correlated 

to recombination independently of its effects on the mutation rate, then we 

expect all the slopes associated with substitutions to be less than those 

associated with DNMs. The reason is as follows; if a proportion of mutations 

are slightly deleterious then those will have a greater chance of being fixed in 

regions of low recombination than high recombination. If the effect of 

recombination on the substitution rate is due to variation in the coalescence 

time in the human-chimp ancestor, then we expect all the slopes associated 

with substitution to be greater than those associated with DNMs; this is 
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because the average time to coalescence is expected to be shorter in regions 

of low recombination than in regions of high recombination. Finally, if the 

effect is due to problems with multiple regression then we might expect all the 

slopes to become shallower. Since the DNM density and divergences are on 

different scales we divided each by their mean to normalise them and hence 

make the slopes comparable. 

 

The results of our test are consistent with the gBGC hypothesis; the slope of 

divergence versus RR is greater than the slope for DNM density versus RR 

for W>S mutations and less for S>W mutations (Figure 6); we present the 

analyses using sex-averaged RR, but the results are similar for either male or 

female recombination rates, and for 100KB windows (Figures S5 and S6 and 

Tables S8 and S9). These differences are significant in the expected direction 

for all comparisons except W>S from the Wong data (Table 6)(significance 

was assessed by bootstrapping the data by MB regions 100 times and then 

recalculating the slopes). There are no significant differences between the 

slope for W<>W and S<>S mutations and the slope for substitutions, again a 

result consistent with gBGC.  
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Figure 6. The slope (and SE) between normalised DNM density and 

normalised sex-averaged recombination rate (RR) (Wong - blue, Francioli - 

orange), normalised SNP density and RR (grey), and normalised substitution 

density and RR (yellow). In each case the values were normalised by dividing 

by the mean. 

 
 
 
 SW WS SSWW 

Wong v Subs 1 0.17 0.89 

Francioli v Subs 1 0 0.81 

Wong v SNPs 1 1 0.95 

Francioli v SNPs 0.66 0 0.76 

 

Table 6. Proportion of bootstrap replicates in which the slope of the 

normalised DNM density versus sex-averaged recombination rate, is greater 

than the slope of the normalised number of substitutions (or SNPs) versus 

recombination rate. 100 bootstrap replicates were performed in each case.  
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Correlation with diversity 

Just as we expect there to be correlation between divergence and DNM rate, 

so we might expect there to be correlation between DNA sequence diversity 

within the human species and the rate of DNM. To investigate this, we 

compiled the number of SNPs in 1MB and 100KB windows from the 1000 

genome project [47, 48]. There is a positive correlation between SNP density 

and DNM rate in both datasets (Francioli r = 0.19 p<0.001; Wong r = 0.30, 

p<0.001). 

 

Using a similar strategy to that used in the analysis of divergence we 

calculated the correlation we would expect if all the variation in diversity was 

due to variation in the mutation rate by assuming that the level of diversity 

was known without error, and hence was a perfect measure of the mutation 

rate (we have on average 31,000 SNPs per MB, so there is little sampling 

error associated with the SNPs). We then simulated the observed number of 

DNMs according to these inferred mutation rates. The expected correlations 

are 0.22 and 0.32 in the Francioli and Wong datasets; these are not 

significantly greater than the observed correlation (p=0.1 in both cases). A 

similar pattern is observed for individual mutational types at both the 1MB and 

100KB scale, with some being greater and others smaller than expected 

(Table S10). These results suggest that the majority of the variation in 

diversity at the 1MB scale is due to variation in the mutation rate.  

 

Although much of the variation in diversity appears to be due to variation in 

the mutation rate we tested for the effect of gBGC. We find that the slope of 

SNP density versus RR is lower than the slope between DNM density and RR 

for S>W mutations, greater for W>S mutations and not significantly different 

for S<>S/W<>W mutations for the Francioli dataset. Furthermore, the slope 

between SNP density and RR is between the slopes for DNM density versus 

RR and substitutions and RR. This is consistent with gBGC, since gBGC is 

expected to have smaller effects on diversity than divergence. However, in the 

Wong dataset the DNM slope is significantly greater than the diversity slope 

for all mutational types consistent with a direct effect of selection on diversity.  
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Divergence to other species 

