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Abstract 26 

Spatial structure impacts microbial growth and interactions, with ecological and evolutionary 27 

consequences. It is therefore important to quantitatively understand how spatial proximity 28 

affects interactions in different environments. We test how proximity influences colony size 29 

when either Escherichia coli or Salmonella enterica are grown on different carbon sources. The 30 

importance of colony location changes with species and carbon source. Spatially-explicit, 31 

genome-scale metabolic modeling predicts colony size variation, supporting the hypothesis that 32 

metabolic mechanisms and diffusion are sufficient to explain the majority of observed 33 

variation. Geometrically, individual colony sizes are best predicted by Voronoi diagrams, which 34 

identify the territory that is closest to each colony. This means that relative colony growth is 35 

largely independent of the distance to colonies beyond those that set territory boundaries. 36 

Further, the effect of location increases when colonies take-up resource quickly relative to the 37 

diffusion of limiting resources. These analyses made it apparent that the importance of location 38 

was smaller than expected for experiments with colonies growing on sugars. The accumulation 39 

of toxic byproducts appears to limit the growth of large colonies and reduce variation in colony 40 

size. Our work provides an experimentally and theoretically grounded understanding of how 41 

location interacts with metabolism and diffusion to influence microbial interactions. 42 

43 
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Introduction 44 

Microbial interactions help determine ecosystem functions, from global nutrient cycling to 45 

human health(Cho & Blaser 2012; Arrigo 2005). Spatial structure mediates microbial 46 

interactions (Connell et al. 2014), however, the relationship between proximity and strength of 47 

interaction remains unclear (Nadell et al. 2016). Quantifying, and being able to predict, the 48 

effect of location on microbial interactions is critical for understanding processes from the 49 

community evolutionary-ecology of microbial ecosystems to emergent functions such as human 50 

health.  51 

 52 

Spatial structure modulates the resource competition that shapes microbial communities (Mitri 53 

& Foster 2013, Foster & Bell 2012, Stacey et al 2016). The relative strength of competition 54 

influences community assembly (David et al. 2015) and stability (Shade et al. 2012), in addition 55 

to shaping the selection on microbial traits (Gerardin et al. 2016). Spatial structure alters the 56 

scope of competition (Mitri & Foster 2013). In agitated liquid environments all cells tend to 57 

have equal access to resources and interactions are global. In contrast, in structured 58 

environments, cells interact more strongly with neighbors than with distant individuals. This 59 

localizing effect of spatial structure has been repeatedly shown to influence the outcomes of 60 

microbial evo-ecological experiments (Gerardin et al. 2016; Mitri et al. 2015; Harcombe et al. 61 

2014; Allen et al. 2013; Allison 2005; Kim et al. 2008; Hansen et al. 2007; Kerr et al. 2002; Greig 62 

& Travisano 2008; Dechesne et al. 2008; Chao & Levin 1981; Penn et al. 2012; Gralka et al. 63 

2016).  64 

 65 
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The specific location of bacteria in spatially-structured environments matters. Within a biofilm 66 

or colony, bacteria at the edge have smaller local density and grow faster than those in the 67 

center (Persat et al. 2015; Gandhi et al. 2016; Nadell et al. 2016; Pirt 1967), which can segregate 68 

competing genotypes (Korolev et al. 2012; Mitri et al. 2015; Hallatschek & Nelson 2010; 69 

Hallatschek et al. 2007; Momeni et al. 2014). Between-colony interactions are also influenced 70 

by colonies’ locations. A competing colony’s effect is magnified if it is located between a focal 71 

colony and a nutrient source(Harcombe et al. 2014). Further, the coexistence of competing 72 

genotypes can be highly sensitive to the distance between colonies (Gerardin et al. 2016; Kim et 73 

al. 2008). Finally, hints of the importance of location are also being detected in complex natural 74 

ecosystems, such as in the microbiome. For example, changes in the spacing between 75 

Aggregatibacter actinomycetemcomitans and Streptococcus gordonii determine virulence in 76 

oral abscesses(Stacy et al. 2014).   77 

 78 

While it is known that location matters, we lack a rigorous framework for understanding and 79 

predicting the impact of location on interactions. Interaction strength can be a function of 80 

distance(Kim et al. 2008), but by what distance-based measurement?  The distance to the 81 

closest competitor, a function of all competitor distances, or a measurement of how 82 

competitors divide the available territory? Ecologists often use distance metrics to explain 83 

variance in plant growth(Tome & Burkhart 1989), and a linearly-weighted distance model 84 

captured a decline in bacterial colony size due to crowding (Guillier et al. 2006). In contrast, 85 

Voronoi diagrams, which measure the territory that is closer to a focal colony than any other 86 

colonies(Okabe et al. 2000), have been used to investigate pattern formation as bacteria cover 87 
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a surface(Lloyd & Allen 2015). To date there has not been a rigorous test of the ability of 88 

different geometric models to explain variance in colony size.  89 

 90 

In addition to this geometric description, the question arises what minimal biophysical model 91 

can predict the location-based effects on colony growth in variable environments. Microbes 92 

typically interact through the chemical compounds that they consume and excrete(Germerodt 93 

et al. 2016; Hibbing et al. 2010). Does accounting for metabolism and diffusion suffice to predict 94 

the variation in colony growth? Genome-scale metabolic models and flux balance analysis can 95 

quantitatively predict the metabolites that microbes consume and excrete, and therefore can 96 

predict the ecological interactions that emerge from intracellular mechanisms (Orth et al. 2010; 97 

