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ABSTRACT

The use of next generation sequencing is now a standard approach to elucidate the small non-coding
RNA species (sncRNAs) present in tissue and biofluid samples. This has revealed the wide variety
of RNAs with regulatory functions the best studied of which are microRNAs. Profiling of sncRNAs by
deep sequencing allows measures of absolute abundance and for the discovery of novel species that
have eluded previous methods. Specific considerations must be made when quantifying and cataloging
sncRNAs and multiple algorithms are now available, mostly focused on miRNA analysis. smallrnaseq is
a Python package that implements some of the standard approaches for quantification and analysis of
sncRNAs. This includes miRNA quantification and novel miRNA prediction. A command line interface
makes the software accessible for general users.

Introduction
Small RNA is a term used rather broadly to describe short regulatory non coding RNAs found in eukaryotes.
This may include longer molecules such as transfer RNAs and snRNAs. However the term most often refers
to the very short RNAs of about 20–30 nucleotides long that are important in the RNA silencing pathway
by their association with Argonaute (Ago)-family proteins. These are classified based on their biogenesis
mechanism and the type of Ago protein that they are associated with. microRNAs (miRNAs), endogenous
small interfering RNAs (endo-siRNA) and Piwi-interacting RNAs (piRNAs) are the predominant classes
that have been identified. Though recent discoveries of non-canonical small RNAs have blurred the
boundaries between the classes1.

Advances in next generation sequencing technologies in the past decade have led to intensive discovery
in this field. Many studies have now been done in cataloging miRNA genes in particular and establishing
databases such as miRBase2. Most of the abundant miRNAs have likely been discovered in model
organisms like humans, mice and other mammalian species. Identifying less abundant and/or cell type-
specific ncRNAs and their biological relevance is still an ongoing task.

Protocols have been developed that enrich for miRNAs and piRNAs in an effort to exclude RNA
turnover and hydrolysis products arising from rRNAs and tRNAs3. Library preparation involves consec-
utive steps of adapter oligonucleotide RNA ligation. Adapter-ligated RNA is then size-fractionated on
polyacrylamide gels with the band in the appropriate size range excised. Finally, reverse transcription
and PCR are performed and the resulting small cDNA library is deep sequenced. The Illumina platform
commonly used typically yields tens of millions of reads almost always 50 bp in length with multiplexing
allowing 20 or more samples to be run at once. The resulting reads are returned in the form of fastq files
which must be analyzed to yield expression profiles of known and novel genes. sncRNA datasets have
several commonly seen features. Firstly, the abundance distribution is highly skewed with a few genes
constituting a majority of the total reads. Secondly, especially in the case of miRNAs, a read may map to
multiple precursors and/or possibly other locations in the genome. This has an effect on both alignment
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parameters and the method used to calculate final read counts. Finally, there is a distribution of isoforms
(called isomiRs for miRNAs) that display sequence variations, typically by changes at the 3’ end. Often
the most abundant miRNA differs from the miRBase sequence, probably because the dominant isomiR
varies by tissue and sample. This has an important consequence for the use of miRNA based markers since
in certain commercial assays the wrong isoform may be used as the sensor4. The length of the reads means
that a good deal of adapter dimer may be seen in the data returned from a sequencing run, depending on
library preparation.

Analyzing small RNA sequencing data remains a challenging process not only because of the technical
difficulties mentioned above. There is also a practical problem of appropriate software selection and usage.
Though multiple tools5 have been created only a subset are user friendly enough for general users. The
papers describing these tools are sometimes highly technical and confusing for those not experienced
in bioinformatic methods. Most are focused on miRNA profiling6–9 of which the most well known is
probably miRDeep210. Some tools are web-based making them convenient to access but this usually
requires uploading data to a server which is not suitable for a large scale study with many large sample
files.

This article details a Python package called smallrnaseq that aims to simplify and de-mystify this type
of analysis whilst still allowing enough extensibility for more advanced users. It provides an independent
implementation of some previously described algorithms such as isomiR labelling and novel miRNA
prediction. The main aims of this software are:

• provide a relatively simple but flexible command line tool
• allow general analysis of small RNAs and not just miRNAs
• provide a Python API for programmers who want to integrate the modules into their own custom

work flow or as part of another tool (see discussion)

Results
Small RNA seq analysis typically follows the steps shown in Figure 1. All of these steps are described
below. Trimming adapters should always be done in advance of processing unless using an aligner that
allows soft clipping of reads (not Bowtie). This can be done with a tool like cutadapt.