The divergence between species, usually humans and macaques, is often 

used to control for mutation rate variation in various analyses. But how does 

the correlation between divergence and the DNM rate in humans change as 

the species being compared get further apart? Terekhanova et al. [46] 

showed that the rate of S<>S and W<>W substitutions (chosen to eliminate 

the influence of gBGC) along the human lineage at the 1MB scale is 

correlated to that along other primate lineages, but that the correlation 

declines as the evolutionary distance increases. This suggests that the 

mutation rate evolves at the 1MB relatively rapidly. However, they did not 

consider DNMs in detail. To investigate further, we compiled data from a 

variety of primate species – human/chimpanzee/orang-utan (HCO) 

considering the divergence along the human and chimp lineages, 

human/orangutan/macaque (HOM) considering the divergence along the 

human and orangutan lineages, and human/macaque/marmoset (HMM) 

considering the divergence along the human and macaque lineages. This 

yields two series of divergences of increasing evolutionary divergence: the 

human lineage from HCO, HOM and HMM, and chimp from HCO, orangutan 

from HOM and macaque from HMM. We estimated the divergence using the 

non-stationary method of Duret and Arndt [21] that treats CpG sites 

separately. We do not restrict ourselves only to DNMs in the aligned regions 

but used all DNMs in each window. In this way, the average number of DNMs 

per window is independent of the evolutionary divergence. As expected, we 

find that the correlation between the density of DNM and the rate of 

substitution declines as the evolutionary divergence increases (Figure 7). 
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Figure 7. The correlation between DNM density and the substitution rate for 

different branches. Francioli-1 and Wong-1 are the correlations involving the 

divergence along the human lineages from the comparison of human-chimp-

orangutan (HCO), human-orangutan-macaque (HOM) and human-macaque-

marmoset (HMM). Francioli-2 and Wong-2 involve the divergences along the 

chimpanzee, orangutan and macaque lineages 

 

 

 

Discussion 

We have considered the large-scale distribution of DNMs along the human 

genome using a meta-analysis of 4 datasets of DNMs obtained by the 

sequencing of trios (an individual and their parents). Unfortunately, there are 

significant differences between these datasets: they differ in the amount of 

variation they show and the two largest datasets, which we have studied in 

detail, show some conspicuous differences; in particular the DNMs from the 

studies of Francioli et al. [3] and Wong et al. [6] correlate differently to 

genomic variables such as replication time. Patterns that exist in both 

datasets likely reflect true patterns associated with DNMs. Patterns that differ 

between datasets may be real and reflect differences in age, environment and 
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ethnicity of the individuals sequenced in each study, or they may be due to 

systematic biases in the discovery of DNMs.  

 

The patterns and results that are common to both datasets are as follows. 

There appears to be rather little variation in the mutation rate at a large scale, 

however, there is variation at a large scale that cannot be explained by 

variation at smaller scales, and large-scale variation forms part of a 

continuum. Furthermore, we can conclude that the level of variation for 

different mutational types is similar and different mutational types covary 

together. We find no evidence that there is variation in the pattern of mutation 

that generates variation in GC content. We confirm the correlation between 

the mutation rate, as measured by DNM density, is not as strong as it could 

be, and demonstrate that this is in part due to BGC. In contrast, we find that 

variation in diversity at large scales is largely a consequence of variation in 

the mutation rate. Finally, we demonstrate that the correlation between the 

rate of DNM and the rate of substitution, declines as increasingly divergent 

species are considered.  

 

Whether the differences between the datasets are due to error or differences 

between the sampled individuals is not clear. it is possible that some of the 

differences between the Francioli and Wong datasets are a product of the 

sequencing technology and processing used to call DNMs. It has been noted 

before that the pattern of mutation at the single nucleotide level varies [35, 

36], and the rate at which the mutation rate increases with paternal age [36] 

differs between studies; observations which have been interpreted as being 

artefcats of sequencing or processing [35, 36]. However, these differences 

and those reported here between the Francioli and Wong datasets could be 

due to differences in age, environment or ethnicity. it has been shown that 

mutations born to younger fathers are enriched in late replicating DNA, 

whereas this pattern is not observed in older fathers [3]. Thus at least part of 

the difference between the Francioli and Wong datasets could be due to the 

paternal age. The average age of fathers in the Wong dataset was 33.4 years 

[6], in the Francioli dataset it was 27.7 years (Francioli pers comm). We might 

therefore not expect to see such a strong replication time effect in the Wong 
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data. Since replication time is strongly correlated to many of the other 

genomic variables - it is highly correlated to the first PC of the genomic 

variables r = 0.80, p<0.001 - this one effect might explain why the patterns of 

correlation are different in the two datasets.  