Mahadevan et al. 2002; Harcombe et al. 2014). Further, diffusion of biomass and nutrients can 98 

be incorporated to predict system dynamics in structured environments (Harcombe et al. 99 

2014). We therefore can test whether colony variation is purely a function of metabolism and 100 

diffusion by comparing computational predictions against experimental observations.  If factors 101 

such as toxicity, signals or stochastic differences in lag time drive colony variation then the 102 

model, which does not take these effects into account, will do a poor job. Determining the 103 

extent to which metabolic mechanisms drive spatial effects will be critical for predicting growth 104 

in complex natural settings. 105 

 106 

Here we investigated how location influences interactions in arguably the simplest scenario – 107 

monocultures grown on homogeneous surfaces. We plated monocultures of either Escherichia 108 

coli or Salmonella enterica on various media and used high-resolution scanners to investigate 109 
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the size of colonies and the associated variance within each plate. We then used simulations 110 

and geometric descriptions of varying complexity to determine how much of the colony 111 

variation could be explained by metabolic mechanisms, what aspect of location best explained 112 

variation in growth, and how variation was influenced by changes in either nutrient uptake or 113 

diffusion. Finally, we investigated one case in which variation differed from expectation and 114 

suggest that this deviation was caused by byproduct toxicity. Our work provides a quantitative 115 

framework for understanding and predicting the effect of location on colony growth which is 116 

independent of both microscopic parameters and knowledge of the positions of the non-117 

nearest neighbors. 118 

 119 

Methods 120 

Strains and media 121 

We used cells of either Salmonella enterica subsp. Typhimurium LT2 or Escherichia coli K12-MG1655 as 122 

our model species. In the genome-scale metabolic modeling, these strains were represented by the 123 

iRR_1083 model (Raghunathan et al. 2009) and the ijo_1366 model (Orth et al. 2011), respectively. The 124 

Petri dish experiments either used LB media (10g/L tryptone, 10g/L NaCl, 5g/L yeast extract) or a 125 

modified Hypho minimal media (7.26mM K2HPO4, 0.88 mM NaH2PO4, 3.78 mM [NH4]2SO4, 0.41 mM 126 

MgSO4, 1 ml of a metal mix (Delaney et al. 2013)), with either glucose (8.34 mM), citrate (5.10 mM), 127 

lactose (4.17 mM), or acetate (12.5 mM) as the limiting resource. All Petri dishes had 1% agar. Dishes 128 

were left open under UV for 30 minutes. 129 

 130 

For Petri dish experiments, cells from a 1-day old colony were used.  After spreading cells onto a Petri 131 

dish, a thin piece of black plastic was placed within the upper lid of the dish to improve contrast and 132 
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reduce reflections from the Petri dish lid. Petri dishes were then placed onto a Canon Perfection V600 133 

scanner agar side down and a 600dpi image was scanned every 20 minutes for almost 150 hours. Each 134 

treatment (a unique combination of a species and a media type) was repeated 4-8 times.  135 

 136 

Image Analysis 137 

Tracking of colony areas over time was performed in three main steps using custom software in Matlab 138 

(Supplementary material). First, the initial colony locations were detected. Then, the final colony areas 139 

were measured and merged colonies were separated (Fig. 1A).  Finally, using the outlines of the final 140 

colony areas, the area of each colony was tracked through time. We measured the growth rate of 141 

colonies on Petri dishes via the diameter of a hypothetical circular colony with same area(Wimpenny 142 

1979). The growth rate was calculated by regressing diameter over time for the first four hours (12 143 

frames) once growth was detected.  144 

 145 

Computational Modeling  146 

All simulations were run in COMETS, a platform developed to do spatially-explicit dynamic flux-balance 147 

analysis simulations with an arbitrary number of species (Harcombe et al. 2014).  Simulations were 148 

carried out using the University of Minnesota Supercomputing Institute’s Mesabi cluster. COMETS uses 149 

dynamic flux balance analysis to predict bacterial growth over time by maximizing the amount of 150 

biomass which can be produced by a species’ metabolic model given the resources in the local 151 

environment (Mahadevan et al. 2002).  Michaelis-Menten kinetics constrain resource uptake, with the 152 

maximum set by  and the concentration at which uptake is at half-maximum set by . In 153 

addition, we ran simplified reaction-diffusion simulations in COMETS by using a metabolic model with a 154 

single carbon uptake reaction, paired with a reaction that converted all intracellular carbon directly to 155 

biomass. In this simplified case uptake kinetics exactly match growth kinetics. 156 
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 157 

COMETS simulates growth in spatially-explicit environments by solving dynamic flux balance analyses in 158 

discrete “boxes” within a lattice at each time step, and then allowing diffusion of the resources and 159 

biomass among boxes between time steps. Each box can contain different amounts of biomass or 160 

resources, which determine the outcome of the dynamic flux balance analysis.  Biomass and resources 161 

each diffuse to neighboring boxes with specific diffusion coefficients. The time-step and box sizes we 162 

used were small enough to not cause a change in results if we reduced these sizes further.  163 