Command line interface
Installing the package provides a command ’smallrnaseq’ that is a command line interface to the library
without the need for any Python coding. Usage simply requires entering options into a text configuration
file and having the proper input files prepared. The advantage of configuration files is that they avoid
long commands with many options having to be typed, which is prone to mistakes. Also the files can be
stored to recall what setting was used, to copy them for another data set or to share with other users. The
meaning of each option is explained in the documentation in detail. Functionality currently available from
the command line is explained in the following sections. This includes counting of any user supplied RNA
gene annotations, miRNA quantification, novel miRNA prediction and counting of genomic features. The
algorithm is designed to handle multiple samples at once. This tool is suitable for users inexperienced in
RNA-seq analysis since they can leave most settings in the configuration at their default values. More
experienced users will be able to change alignment parameters and so on. We welcome suggestions for
additional options.

Once the configuration file is ready, the user simply types the command:

smallrnaseq -c my.conf -r
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Figure 1. Typical workflow for sncRNA seq analysis. This is almost the same as for standard RNA-seq
except that the reads are 50 nt in length which affects alignment considerations.

In the sections that follow, the features of the package are described all of which are accessible through
the command line interface unless otherwise stated. More complex functionality is available by using the
Python API and described in the online documentation.

Counting arbitrary RNA annotations
The RNA genes in any arbitrary fasta file (referred to as ’libraries’ in the config file) may be aligned to and
counts written to a csv file. Aligner indexes are first made and the names of each file are specified as a
comma separated list in the order to be mapped. The normal mode of operation is to align each file only to
the unmapped reads from the previous step. Alignment parameters can be set per library. This process is
made clearer in Supplementary Video S1 and the documentation. This procedure is useful in determining
what fraction of RNA types are present in samples. Note that miRNAs can also be counted in this manner
though there is a special workflow for this as discussed in the next section. Once reads are counted the
results are output to a csv file with a column for each sample. A normalized column is also included per
sample. Long file names can be replaced by short labels which outputs a separate file mapping the labels
to file names.

Counting mature miRNAs
miRNA counting is simple via the command line by specifying the species in the config file. Reads
are mapped to the known miRBase mature and precursor sequences directly which is a well established
method used by most algorithms since it is faster then aligning to the genome. The default miRDeep2
alignment parameters for this step are ’-v 1 -a –best –strata –norc’ which we adopt as default for miRBase
mapping also. Shi et al.8 have pointed out that miRDeep2 may tend to over count multi mappers. That
is, for reads that map equally well to the positions of two or more mature miRNAs, the entire counts
are added independently to the corresponding miRNA. Our default method of counting is to split the

3/12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2017. ; https://doi.org/10.1101/110585doi: bioRxiv preprint 

https://doi.org/10.1101/110585
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Differences in counting methods for mature miRNAs between smallrnaseq and miRDeep2 for
a single sample. Several outliers below the diagonal are seen in B when we use a counting method for
multi mapping reads that splits the count evenly rather than adding the totals counts equally. This
indicates those genes with non unique mappings are likely to be over counted in miRDeep2. Note:
outliers at bottom left of both plots are not significant.

counts evenly over all mapped genes as recommended by Shi et al. The difference in results can be shown
in Figure 2 which compares our counts to miRDeep2 using the default parameters for a single bovine
sample file. In B with the split counts method it can be seen that certain miRNAs have higher counts
for miRDeep2 (the outliers), these are genes with a number of non-unique mapping reads that are over
counted e.g. bta-miR-103. This may alter results downstream for a subset of genes. The other factor that
will affect quantification is the amount of padding added to mature sequences at the 5’ and 3’ ends. These
can be altered in the configuration file.

Counting isomiRs
The discovery of isoforms (isomiRs) that arise from the same arm as the canonical miRNA contradicts
the initial view that the hairpin arm produces a single unique mature sequence. Sequence variants are
common and may include 5’ and 3’ trimming and non-templated additions (enzymatically addition of a
nucleotide to the 3’ end). Specific isomiRs can be substantially more abundant than the canonical form
recorded in miRBase and isomiR expression appears to be tissue and population dependent11. miRNA
expression profiling commonly uses the read counts of all isomiRs summed together. While this may be
suitable in many cases it is also useful to consider the isoforms separately. There are a number of reasons
isomiR counting may be a good approach:

• you only wish to count the exact canonical sequence.