 

If paternal age is the reason for the difference between the Wong and 

Francioli datasets then this implies that the majority of mutations over human 

evolution have come from relatively young fathers since the rate of S<>S and 

W<>W substitutions (chosen to remove the effects of gBGC) show similar 

correlations to genomic variables as the Francioli DNM data (Table 4 and 

Table S7 for 100KB).   

 

It is also possible that the differences between the Francioli and Wong 

datasets are due to ethnicity. It has recently been shown that the rate and 

pattern of mutation varies over very short timescales such that they can vary 

between human populations [37, 44, 45]; for example the rate of TCC to TTC 

is elevated in Europeans [37, 44]. At larger scales Terekhanova et al. [46] 

considered the correlation between the S<>S and W<>W substitution rate 

along the human lineage and other primate lineages at the 1MB scale. They 

showed that the strength of the correlation declined as more distant species 

were considered suggesting that the mutation rate evolves at this scale as 

well as at finer scales. However, the rate of decline was fairly slow, and 

human populations would not be predicted to show very different patterns 

from this analysis.  

 

The evolution of the large-scale variation in GC-content across the human 

genome has been the subject of much debate [25]. Mutation bias [14-18], 

selection [13, 19, 20] and biased gene conversion [21-24] have all been 

proposed as explanations. There is good evidence that biased gene 

conversion has some effect on the base composition of the human genome 

[24, 26-28]. However, this does not preclude a role for mutation bias. We have 

tested the mutation bias hypothesis using the DNM data and two different 

tests. We find no evidence that the pattern of mutation varies across the 

genome in a way that would generate variation in GC-content. Instead we 
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provide additional evidence that biased gene conversion influences the 

chance that mutations become fixed in the genome.  

 

As expected the rate of divergence between species is correlated to the rate 

of DNM, however, the strength and even the sign of the correlation depends 

on the alignments being used. The correlations between divergence and DNM 

density are actually negative if no filtering is applied to the UCSC alignments, 

and there is a negative correlation between divergence and alignment length 

for the pairwise alignments from the UCSC genome browser, and a positive 

correlation for the multi-species alignment. It is clear that there are problems 

with these alignments and that they should be used with caution.  

 

As Francioli et al. [3] showed, the correlation between divergence and DNM 

density is worse than it would be if variation in the mutation rate was the only 

factor affecting divergence. This is perhaps not surprising because the 

substitution rate depends both on the rate of mutation and the probability of 

fixation, both of which may vary across the genome. Francioli et al. [3] further 

demonstrated that although the rate of DNM is correlated to the rate of 

recombination, divergence is correlated to the rate of recombination 

independently of this effect. There are at least four explanations for the effect 

of recombination on divergence: (i) biased gene conversion, (ii) direct 

selection, (iii) linked selection and (iv) problems with multiple regression. We 

have provided evidence for an effect of biased gene conversion, but no 

obvious influence of three other factors – i.e. the slope of the regression 

between DNM density and RR is not significantly different to the slope of the 

regression between divergence and RR for S<>S and W<>W mutations. The 

fact that there is no obvious effect of indirect selection is surprising given the 

results of McVicker et al. [29]. They showed that the divergence between 

humans and chimpanzees was significantly lower near exons and other 

regions of the genome subject to evolutionary constraint. A similar reduction 

was not observed in the divergence of human and macaque and human and 

dog, suggesting that the pattern was not due to selection outside exons, or 

regions identified as being subject to selection. They therefore inferred that 

the reduction was due to the effect of linked selection reducing diversity in the 
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human-chimpanzee ancestor. There are several possible reasons why see no 

evidence of this effect in our analysis. First, our test may not be powerful 

enough. Second, the effects may be counteracted by direct selection which is 

expected to affect the slope of the regression between divergence and RR in 

the opposite direction to indirect selection. Third, the scale, magnitude and 

variation in the effects of indirect selection may be not large enough to affect 

the relationship between divergence and the rate of mutation; if there is little 

variation in the magnitude of the indirect effects of selection across the 

genome at the 1MB (or 100KB) level then indirect selection will have no effect 

on the correlation between the rate of mutation and divergence. 