 164 

The starting conditions, and length of time the simulations ran, depended on the question of interest. 165 

For the simulations in figures 3 and 4 the “world” was a 5 cm x 5 cm square, into which 60 colonies were 166 

seeded at random locations, with initial biomasses of 1e-10 grams. Resources were distributed 167 

uniformly at a concentration of 1e-6 mmol per box for the limiting resource, and at essentially infinite 168 

abundance for non-limiting resources. These simulations were run until resources were fully consumed. 169 

The genome-scale metabolic model simulations, Fig. 2, were conducted in circular environments that 170 

were 90 mm in diameter to mimic the experimental conditions. Biomass was seeded at the same 171 

location as observed in experiments, and the concentration of the limiting resource also matched the 172 

laboratory conditions. Genome-scale simulations were run for equal lengths of time as the laboratory 173 

experiments. Other simulation parameters are provided in Table 1. 174 

 175 

Statistics 176 

The Voronoi areas and other distance metrics (nearest neighbor, summed inverse distances, summed 177 

squared inverse distance) were all calculated in R. To find the Voronoi areas of colonies, we used the 178 

spatstat package in R and ran the dirichletArea function. After calculation of any distance metric, 179 
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colonies <5mm from a Petri dish edge were excluded, i.e., the colonies were not included in the analysis, 180 

but they did contribute to the distance metric for included colonies. 181 

 182 

We used relative metrics to compare yields between treatments and between experiments and 183 

simulations. We compared variation in colony yield on different carbon sources by first calculating the 184 

coefficient of variation in colony area for each Petri dish, then used a single factor ANOVA to compare 185 

the coefficient of variation between experimental treatments. Similarly, to compare experiment to 186 

simulation the yields at the end of growth, in units of area for the experiments and grams for the 187 

simulations, were divided by the total yield in each Petri dish or simulation area to obtain dimensionless 188 

values that could be directly compared. The experimental relative yields were compared with the 189 

simulation predictions using mixed-effects linear regression, with the Petri dish as a random factor and 190 

the treatment as a fixed factor. 191 

 192 

To compare the strength of spatial competition among groups (media type, resource quality), we did an 193 

ANOVA followed by Tukey's Honest Significant Difference multiple comparisons test. The level of 194 

replication was the Petri dish. We conducted a t-test to test whether adding acetate to S. enterica Petri 195 

dishes with glucose altered the strength of spatial competition.  196 

  197 

Results 198 

 199 

The amount of variation in size between colonies on a surface depends on the resources and 200 

species identity  201 

 202 

We tested whether species and resource identity influenced the variance in colony size within 203 
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monoculture plates. Approximately 60 cells of either S. enterica or E. coli were grown on 1% 204 

agar Petri dishes with different carbon sources, with 4-8 dishes per treatment. Colony areas 205 

were measured using flatbed scanners and custom software (Fig. 1A, see methods for more 206 

detail). Within every plate/replicate and treatment we found a range of colony sizes, as seen in 207 

the example density plots of the final colony areas in Fig. 1B, suggesting location was important 208 

for size variation. Because the average colony size differed substantially across treatments (see, 209 

for example, Fig. 1B), we used the coefficient of variation of final colony area (standard 210 

deviation over mean) within a plate to compare variation in colony size between treatments. 211 

Differences in media and species caused large differences in the coefficient of variation across 212 

treatment (ANOVA, F(7,32) = 18.9, p = 1.07e-9, Fig. 1C), suggesting that spatial effects were 213 

highly context dependent.  214 

 215 

The effects of resource and species identity on the variance in colony size can be predicted with 216 

models that pair metabolism and diffusion. 217 

 218 

We tested whether the observed variations in colony size could be predicted from the interplay 219 

of intracellular metabolic mechanisms, diffusion, and colony location, by running simulations 220 

that combine genome-scale metabolic modeling with diffusion calculations. Our computational 221 

platform, COMETS, uses dynamic flux-balance analysis to predict the growth and metabolic 222 

activity of bacteria by identifying the metabolic strategy that maximizes biomass production at 223 

each time step (Mahadevan et al. 2002; Harcombe et al. 2014). Biomass and metabolites 224 

diffuse to simulate growing colonies and the resource gradients that arise as a result of 225 
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microbial metabolism. Note that this does not mean that colonies spread by diffusion alone 226 

from the center of the colony. Rather, the combined action of diffusion and growth leads to 227 

biomass spread (Murray 2002). 228 

 229 

Simulations were initiated with resources and colony locations that matched each experimental 230 

plate (Fig. 2A). We plotted the relative yields (yield of a colony / total yield on a Petri dish) for 231 

simulations against those for experiments (Fig. 2B). We used relative yields because the 232 

measurements of interest were the relative differences between colonies on a plate, which can 233 

be compared with relative numbers even if the specific yield measurement (area vs biomass) 234 

differs. The relative colony sizes in simulations were well correlated with the relative colony 235 

sizes in experiments, although the predictive ability of the simulations depended on the 236 

treatment (mixed-effects linear regression with subsequent F tests, main effect of simulated 237 

yields: F(1,1479) = 2027, p < 2.2e-16, main effect of treatment: F(5,24) = 11, p = 1.3e-5, 238 

interaction: F(5,1470) = 85, p < 2.2e-16).  Deviations from simulated predictions had a slope < 1, 239 

meaning there was more variability in colony size in simulations than in experiments, which 240 

occurred and was most pronounced when the carbon resource was a sugar (i.e. glucose or 241 

lactose).  Below we further explore the deviations caused by growth on sugars. 242 