• if the canonical mature sequence in miRBase is not even common in the tissue or samples you are
studying and you wish to know this information.

• the dominant isoform(s) present differ from the canonical sequence such that verification with
another method, e.g. a PCR assay, will fail.
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Figure 3. IsomiR classification scheme as used in sRNAbench.

• the counts of one or more isoforms can better distinguish between conditions (i.e. control and
disease) than the entire sum of counts.

A single read can have more than one modification so sRNAbench12 provided a useful non-redundant
hierarchical method of classifying isomiRs. Other naming schemes have also been used13. The sRNAbench
scheme is used in smallrnaseq and is illustrated in Figure 3.

Novel miRNA prediction
A loose definition of a novel miRNAs is one for which the mature sequence is not present in miRBase.
This may be because the species has not been well studied or insufficient evidence is available to consider
a sequence a real miRNA. There are likely to be false positives in general for miRNA discovery from deep
sequencing and this should be kept in mind when running an analysis of your reads. It is advised to use at
least two algorithms for such an analysis. Most of the higher abundance miRNAs have been identified
in the commonly studied species. Detection/prediction of new miRNAs will therefore involve looking
at the low abundance (or tissue specific) forms which will need further evidence such as conservation,
experimental verification and perhaps identification of function.

There are several algorithms available for predicting novel miRNAs from small RNA sequencing
data14. miRDeep2 is most popular and contains a comprehensive algorithm for novel prediction which
uses a statistical biogenisis based model to score candidates. smallrnaseq implements its own module
for novel discovery, described in the methods section and online documentation. Briefly, smallrnaseq
combines all samples together for analysis of read clusters. The prediction method corresponds more
closely to the miRanalyzer approach15. Most importantly, results are output to a html file for interactive
browsing. This is designed to facilitate the human annotation stage which is increasingly important for the
rare or low abundance forms that remain to be discovered. This feature is demonstrated in Supplementary
Video S1.

The score value is purely for the precursor classification. We recommend a default setting of 0.7 for
the score cutoff to avoid removing too many true positives but this can be experimented with. This value
was determined by estimating the false (FPR) and true (TPR) positive rates over a set of score cutoffs
from 0.2 to 0.95. The result is shown in Figure 4. It can be seen that the estimated TPR starts to decrease
between a score of 0.7 and 0.8. FPR decreases slowly though this will vary between sample types. Note
that these FPR values are rough estimates and normally known RNA genes will be mapped to removed
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Figure 4. Estimates of the true positive (TPR) and false positive (FPR) novel miRNA discovery rates
indicate that a score cutoff of 0.7-0.8 is suitable for general use. Details of how these values were
estimated are given in Methods.

before novel prediction (see Methods). Stricter filters can also be selected to remove more candidates from
the final results using additional checks.

One limitation of miRDeep2 was the lack of unique identifiers for novel candidates. This leads to
a many to many mapping between mature and precursor that is confusing to deal with. It also makes
comparisons between independent runs difficult. Our novel discovery algorithm addresses this by providing
a unique id for each mature novel candidate that always maps to the same mature sequence. Thus identical
mature sequence ids will correspond between independent runs of the software. Finally our method lends
itself to be scalable in that large numbers of samples can be pooled and the method run on all samples at
once.

miRDeep2 module
mirdeep2 is a popular miRNA discovery program written in perl. The command line usage is a little
complicated so this module allows a configuration file to be used to provide settings. It also analyses the
output results of mirdeep2 and provides summary plots.