 

In contrast to the pattern with divergence, we find that most of the variation in 

diversity, at least at the 1MB and 100KB scales, can be explained by variation 

in the mutation rate. Considering this, it is perhaps not surprising that the 

analysis of DNM density versus RR and SNP density versus RR slopes are 

inconclusive. The results from Francioli are consistent with BGC affecting he 

relationship between SNP and DNM density, but the data from Wong are 

consistent with a direct effect of selection on diversity. Again we find no 

evidence of an effect of indirect selection contrary to previous analyses [29, 

49]. This may be because our analysis lacks power, or that the indirect effects 

of selection do not vary sufficiently at the scale we have analysed. 

 

Divergence between species has often been used to control for mutation rate 

variation in humans (for example [29, 49-51]). This is clearly not satisfactory 

given that the correlation between divergence and rate of DNM is only about 

half as strong as it could and this correlation gets worse as more divergent 

species are considered. Unfortunately, correcting for mutation rate variation is 

likely to be difficult because attempting to predict mutation rates from genomic 

features is unreliable, given the failure of the regression analyses to explain 

more than half the explainable variation. Furthermore, the largest amounts of 

variation are at the smallest scales (Figure 3B) where we have the lowest 

density of DNMs. 
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It has been known for sometime, that diversity across the human genome is 

correlated to the rate of recombination[30-32] and there has been much 

debate about whether this is due to mutagenic effects of recombination or the 

effect of recombination on processes such as genetic hitch-hiking and 

background selection. Divergence between humans and other primates is 

correlated to the rate of recombination, which was initially interpreted as being 

due to a mutagenic effect of recombination [30, 32] but subsequently it has 

been interpreted as evidence of gBGC [21]. Both of these hypotheses appear 

to be correct – the rate of DNM is correlated to the rate of recombination ([3]; 

results above), but recombination also affects which mutations become fixed 

through gBGC.  

 

We find, as others have before [3, 5], that the rate of germ-line DNM is 

correlated to a number of genomic features. However, we find that these 

features explain less than 50% of the explainable variance leaving the 

majority of the variance unexplained. Our inability to predict the mutation rate 

might be because the genomic features have not been assayed in the 

relevant tissue, the germ-line, or that there are important features that have 

yet to be assayed. Interestingly, Terekhanova et al. [46] showed that this 

unexplained component of the substitution rate evolves more rapidly than the 

explained component. They demonstrated that the substitution rates at the 

1MB level in a range of primate species was almost as well correlated to 

genomic features in humans, as the substitution rate along the human 

lineage. This implies that the variance in the substitution rate not explained by 

genomic features, evolves rapidly, given that the correlation between the 

substitution rate in humans and other lineages declines as they get more 

distant, There is clearly much we do not currently understand about the why 

there is large scale variation in the mutation rate and how it evolves through 

time. 
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Materials and methods 

DNM data 

Details of DNM mutations were downloaded from the supplementary tables of 

the respective papers: 26,939 mutations from Wong et al. [6], 11016 

mutations from Francioli et al. [3], 4931 mutations from Kong et al. [4] and 547 

mutations from Michaelson et al. [5]. These were all mapped to 

hg19/GRCh37. Only autosomal DNMs were used. 

 

Alignments. 

Three sets of alignments were used in this analysis, all based on human 

genome build hg19/GRCh37: (i) the University of California Santa Cruz 

(UCSC) pairwise (PW) alignments [41] for human-chimpanzee (hg19-panTro4 

downloaded from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/vsPanTro4/ ) (ii) the UCSC 

MultiZ (MZ) 46-way alignments [42] downloaded from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/multiz46way/ and (iii) 

Ensembl Enredo, Pecan, Ortheus (EPO) 6 primate multiple alignment, release 

74, [43] downloaded from ftp://ftp.ensembl.org/pub/release-74/emf/ensembl-

compara/epo_6_primate/. We found that the EPO alignments were the most 

reliable – see main text – and they were used for the majority of the analyses. 

 

Selection and filtering of SNPs. 

All SNPs from the 1000 genomes project phase 3 [48] were downloaded from 

hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/phase3/. After removing 

all multi-allelic SNPs and, structural variants and indels we were left with 

77,818,368 autosomal SNPs. After filtering out windows which had less than 

50% of nucleotides aligning between human-chimpanzee-orangutan and no 

recombination rate scores we were left with 71,917,321 SNPs. 