 243 

Relative colony size is driven by the location of adjacent competitors  244 

 245 

 To more extensively investigate how location determines colony size we simplified our model 246 

to allow faster simulation and abstract species/environment-specific intracellular metabolism. 247 
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We replaced the genome-scale metabolic model with a set of differential equations, which 248 

describe a reaction-diffusion system in which bacteria grow under Monod kinetics: The growth 249 

rate f(B,R) depends on biomass concentration B and resource concentration R.  Bacteria and 250 

resource spread via diffusion, with the diffusion coefficient for the bacteria   being much 251 

smaller than that for the resource,  (equations 1): 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

The first term in each of the differential equations describes diffusion (  is the two-262 

dimensional Laplacian operator.), the second term (the “reaction” term) describes conversion 263 

of the resource into biomass which occurs with the same efficiency independent of the growth 264 

rate. The maximum growth rate, , is approached as the resource concentration  265 

increases, with half-maximum growth rate attained when the resource concentration is equal 266 

to the saturation constant   267 

 268 

(1a) 

(1b) 

(1c) 
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With this model, we sought a distance-based metric that could predict colony size 269 

independently of intracellular details, focusing on metrics that had previous use in the forestry 270 

or microbiology literature(Tome & Burkhart 1989; Guillier et al. 2006; Lloyd & Allen 2015). We 271 

first simulated conditions that caused strong spatial effects (large variance in colony size), 272 

which used a high growth rate (  = 1). We tested whether colony size could be best 273 

predicted by the distance to the nearest neighbor (Fig. 3A), the sum of the inverse distances to 274 

all neighbors (Fig. 3B), the log of the sum of the squared inverse distances (Fig. 3C), or a 275 

colony’s Voronoi area, which is the area on the Petri dish which is closer to the focal colony 276 

than to any other colony (Fig. 3D)(Okabe et al. 2000). While all metrics were somewhat 277 

predictive of colony size, the Voronoi areas had almost perfect prediction. 278 

 279 

To further test whether Voronoi neighbors are the primary competitors, we ran “dropout” 280 

simulations, in which we repeatedly simulated the same environment (i.e. founding cell 281 

locations) but removed a different seed of a colony from each simulation. We then determined 282 

the impact that each removal had on focal colony sizes, to test the effect of removing a Voronoi 283 

neighbor vs. a non-Voronoi neighbor. Removing Voronoi neighbor colonies had much larger 284 

effects than removing non-Voronoi neighbors, Fig. 3F (t.test, p = 5.6e-7). Taken together, this 285 

means that colonies that determined territory boundaries (the Voronoi neighbors) played the 286 

most important role in causing spatial effects. 287 

 288 

Finally, we tested the relative predictive ability of Voronoi areas as spatial effects decreased. 289 

We repeated the metric comparison at increasing resource diffusion coefficients , spanning 290 
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a range that at the low end is similar to the diffusion coefficient of a large protein such as 291 

bovine serum albumin in 1% agar (~1E-7 cm2 / s), passing the typical diffusion coefficient for 292 

sugars (~5E-6 cm2 / s), and reaching past the diffusion coefficient of sodium choride (~1.5E-5 293 

cm2 / s) (Schantz & Lauffer 1962). Even as the resource diffusion coefficient increased, causing 294 

competition to become more global (described below), the Voronoi areas were still the best 295 

predictors of yields (Supp. Fig 1).  Therefore, we concluded that the territory closest to a colony, 296 

obtained using a Voronoi diagram and determined by the competitors which are in adjacent 297 

Voronoi areas, is generally the best predictor for how competition for diffusing resources 298 

affects colony size. 299 

 300 

The influence of Voronoi neighbors is determined by the competing effects of resource uptake 301 

and diffusion 302 

 303 

Our results above show that Voronoi area is the best metric for capturing the effect of location 304 

on colony size, so we next used this metric to investigate how diffusion and resource usage 305 

parameters influence the strength of spatial effects. To analyze the impact of diffusion and 306 

uptake we focused on the slope of the line that is generated when plotting  against 307 

, for individual colonies. If each colony has exclusive access to the resources in its 308 

territory, the plot should generate a line with a slope of 1. A smaller slope represents increased 309 

movement of resources between Voronoi areas.  For example, if a plot of  over 310 

 yields a line with a slope of 0.5, a two-fold increase in a colony’s Voronoi area only 311 
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allows that colony to consume one-fold more resources (since all resources all turned into 312 

biomass, independent of rate). In a situation where the slope equals 0, the yield of colonies is 313 

largely the same and independent of Voronoi areas (Fig. 4A).  Intuitively, a decrease in the slope 314 

should occur as competition becomes more global. These interpretations are consistent with 315 

the observation that a decrease in the slope, which we deemed the “relative effect of Voronoi 316 

area”, goes along with a decrease in the yield coefficient of variation and the R^2 of the plot 317 