Counting genomic features
Counting features means counting the intersection of reads aligned to a reference genome with the locations
of gene annotations (features). The features are provided typically in a gff, gtf or bed file format which
are tables containing the genome coordinates and descriptor of each gene. These files are available for
many species from Ensembl16. These will include annotations for non coding RNAs. The advantage of
this approach compared to using a library is that one can map and count all features in a single step. Thus
counts are normalized over all mapped genes which may be more desirable. It also allows the aligner to
check for genes that map non uniquely to other locations in the genome and possibly remove them from
consideration. This may be needed in the case of genes with repeat sequence or with highly conserved
regions of sequence such as transfer RNAs. In the future it is intended to add a tRNA fragment counting
module that requires this kind of approach17.
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Installation
Installation of Python packages is now relatively straightforward. Standard Python now includes the
pip tool. Other dependencies are relatively minimal and can be installed easily on any linux operating
system. This software is designed for use on Unix-based platforms such as linux or OS X. Windows
users are recommended to install a linux operating system in a virtual machine using VirtualBox (https:
//www.virtualbox.org/wiki/Downloads) and run the software from there. You can access your data via
shared folders. Ubuntu or Fedora based distributions of linux are recommended.

One limitation of short read aligners is that they can be memory intensive for reference genome
alignment. If you are using a reference genome, which is required for novel miRNA prediction, a
minimum of 8GB memory is recommended. This should especially be borne in mind if using a virtual
machine where you need to allocate enough memory for the guest OS.

Documentation
Documentation is available at https://github.com/dmnfarrell/smallrnaseq/wiki including installation in-
structions. Supplementary Video S1 provides an introduction and tutorial for the command line usage
with two working examples. Readers are encouraged to watch this video before installing the software and
using the documentation to clarify specifics.

Discussion
Tools for sncRNA analysis from sequencing data are widely available, mostly focusing on miRNAs. As
a command line tool smallrnaseq is easier to use than many others and may be attractive to users for
this reason. This software is also intended to be updated regularly based on user feedback. Multiple
improvements can be envisaged. Refinements to the novel miRNA discovery algorithm such as better
checks for the pattern of read alignments for consistency with miRNA cleavage patterns are a priority. The
process of precursor prediction will be parallelized to improve speed by using multiple threads. For this
reason speed benchmarks are not detailed here. We have provided a module for assisting in differential
expression analysis intended to help users do this in as few steps as possible. The method is available via
the Python API and will be added to the command line interface in the next release. Also in development
is a method for tRNA fragment analysis.

One of the features of scientific software in general is that they can become defunct quickly without
community support18. We would envisage this software being potentially utilized in a number of ways that
could maximize its impact. Firstly it is hoped the command line interface will find a general application.
Python coders wishing to re-use the code can do so in any manner consistent with an open source license.
Perhaps a more promising avenue for such tools is inclusion in community based toolkits. These provide
a way to integrate disparate software into pipelines that promote best practice in analytical methods.
The most relevant such project is nextgen-bcbio19, a framework written in Python. This provides a
comprehensive set of pipelines for automated analysis of high throughput sequencing data. It is possible
in the future we will integrate smallrnaseq (or some individual modules) into such a project.

Methods
Read counting and short read alignment
The exact method used to count reads in genes has been much discussed in the literature for RNA-seq20.
For general users this may be confusing and a default method is selected that should give reasonable results
for miRNA counting. This takes the method used in reference genome mapping of splitting non unique
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mapping read counts equally when adding to the mapped genes8. Note that the software will allow most
aligners to be used by adding a method in the aligners module to wrap their mapping function. Though so
far bowtie is recommended. We would be glad to integrate other aligners on request.

Read count normalization is performed by dividing counts by the total for all reads counted in the
sample by default (sometimes called library normalization). There is no standard method of normalization
for small RNA or miRNA that suits all cases21. This applies to quantitative PCR (RT-qPCR) methods as
well as sequencing. Therefore other methods are available via the API when creating the count results.
These will also be added to the configuration file so that the option to alter normalization method is
available from the command line.

Method for novel miRNA detection
We have implemented an approach for novel miRNA precursor prediction most closely based on the
miRanalyzer (sRNAbench) method12, 15. The basic method is to find clusters of reads mapped to the
genome that could be a mature sequence, extract the surrounding sequence and find suitable precursors.
Structural features of each candidate precursor are then scored using a classifier. The lowest energy and
highest scoring is selected.