 

Mutational models 

We considered how well the variation at the 100KB and 1MB scale was 

predicted by two models of mutation rates: the rates estimated by Aggarwala 

et al. [38] based on the 7-mer context surrounding a site, and the rates 
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estimated for each site by Michaelson et al. based on a variety of genomic 

features. The rates for Aggarwala et al. [38] were taken from their 

supplementary table 7, and the context of each site was used to predict the 

average mutation rate for each 100KB or 1MB window using their model. The 

mutability indices from the Michaelson et al. study [5] were provided by the 

authors. The analysis of the model of Michaelson et al. [5] is more complex 

since they give the probability of detecting a DNM in their data at each site in 

the genome, referred to as the mutability index (MI), but these do not translate 

directly into mutation rates. Using their DNM data we tabulated the number of 

sites in the genome with a given MI along with the number of DNMs from their 

study that had been observed at those sites. Because DNMs are not 

observed at some MIs we grouped MIs into groups of ten starting from the 

first MI with at least one DNM. We then regressed the log of the number of 

DNMs over the number of sites against the mean MI (see Figure S7). The 

regression line was estimated to be log(mutation rate) = -6.73 + 0.0103 x MI. 

Using this equation, we predicted the mutation rate at each site in the 

genome. Michaelson et al. [5] give MIs mapped to hg18; we lifted these over 

the hg19 using the liftover tool. 

 

Genomic features. 

Male, female and sex-averaged standardised recombination rate data [52] 

were downloaded from http://www.decode.com/additional/male.rmap, which 

provides recombination rates in 10KB steps. For each 100KB and 1MB 

windows the recombination rate was calculated as the mean of these scores 

with a score assigned to the window in which the position of its first base 

resided. GC content was calculated directly from the human genome 

(hg19/GCRh37) for 100kb and 1Mb windows. All other feature data was taken 

from the ENCODE project [53] and downloaded from the UCSC genome 

browser. Where possible we used data from the embryonic stem cell line H1-

hesc. The mean value was taken for each genome feature across the window. 

For replication time data, we downloaded the ENCODE Repli-seq wavelet 

smoothed signal data [54, 55], provided in 1KB steps, for the GM12878, 

HeLa, HUVEC, K562, MCF-7 and HepG2 cell lines. Replication times were 

assigned to windows based upon their start coordinates. We computed the 
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mean replication time for all autosomes for 100KB and 1Mb windows across 

all 6 cell lines. We measured transcription rate using RNA-seq data. 

Nucleosome occupancy was taken from the GM12878 cell line, histone 

modifications and RNA-seq data from the stem cell line H1-hesc. We only 

included windows in our analysis in which >50% of the window had data from 

all features. 

 

Statistical analysis. 

SPSS version 22 and Mathematica version 10 were used for all statistical 

analyses. 

 

To estimate the mutation rate distribution we use the method of [8]. In brief we 

assume that the mutation rate in each window is �� � where �� is the average 

mutation rate per site and � is the rate above or below this mean. α is 

assumed to be gamma distributed. The number of mutations per window is 

assumed to be Poisson distributed with a mean ���� where l is the length of 

the window. This means that the number of mutations per window is a 

negative binomial. In considering a particular category of mutations, such as 

CpG transitions, we considered the number of CpG transition DNMs at CpG 

sites. We fit the distribution using maximum likelihood using the NMaximize 

function in Mathematica. Initial analyses suggested that the maximum 

likelihood value of the mutation rate parameter was very close to the mean 

estimate of the mutation rate; as a consequence to speed up the 

maximization we fixed the mutation rate to its estimated mean and found the 

ML estimate of the shape parameter of the gamma distribution. 

 

We investigated the correlation between different types of mutation across 

windows by fitting a single distribution to both types of mutation, estimating 

the shape parameter of the shared distribution as the mean of the CV of the 

ML estimates of distributions fitted to the two categories independently. We 

then used this distribution to simulate data; we drew a random variate for 

each window from the distribution assigning this as the rate for that window. 

We then generated two Poisson variates with the appropriate means such 
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that the total number of DNMs for each type of mutation was expected to be 

equal the total number of DNMs of those types.  

 

To test whether the mutation pattern varied across the genome in a manner 

that would generate variation in the mutation rate we fit the following model. 