(Fig. 4B) when varying any parameter ( ,𝑘𝑚, R, 𝐷𝐵, or 𝐷𝑅). The correlation between these 318 

metrics indicates that parameters that reduce the slope also reduce the amount of variation in 319 

colony size and the predictive ability of Voronoi areas. 320 

 321 

We next tested what parameters in the model altered the relative effect of Voronoi area. 322 

Increasing the rate at which colonies consume nutrients increased the relative effect of Voronoi 323 

area. The effects of changing the upper limit on uptake rate (Vmax), the saturation constant 324 

(km), or the initial resource concentration (R) all collapsed into a single effect, the maximum 325 

uptake rate, by calculating the Monod maximum uptake using Vmax * R / (km + R) (Figure 4C). 326 

Increasing the maximum uptake rate caused a fast increase in the relative effect of Voronoi 327 

areas until saturating.  328 

 329 

We next investigated the influence of biomass and resource diffusion. Increasing the biomass 330 

diffusion coefficient ( ) increased the relative effect of Voronoi area (Fig. 4D).  We 331 

hypothesize this effect was due to a concomitant increase in the rate at which colonies took up 332 

resources that occurred because colonies spread more quickly and were able to reach high 333 
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resource concentration zones faster. In otherwise identical simulations, faster biomass diffusion 334 

did increase the speed at which resources were consumed (Supp. Fig 2).  335 

 336 

In contrast to the effect of resource uptake and biomass diffusion, increasing resource diffusion 337 

( ) reduced the relative effect of Voronoi areas. As the resource diffusion coefficient 338 

increases, the relative impact of Voronoi neighbors decays (Fig. 4E) likely because diffusion 339 

outpaces resource uptake.  As a result the impact of Voronoi neighbors is determined by the 340 

interplay of nutrient uptake and diffusion (Fig 4 F). 341 

 342 

In laboratory experiments, growth rate predicts the relative effect of Voronoi area 343 

 344 

We tested the predicted explanatory power of growth parameters on our laboratory data from 345 

Fig. 1. In every treatment, the colony sizes scaled with the colonies’ Voronoi area, as seen in the 346 

scatterplots with data from four Petri dishes per treatment shown in Fig. 5A. The relative effect 347 

of Voronoi area depended on the species and the environment, Fig. 5B (two-way ANOVA, effect 348 

of media: F(4,36) = 40.6, p < 1e-10), no main effect of species, interaction between 349 

media:species: F(2,36) = 5.88, p = 0.0062).  350 

 351 

In simulations, the maximum growth rate and resource uptake rate were directly proportional, 352 

and we showed than increasing the maximum uptake rate increased the relative effect of 353 

Voronoi area. In the laboratory data, we measured the maximum growth rate as the increase in 354 

diameter over the first three hours after colonies were identified(Palumbo et al. 1971). Media 355 
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and species each caused significant differences in the maximum growth rate, Fig. 5C (ANOVA, 356 

effect of media: F(4,38) = 260, p < 2e-16, effect of species: F(1,38) = 28.2, p = 5.1e-6). 357 

Furthermore, in agreement with simulations, the relative effect of Voronoi area in laboratory 358 

experiments increased as maximum growth rate increased following a saturating function (Fig. 359 

5C). However, there was the appearance of an outlier: S. enterica grown on glucose.  360 

 361 

S. enterica grown on glucose appeared not to follow the growth rate—Voronoi effect trend (Fig. 362 

5C), and also was the treatment most poorly predicted by the genome-scale metabolic 363 

modeling (Fig. 2B). This led us to hypothesize that another biological phenomenon besides 364 

competition for diffusing resources was occurring in this treatment. Interestingly, Voronoi areas 365 

and metabolic models did a good job of predicting the size of small colonies however, large 366 

colonies were routinely smaller than predicted (Fig. 2B). This suggests that large colonies 367 

stopped growing before they ran out of resources. S. enterica can generate potentially-toxic 368 

acetate during growth on glucose, so we hypothesized that acetate accumulation arrested 369 

growth of large colonies (Cappuyns et al. 2009; Wolfe 2005; Rhee et al. 2003). To test this 370 

hypothesis we grew S. enterica on Petri dishes with glucose medium with or without 371 

supplemented acetate (each at the same concentration as used in single carbon cultures), 372 

reasoning that if acetate was accumulating and causing toxicity, thereby reducing the spatial 373 

effects, supplementing acetate would further reduce the spatial effect. Consistent with our 374 

hypothesis supplemental acetate (but not growth on acetate alone) reduced the growth of the 375 

colonies (Fig. 6A) and the relative effect of Voronoi area (Fig. 6B). Furthermore, genome-scale 376 

metabolic modeling (which does not model toxicity) better recapitulated the laboratory data at 377 
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an earlier time point, when less acetate would have accumulated. This was true for S. enterica 378 