Characteristics of the hairpin structure were encoded as features using the forgi package22. The
features used in our algorithm are largely the same as those used in miRanalyzer and listed in Table 3
of the original paper15. This includes the mean free energy of the hairpin structure as calculated using
RNAfold23. Examples of elements used as features are the length of the longest hairpin structure, number
of bulges in the stem and GC-content of the loop. The miRNA hairpin structure shown in Figure 5
may help to clarify some of the terminology used. We also used the triplet-SVM features that were first
proposed by Xue et al.24. The feature classifier was implemented with the scikit-learn library25 using a
random forest tree predictor. Classifiers must be trained on positive and negative samples before use. A set
of 2000 known human precursors were used as positives. Negatives were created by randomly extracting
hairpins from known human coding sequences and filtering out obvious non-hairpins so we retain a set of
’pseudo pre-miRNAs’ as described in previous studies24, 26. The classifier can be re-trained using different
data if required.

The steps for novel precursor detection are as follows:

1. reads must be mapped to a reference genome first. It is also advised to first map libraries of known
RNAs to exclude them from the results first. Known miRNAs are automatically removed in this
manner.

2. read counts for all samples are pooled together using each sam file and total counts for each unique
read (after collapsing the original fastq files)

3. reads previously aligned to a reference genome are counted, it is also assumed the known mirbase
alignments will have been removed in advance. (This is done as part of the command line workflow)

4. reads are clustered using the ClusterTrees class in bx-python
5. clusters are checked for precursors by creating multiple possible precursors in the 5’ and 3’ directions

from the cluster and calculating the features of each
6. a precursor is discarded if:

• no hairpin present
• its read cluster overlaps with the hairpin loop
• it has less than 19 bindings in the stem
• it has less than 11 bindings to the region occupied by the read cluster
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Figure 5. Some of the miRNA precursor features that can delineate a true miRNA. Classification
algorithms can be applied to these and other features to predict likely true precursors.

7. the random forest classifier/regressor is used to score the precursor features
8. the precursor with the lowest energy and highest score is used as the most likely candidate
9. the cluster region is considered the mature arm and the star sequence is estimated. If there are reads

present in the star region these are added to the star count.
10. further checks on the position of the mature sequence are performed and can be used to eliminate

more candidates

The effect of score cutoffs on the novel miRNA discovery rate was examined by estimating a true
positive rate (TPR) by using a single sample file. Known mature miRNAs were counted and considered to
be the true positive set. Thus the TPR is the number of these miRNAs ’discovered’ in the novel prediction
process as a fraction of the total positives. The process was repeated for a range of score cutoffs. A false
positive rate (FPR) is somewhat harder to estimate. Since this was a bovine serum sample it is known that
most false positives will be from RNA fragments in genes that might form pseudo hairpins. We therefore
mapped and counted known bovine rRNA, tRNA and YRNA genes in the sample and considered these as
the true negatives. The FPR is then FP/(FP+TN) at each cutoff.

Python API and methodology
This package is entirely written in Python though uses some external software for read mapping (bowtie)
and RNA folding (RNAfold). HTseq is used to assist gene counting and this relies itself on the samtools
program. A flat module hierarchy is used with limited use of classes. Modules are separated broadly by
function but not strictly. For example novel.py implements all the novel miRNA methods. Much of the
data processing inside and between functions is handled with pandas DataFrames. This provides a very
flexible table class suited to handling alignment type data without the need for a custom data structure. It
is hoped that this will readily allow a Python programmer to use the core functionality without having to
read a lot of documentation.

Python dependencies: Numpy, Pandas27, Matplotlib28, Seaborn29, HTSeq30, forgi22, bx-python31,
pybedtools, scikit-learn25.
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Data Availability
This package is licensed under the Gnu Public License version v3.0. Dependencies are all freely available
under various open source licenses. No proprietary software was used in this project. The github repository
for this project is at https://github.com/dmnfarrell/smallrnaseq. In addition releases of the code are
permanently archived on Zenodo (https://zenodo.org/record/573293). The current version is 0.2.1.

Conclusions
The technique of next generation sequencing to quantify small non coding RNAs is a field of active
research. Though there is plenty of software available they are sometimes difficult to use. Reliable
standard approaches have yet to emerge in some aspects of the analysis like normalization. Software
that is relatively simple but configurable is therefore appropriate. smallrnaseq is command line tool for
processing of small RNA seq data suitable for any user. The command line interface is simple to use but
extensible. Those familiar with Python may find the library useful to integrate into their workflow as a
package or even standalone modules.
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