Let us assume that the mutation rate from strong (S) to weak (W) base pairs, 

where strong are G:C and weak are A:T, be ��1 
 ���, where μ is the mutation 

rate and fe is the equilibrium GC-content to which the sequence would evolve 

if there was no selection or biased gene conversion. Let the mutation rate in 

the opposite direction be ��� and the current GC-content be f. Then we expect 

the proportion of mutations that are S->W to be  

 

���, �� � ��������

�����������������
� �������

���������������
     (1) 

 

Let us assume that fe is normally distributed. Then the likelihood of observing i 

S>W mutations out of a total of n S>W and w>S mutations is 

 � � � ����; ��� , �����, �, ��� , ����� / � ����; ��� , ����� �

	
 �

	
   (2) 

 

The total loglikelihood is therefore the sum of the log of equation 2 for each 

MB or 100KB window across all the windows in the genome. The maximum 

likelihood values were obtained by using the NMaximize routine in 

Mathematica.  

 

Simulations 

In a number of analyses, we simulate DNMs under assumed model; for 

example, using the 7-mer model of Aggarwala et al. [38]. In these simulations, 

we calculate the expected number of DNMs given the window’s mutation rate, 

the number of relevant sites and the total number of DNMs, and then 

generated a random Poisson variate from this expectation. In each simulation, 

we generated 1000 simulated datasets. 
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Data availability 

 

The DNM data is available from the supplementary information of the original 

papers or from the corresponding authors: (i) Michaelson et al. [5] 

Supplementary table 1 at http://www.cell.com/cell/fulltext/S0092-

8674(12)01404-3; (ii) Kong et al. [4] Supplementary data 

http://www.nature.com/nature/journal/v488/n7412/full/nature11396.html#suppl

ementary-information; (iii) Francioli et al. [3] from Shamil Sunyaev 

(ssunyaev@rics.bwh.harvard.edu); (iv) Wong et al. [6] from supplementary 

table 1 https://www.nature.com/articles/ncomms10486. The number of 

callable trios at each site was provided by Wendy Wong 

(ShukwanWendy.Wong@inova.org). The human genome assembly hg19 and 

all genomic features relating to the assembly were downloaded from the 

UCSC genome browser www.genome.ucsc.edu. The 1000 genome data were 

also downloaded there. The mutatibility indices from Michaelson et al. [5] 

were provided by Jake Michaelson (jacob-michaelson@uiowa.edu). The rates 

for Aggarwala et al. [38] were taken from their supplementary table 7 

http://www.nature.com/ng/journal/v48/n4/full/ng.3511.html. 
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Supplementary tables 
 

 

 Francioli 100KB Wong 100KB 

Ovarall 0.33 (0.26, 0.40) 0.34 (0.32, 0.38) 

CpG 0.54 (0.14, 0.79) 0.43 (0.27, 0.57) 

nonCpG 0.35 (0.26, 0.43) 0.33 (0.30, 0.37) 

CpG ts 0.53 (0, 0.79) 0.45 (0.27, 0.59) 

CpG tv 0.055 (0.05, 0.061) 0.036 (0, 0.88) 

nonCpG ts 0.33 (0.15, 0.45) 0.29 (0.23, 0.35) 

nonCpG tv 0.55 (0.38, 0.69) 0.40 (0.32, 0.48) 

S>W 0.38 (0.23, 0.49) 0.38 (0.32, 0.43 

W>S 0.077 (0, 0.087) 0.29 (0.18, 0.37) 

 

Table S1.  The CV of the gamma distribution fitted to the Wong and Francioli 

datasets separately at the 100KB scale. 
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Test Francioli 

100KB 

Wong 

100KB 

Francioli 

1MB 

Wong 

1MB 

CpG v nonCpG ns ns <0.001 ns 

CpG ts v tv ns ns ns ns 

nonCpG ts v tv 0.031 0.025 ns ns 

S>W v W>S ns ns 0.019 ns 

 

Table S2. The p-value from a likelihood ratio test comparing a model in which 

the two categories of mutation have separate distributions to where they 

share one.  
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 Observed Expected Expected < 

observed 

Francioli 100KB    

CpG v nonCpG 0.018*** 0.026 0.09 

CpG ts v tv 0.0017 0.00095 0.59 

Non CpG ts v tv 0.015* 0.030 0.01 

S>W v W>S 0.012* 0.0092 0.68 

    