on glucose, as well as for E. coli on glucose or lactose, each of which can cause acetate 379 

accumulation (Fig. 6C) (Wolfe 2005).  380 

 381 

Discussion 382 

Understanding the quantitative way that spatial proximity affects interactions between 383 

bacterial colonies will allow us to better understand and manage microbial ecosystems. We 384 

showed that while species identity and the resources present caused variations in the effect of 385 

colony proximity, we could nevertheless predict much of this variance using models accounting 386 

for metabolism and diffusion. Spatially-dependent variation in colony size was largest on media 387 

which promoted a fast growth rate. Specific colony sizes were best predicted using Voronoi 388 

diagrams, which means that the differential colony growth was primarily caused by adjacent 389 

competitors (the “Voronoi neighbors”) (Okabe et al. 2000). The specific influence of these 390 

Voronoi neighbors was determined by a balance between the rate at which colonies took up 391 

resources, and resource diffusion. High uptake rates increased the importance of Voronoi 392 

neighbors and caused greater spatially-dependent variance in colony size. This general 393 

ecological relationship held across species and environments and therefore serves as a useful 394 

null model from which to predict spatial effects caused by resource competition. We 395 

demonstrated the utility of this null model: experiments in which Voronoi neighbors had less 396 

influence than would be predicted from growth rate led us to suggest that the toxicity of 397 

organic acid byproducts plays an important role in limiting colony size when bacteria are 398 

growing on sugars. In summary, we provide an experimentally and theoretically grounded 399 
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understanding of how location interacts with metabolism and diffusion to influence microbial 400 

interactions. 401 

 402 

We found that the impact of location on microbial growth was strongly influenced by both 403 

species and resource identity. This finding highlights the fact that the impact of spatial structure 404 

is context-dependent. While a dichotomy between structured and unstructured environments 405 

has value (Kim et al. 2008; Kerr et al. 2002; Chao & Levin 1981), it is important to realize that 406 

the effect of structure can change dramatically in different environments (Allen et al. 2013). As 407 

we strive to understand interaction strengths in natural microbial communities and design 408 

spatially-structured ecosystems for technological applications, it will be vital to incorporate 409 

context-dependent effects of location. 410 

 411 

Encouragingly, spatially-explicit, genome-scale metabolic models were able to predict much of 412 

the variation in colony size by modeling the interaction between diffusion and intracellular 413 

metabolism. This suggests that with models created from sequence data we will be able to 414 

quantitatively predict metabolic microbial interactions in complex, spatially structured 415 

environments. High-throughput methods to generate models from sequence data are 416 

improving(Feist et al. 2009), and therefore spatially explicit tools such as COMETS will be 417 

increasingly useful to generate quantitative predictions of the effect of location on growth and 418 

microbial interactions. As we discuss below, the accuracy of the predictions will be strongly 419 

influenced by realized uptake rates. The upper-limit of uptake (Vmax) must be defined in the 420 

model but will often be difficult to infer from sequence data. However, in our simulations we 421 
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left the upper-limit for all metabolites set at a canonical value of 10 mmol / gram dry weight / 422 

hr (Harcombe et al. 2014) and still achieved a good match between simulation and experiment. 423 

This suggests that colony-level uptake rates depended more on the stoichiometry of biomass 424 

production on each carbon source than on Vmax. Therefore, accurate predictions of 425 

stoichiometry, obtainable from sequence data, may lead to good approximations of the rate at 426 

which growing colonies consume resources even with inexact limits on uptake rates.  427 

 428 

Voronoi diagrams did substantially better at explaining colony variance than did any of the 429 

other metrics that we tried. Dropout simulations show that colonies outside the Voronoi 430 

neighbors have very little influence on variation in colony size. Interestingly, this suggests that 431 

for competition the arrangement of nearby colonies matters more than the specific proximity 432 

of those colonies. One caveat of our findings is that all of our colonies started to grow at 433 

roughly the same time. Had bacteria colonized the plate at different time points, or varied 434 

dramatically in lag time, Voronoi diagrams would likely explain less of the variance. Indeed 435 

differences in lag time have been shown to influence competition for physical space (Lloyd & 436 

Allen 2015), however, lag time had exceedingly little impact on colony variance in our 437 

experiments (data not shown). Additionally, we only looked at interactions with conspecific 438 

colonies. We expect that predicting interactions between species with different resource 439 

uptake rates will require weighted Voronoi diagrams. Finally, in future work it will also be 440 

interesting to investigate how Voronoi diagrams fair in three-dimensional ecosystems, such as 441 

lung infection models (Connell et al. 2014). 442 

 443 
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A balance of resource uptake and diffusion determined the extent to which competitive 444 

interactions between bacterial colonies were localized. Any parameter that increased uptake 445 

increased the influence of Voronoi neighbors (up to a limit), but increasing resource diffusion 446 

mitigated this effect. This means that both uptake and diffusion must be considered to 447 

determine the extent to which interactions are local. One might expect non-localized 448 

interactions in aquatic environments due to the low viscosity of the media, but if liquid is static, 449 

and resource-rich, the bacteria nevertheless may interact primarily with Voronoi neighbors. 450 