Wong 100KB    

CpG v nonCpG 0.029*** 0.042 0.02 

CpG ts v tv 0.0072 0.0017 0.82 

Non CpG ts v tv 0.050*** 0.045 0.79 

S>W v W>S 0.032*** 0.044 0.06 

    

 

Table S3. The correlation between different mutational types for the Francioli 

and Wong datasets separately at the 100KB scale. 
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 Aggarwala  Michaelson  

 Observed Simulated Observed Simulated 

Francioli -0.057*** 0.060*** 0.084*** 0.41*** 

Wong 0.090*** 0.094 0.018** 0.57*** 

 

Table S4. Correlation between the density of DNMs and the mutation rate 

estimates of Aggarwala et al. and Michaelson et al. at the 100KB scale. 

*p < 0.05 **p < 0.01 *** p < 0.001 
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 Francioli Wong W<>W & 

S<>S subs 

Male 

recombination 

rate 

0.023** 0.079*** 0.125*** 

Female 

recombination 

rate 

0.017* 0.084*** 0.082*** 

H3K4me1 -0.017* 0.082*** -0.224*** 

H3K4me3 -0.041*** -0.003 -0.243*** 

H3K27me3 -0.015* 0.023** -0.083*** 

H3K27ac -0.024*** 0.048*** -0.246*** 

Transcription 

rate 

-0.031*** 0.004 -0.084*** 

H3K4me1PB -0.030*** 0.035*** -0.226*** 

H3K9me3PB 0.039*** -0.055*** 0.212*** 

Nucleosome 

occupancy 

-0.005 0.110*** -0.210*** 

DNAse 

hypersensitivity 

-0.039*** 0.06*** -0.206*** 

Replication 

time 

-0.057*** 0.011 -0.362*** 

GC content -0.031*** 0.094*** -0.217*** 

 

Table S5. Correlations between the density of DNMs and various genomic 

features at the 100KB scale. * p<0.05, ** p<0.01, ***p<0.001 
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 Francioli Wong 

 PC1 PC2 PC1 PC2 

CpG C>T -0.17*** 0.062** -0.049* 0.13*** 

CpG C>A -0.030 0.044* 0.009 0.019 

CpG C>G -0.015 0.029 0.015 0.0040 

non C>T -0.081*** 0.092*** 0.043* 0.14*** 

non C>A -0.10*** -0.003 -0.078*** 0.092*** 

non C>G -0.057** 0.047* -0.010 0.094*** 

non T>C -0.11*** 0.019 0.042* 0.13*** 

non T>G -0.029 -0.019 0.033 0.057** 

non T>A -0.078*** 0.051* -0.060** 0.035 

 

Table S6. Correlations between the density of DNMs and the first two 

principle components of the genomic features. Note that DNM density is 

considered across the appropriate type of site (e.g. CpG C>T mutations at 

CpG sites). *p<0.05, **p<0.01, ***p<0.001. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2017. ; https://doi.org/10.1101/110452doi: bioRxiv preprint 

https://doi.org/10.1101/110452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 50

 
 Francioli Wong W<>W & 

S<>S subs 

Male 

recombination 

rate 

0.019*** 0.047*** 0.095*** 

Female 

recombination 

rate 

  0.068*** 

H3K4me1 0.027** 0.049*** 0.036*** 

H3K4me3  -0.049***  

H3K27me3   -0.075*** 

H3K27ac  0.033*  

Transcription 

rate 

-0.014*   

H3K4me1PB   -0.069*** 

H3K9me3PB -0.002 -0.078*** 0.28*** 

Nucleosome 

occupancy 

0.055*** 0.16*** -0.50*** 

DNAse 

hypersensitivity 

 0.057*** -0.26*** 

Rep time -0.060*** -0.072*** -0.25*** 

GC content -0.062** -0.12*** 0.70*** 

r2 0.006 0.022 0.20 

 

Table S7. The standardised regression coefficients from a stepwise multiple 

regression with forward variable selection (parameter has to be significant at 

p<0.05 to be added to the model) at the 100KB scale. 
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 SW WS SSWW 

Male RR    

Wong v Subs 1 0.08 0.8 

Francioli v Subs 0.95 0 0.91 

Wong v SNPs 1 1 0.89 

Francioli v Subs 0.51 0.01 0.95 

    

Female RR    

Wong v Subs 1 0.17 0.88 

Francioli v Subs 1 0 0.6 

Wong v SNPs 1 1 0.02 

Francioli v Subs 0.71 0.02 0.59 

 

Table S8. Proportion of bootstrap replicates in which the slope of the 

normalised DNM density at 1MB versus recombination rate, is greater than 

the slope of the normalised number of substitutions (or SNPs) versus 

recombination rate. 100 bootstrap replicates were performed in each case. 