Conversely, in structured environments where one might expect highly localized interactions, if 451 

nutrient uptake is slow enough, resource diffusion may overpower resource uptake and 452 

globalize the interactions. It is important to note that decreasing the extent to which 453 

competition is local is not equivalent to decreasing competition. The average colony size and 454 

total biomass on a plate are equivalent whether competition is local or global (assuming all 455 

resources are consumed). However, if the balance of uptake and diffusion cause interactions to 456 

be local, spatial location matters, and some colonies will grow much larger than others.   457 

 458 

The balance between resource uptake and diffusion provides a null model for colony variance 459 

given resource competition in a spatial environment. If colony growth is mediated by 460 

competition for relatively slowly diffusing resources, then colony size should correlate with 461 

Voronoi area. Departures from this null expectation can help identify circumstances in which 462 

other biological interactions are occurring. In our experiments, colony size of S. enterica 463 

correlated poorly with Voronoi area when glucose was the carbon source, despite a fast rate of 464 

growth. Here, waste accumulation appears to have stunted the growth of large colonies. Both 465 
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E. coli and S. enterica produce organic acids as a byproduct of growth on sugars, and acetate 466 

toxicity can hinder growth(Wolfe 2005; Vandenbergh 1993). This toxicity reduced the relative 467 

importance of location. As production of toxic byproducts is common in the microbial world, it 468 

will be interesting to further investigate how toxicity influences spatial patterns. More broadly, 469 

the detection of toxicity in our system serves as an example of how quantitative analysis can aid 470 

in the identification of species interactions. Different biological phenomena likely cause specific 471 

departures from the null expectations. For instance, we hypothesize that mutualistic 472 

interactions between colonies will cause spatial effects, but of opposite direction to 473 

competition, in which colonies in smaller Voronoi areas have better success. Further research 474 

will be aimed at finding signatures of these and other biological phenomena.  475 

 476 

A quantitative understanding of how location mediates microbial interactions has important 477 

consequences for understanding and harnessing microbial evolutionary ecology. It is well 478 

established that spatial structure matters, can alter the interactions between microbes(Nadell 479 

et al. 2016) and plays a critical role in determining health outcomes(Stacy et al. 2016). 480 

Quantifying how space mediates interactions will allow for more rigorous understanding of 481 

community composition, and improve prediction of dynamics such as competitive exclusion. 482 

Further, understanding organisms’ interaction strengths is critical for understanding the 483 

evolution of microbial traits. For example, it was recently demonstrated that the level of 484 

antibiotic secretion can be explained by the relative strength of interaction with sensitive and 485 

resistant competitors (Gerardin et al., 2016). As technology which allows for fine-scale 486 

placement of cells matures (Xu et al. 2004; Ferris et al. 2013; Connell et al. 2013), we can create 487 
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spatial arrangements that maximize selection of competitive phenotypes of interest.  As we 488 

strive to move beyond descriptions of microbial diversity to explanations and management of 489 

diversity it will be critical to develop quantitative understanding of microbial interactions. 490 

  491 
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Figure Legends 631 
Figure 1: The variance in colony yields depends on the species and environment 632 

 633 

A) A snapshot of S. enterica colonies on LB media (left) and the yields (areas) of those colonies 634 

determined by automated image analysis (right). B) Density distributions of S. enterica colony yields 635 

grown on acetate or LB. C) The coefficient of variation of colony yields for each species on each carbon 636 

course. Error bars are standard error of mean.  637 

 638 

Figure 2: Genome-scale metabolic modeling recapitulates the variance in colony yields 639 

 640 

A) We used genome-scale metabolic modeling in the COMETS platform to test the mechanisms 641 

generating the observed variance in colony yields. The relevant genome-scale metabolic model was 642 

seeded into an environment at the sites from which colonies initiated in experiments. Dynamic flux-643 

balance-analysis calculations and subsequent metabolite and biomass diffusion were carried out in 644 

discrete time steps for a duration mimicking the laboratory experiments. B) A comparison of the relative 645 

colony yields measured in experiments (y axis) to the relative colony yields predicted by the COMETS 646 

simulations (x axis) for the treatments accessible with COMETs (defined media, i.e. not LB). Each facet 647 

contains data from 4-8 Petri dish experiments / simulations. The black line has slope = 1 and intercept = 648 

0, while the blue lines and surrounding grey are linear regression lines with standard error. A high R2 649 

suggests that the relative spatial effects are captured by the model, while a slope close to 1 suggests an 650 

accurate prediction of amount of variance in colony yield. 651 

 652 

Figure 3: Voronoi diagrams capture the effect of location on yield better than other distance metrics 653 

 654 

Four metrics were tested to determine which colonies interact to generate variation in colony size and 655 

to what extent. A-D show a cartoon of the measurement and the metric plotted against simulated 656 

colony yield (biomass). A) The distance to the closest colony, such that the yield of the focal colony 657 

(indicated by the arrow) would be predicted from the distance to colony 1, which is closest, but no other 658 

colony would be considered. B) The inverse linear distance to every colony, such that the yield of the 659 

focal colony would be predicted by the distance to every colony, with each colony's influence inversely 660 

proportional to its distance. C) Like B, but colonies become quadratically less important as distance 661 

increases. D) The territory closest to a colony, described by a Voronoi diagram. Here, the focal colony’s 662 

Voronoi area is shown (solid line polygon). A Voronoi diagram divides a plane into areas around colony 663 

initiation sites such that all the space in a territory is closer to its enclosed colony than to any other 664 

colony, which is accomplished by drawing perpendicular lines half-way through lines connecting a focal 665 

colony to Voronoi neighbors. E) A Voronoi diagram drawn for all colony initiation sites on a Petri dish.  666 

For a focal colony (blue), its Voronoi neighbors are the green colonies. F) The percent increase in a focal 667 

colony’s yield, after removal of a Voronoi or non-Voronoi neighbor. Error bars are standard error.  668 

  669 

Figure 4: Colony resource uptake rate and resource diffusion determine the relative effect of Voronoi 670 

area 671 

 672 

A) We quantified the relative effect of Voronoi area by measuring the slope of a line through the 673 

standardized colony biomass yields over the colonies' standardized Voronoi areas. A slope = 1 means 674 

that there are strong spatial effects and Voronoi neighbors exert total influence over a focal colony's 675 
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yield, whereas a slope = 0 means that all colonies exert similar effects regardless of spatial proximity and 676 

therefore competition is global. B) As relative effect of Voronoi area increases, so does the variance 677 

explained by the Voronoi areas (100 * R2) and the coefficient of variation of colony yield when varying 678 

any model parameter. C) The relative effect of Voronoi area increases with the maximum potential per-679 

mass uptake.   Changes from the default (baseline) values (Table 1) in maximum growth rate, km, 680 

starting resource concentration, or any combination of these parameters (multiple) all have similar 681 

effects. D) The relative effect of Voronoi area increases as the biomass diffusion coefficient increases. E) 682 

The relative effect of Voronoi area decreases as resource diffusion increases. F) The relative effect of 683 

Voronoi area is determined by the balance between the maximum uptake rate of a colony (x axis) and 684 

the rate of resource diffusion (y axis). 685 

 686 

Figure 5: The relative effect of Voronoi area changes between experimental treatments but generally 687 

scales with the maximum colony growth rate 688 

A) Scatterplots of the yield of S. enterica colonies over their Voronoi areas when grown on citrate or LB 689 

media. B) The relative effect of Voronoi area varied from extremely low (E. coli on acetate) to high 690 

(either species on LB) in experiments. The gray dots are measurements from individual Petri dishes, and 691 

the black dots and bars are means and standard error of the means, respectively. C) The relative effect 692 

of Voronoi area plotted over the maximum growth rate. The black line is a fit to data, excluding data 693 

from S. enterica grown on glucose. 694 

 695 

Figure 6: Acetate addition or accumulation reduces the relative effect of Voronoi area 696 

 697 

A) S. enterica colonies grown on Petri dishes with glucose alone or with acetate added. The scalebar = 698 

2.5mm. B) The relative effect of Voronoi area with only acetate, only glucose or a combination of the 699 

two. The gray dots are measurements from individual Petri dishes, and the black dots and bars are 700 

means and standard error of the means, respectively. C) The simulations from Fig. 2B, but with the 701 

simulated results taken from 40 hours into the simulation rather than at the end of the experiment (150 702 

hrs). Acetate accumulation is not predicted to occur until 40 hours. 703 

 704 

 705 

Supplementary Figure 1: Voronoi areas are the best predictors of yield even as the system becomes 706 

more global 707 

 708 

The amount of yield variance explained by each metric as the resource diffusion rate is increased. The 709 

colony layout is the same as for the data in Fig. 3. Regardless of the diffusion rate, Voronoi areas are the 710 

superior metric. 711 

 712 

Supplementary Figure 2: Total consumption of the ecosystem’s resources occurs more quickly as the 713 

biomass diffusion coefficient increases 714 

 715 

The time step at which 99.9% of the simulated ecosystems’ resources were consumed, plotted over the 716 

biomass diffusion constant. All other parameters were held constant. The data is from the same 717 

simulations as shown in Fig. 4D. 718 

 719 

 720 
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29 

 721 

 722 

 723 
Parameter value Unit, description 

spaceWidth 0.05 Side length of a box, in cm 

deathRate 0 Constant rate of biomass loss per hour 

allowCellOverlap True Whether multiple colonies could share a box 

minSpaceBiomass 1E-14 Minimum grams of biomass allowed in a box 

maxSpaceBiomass 5E-3 Maximum grams of biomass allowed in a box 

defaultVmax 1 mmol / gram / hour, max uptake rate or growth rate 

defaultKm 0.005 mM, concentration of half-maximum uptake rate 

exchangeStyle Monod Style Uptake is governed by monod kinetics 

defaultDiffConst 5e-6 cm2 / s, diffusion constant of resources / metabolites 

flowDiffRate 3e-9 cm2 / s, diffusion constant of bacterial biomass 

numDiffPerStep 10 How many iterations to solve the diffusion equations 

per timestep 

timeStep 0.1 Hours, amount of time per timestep 

Resource concentration 1e-6 Mmols of resource initiated in a box 

Table 1: Baseline COMETS parameters used for simulations 724 

 725 
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