Results are shown for male and female specific recombination rates. 
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 SW WS SSWW 

Sex-averaged RR    

Wong v Subs 1 0.11 1 

Francioli v Subs 1 0 1 

Wong v SNPs 1 1 1 

Francioli v SNPs 0.84 0.02 0.61 

 

Table S9. Proportion of bootstrap replicates in which the slope of the 

normalised DNM density at 100KB versus sex-averaged recombination rate, 

is greater than the slope of the normalised number of substitutions (or SNPs) 

versus recombination rate. 100 bootstrap replicates were performed in each 

case.  
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 Francioli Wong 

 Observed Expected Observed Expected 

1MB     

All 0.19** 0.22 0.30** 0.32 

CpG C>T 0.20** 0.11** 0.10** 0.14** 

non C>T 0.13** 0.11 0.13** 0.19** 

non C>A 0.12** 0.13 0.13** 0.19** 

non C>G 0.12** 0.17 0.31** 0.24* 

non T>C 0.10** 0.10 0.11** 0.16* 

non T>G 0.0036 0.076** 0.073** 0.11 

non T>A 0.090** 0.082 0.081** 0.12 

100KB     

All     

CpG C>T 0.068** 0.044** 0.043** 0.061** 

non C>T 0.042** 0.043 0.047** 0.069** 

non C>A 0.049** 0.046 0.043 0.072** 

non C>G 0.040** 0.056 0.11** 0.088** 

non T>C 0.041** 0.041 0.034** 0.063** 

non T>G 0.0064** 0.028** 0.023** 0.044* 

non T>A 0.024** 0.031 0.019** 0.048** 

 

 

Table S10. The observed and expected correlations between DNM and SNP 

density at the 1MB categories of mutations. The expected correlation is that 

expected if all the variation in SNP density is due to variation in the mutation 

rate; this was estimated by simulating data. *p<0.05, **p<0.01 
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Supplementary figures 
 
 

 

 

 

Figure S1. The gamma distribution fitted to the four datasets at the 100KB: 

Blue: Michaelson, Purple: Kong, Green: Francioli and Wong (coincident 

distributions), Olive: all data. 
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A) 
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C) 

 

D)  
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Figure S2. Goodness of fit of the gamma distribution. The distribution of 

observed and expected number of blocks with a given number of DNMs. The 

expected number was estimated using the fitted gamma distribution. A) 

Francioli 1MB, B) Wong 1MB, C) Francioli 100KB, and D) Wong 100KB. A 

goodness-of-fit test rejects the model for all datasets except Francioli 100KB. 
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Figure S3. The predicted equilibrium GC content versus the current GC 

content using mutation rates inferred from the Francioli (blue) and Wong 

(orange) DNMs at the 100KB scale. The right-most data point is coincident. 
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Figure S4. Divergence (number of substitutions per base pair) as a 

function of alignment length in the UCSD pairwise alignments (top panel) 

and the UCSD multiz alignments (bottom panel). 
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A. 

 

B. 

 

 

Figure S5. The slope (and SE) between normalised DNM density and 

normalised recombination rate (RR) (Wong - blue, Francioli - orange), 

normalised SNP density and RR (grey), and normalised substitution density 

and RR (yellow at 1MB scale. In each case the values were normalised by 

dividing the values by the mean. Panel A is for male recombination rates, 

panel B for female recombination rates. 
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Figure S6. The slope between normalised DNM density and normalised 

recombination rate (RR) (Wong - blue, Francioli - orange), normalised SNP 

density and RR (grey), and normalised substitution density and RR (yellow at 

100KB scale. In each case the values were normalised by dividing the values 

by the mean. Sex-averaged RRs were used. 
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Table S7. The relationship between the log mutation rate (estimated as 

number of DNMs over number of sites) and the mutability index from 

Michaelson et al. 
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