




Figure 4: Growth rates and rate/yield trade-offs depending on glucose and oxygen levels. (a) Predicted
growth rates and biomass yields of aerobic EFMs, at reference oxygen level (0.21 mM) and at a lower
level (2.1 µM). Pareto-optimal EFMs are marked by dark triangles. Since changing oxygen levels affect the
growth rate, but not the yield, points move vertically between the two conditions. Statistical distributions
of growth rates across EFMs are shown in Figure S10 in S1 Text. (b) Oxygen-dependent growth rates for
the five focal EFMs and the measured flux distribution. The oxygen level directly affects the catalytic rate of
oxidative phosphorylation (reactions oxphos and sdh): lower oxygen levels require higher enzyme levels for
compensation, to keep the fluxes unchanged. The non-respiring EFM ana-lac shows an oxygen-independent
growth rate. In all other focal EFMs, the growth rate increases with the oxygen level and saturates around
10 mM. max-gr, which uses a higher amount of oxygen, has a steeper slope and loses its lead when oxygen
levels drop below 1 mM. The corresponding changes in enzyme allocation are shown in Figure S18 in S1 Text.
(c) Growth rate as a function of glucose and oxygen levels (“Monod surface”). For a closed approximation
formula, see Section 4.6 in S1 Text. (d)-(f) The same plot, with oxygen uptake, acetate secretion, and lactate
secretion shown by colors. Distinct areas represent different optimal EFMs (compare Figure S13 in S1 Text).
The optimal EFMs for strictly anaerobic conditions are depicted in Figure S15 in S1 Text (b).

when oxygen levels are low. This pattern occurs across the entire range of glucose levels, but the transition

– from full respiration to acetate overflow (Figure 4(e)) and further to anaerobic lactate fermentation EFMs

(Figure 4(f)) – is shifted at lower glucose levels. Interestingly, this transition disappears at extremely low

glucose concentrations (0.1 µM), as the fully respiring pareto EFM exhibits the highest growth rate even at

the lowest oxygen levels tested (Figure S13(a) in S1 Text).

While glucose levels are relatively easy to adjust in experiments, it is difficult to measure oxygen levels in

the local environment of exponentially growing cells. This has resulted in a long-standing debate about the

exact conditions that E. coli cells experience in batch cultures [46–48], and it makes it hard to validate our

predicted transition from acetate fermentation to full respiration. Our model predicts that at a constant level

of [O2], E. coli will fully respire at low glucose levels and secrete acetate at high glucose levels (see Figure

4). A similar shift from pure respiration to a mixture of respiration and acetate secretion has been observed

in chemostat cultures [49], where higher glucose levels result from higher dilution rates.

The choice of metabolic strategies does not only depend on external conditions, but also on enzyme param-
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Figure 5: Predicted protein investments (a) Predicted protein demands for the EFM max-gr at reference
conditions. (b) Predicted protein demand for the EFM max-gr at varying glucose levels and reference oxygen
level. The y-axis shows relative protein demands (normalized to a sum of 1). The dashed line indicates the
reference glucose level (100 mM) corresponding to the pie chart in panel (a).

eters. As an example, we varied the kcat value of triose-phosphate isomerase (tpi) and traced changes in the

rate/yield spectrum. Not surprisingly, slowing down the enzyme decreases the growth rate (see Figure S20

in S1 Text). But to what extent? Two of our focal EFMs (max-gr and pareto) are not affected at all, since

they do not use the tpi reaction. All other focal EFMs show strongly reduced growth rates. To study this sys-

tematically, we predicted the growth effects of all enzyme parameters in the model (equilibrium constants,

catalytic constants, Michaelis-Menten constants) by computing the growth sensitivities, i.e. the first deriva-

tives of the growth rate with respect to the enzyme parameter in question (see Section 4.2 in S1 Text, and

supplementary data files). A sensitivity analysis between all model parameters and the growth rates of all

EFMs (or alternatively, their biomass-specific enzyme cost) can be performed without running any additional

optimizations (Sections 4.3 – 4.4 in S1 Text). Growth sensitivities are informative for several reasons. On

the one hand, parameters with a large impact on growth will be under strong selection (where positive or

negative sensitivities indicate a selection for larger or smaller parameter values, respectively). On the other

hand, these are also the parameters that need to be known precisely for reliable growth predictions. The

parameters of a reaction can have very different effects on the growth rate. For example, the sensitivities of

the kcat and KM values of pgi are low, but the growth rate is very sensitive to the Keq value.

To study the effects of a gene deletion, we can simply discard all EFMs that use the affected reaction: based

on a precalculated EFCM analysis of the full network, we can easily analyze the restricted network without

any new optimization runs. By switching off pathways, we can easily quantify the growth advantage they

convey. Instead of studying pathways in isolation as in Flamholz et al. [21], we can study their usage

as part of a whole-network metabolic strategy. Figure 6 shows an analysis for two common variants of

glycolysis, the (high ATP yield, high enzyme demand) EMP and the (low ATP yield, low enzyme demand)

ED pathway, across different external glucose and oxygen levels (see Section 3.4 in S1 Text). At low oxygen

levels and medium-high glucose levels (10 µM – 100 mM), cells profit strongly from using the ED pathway,

and knocking it out decreases the growth rate by up to 25%. The EMP pathway provides a much smaller

advantage (up to 10%), and only in a narrow range of low-oxygen conditions.
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Figure 6: Growth rates achieved with two variants of glycolysis. (a) Glucose- and oxygen-dependent
growth rates predicted for wild-type E. coli. Same data as in Figure 4(c), but shown as a heatmap. E. coli
can employ two variants of glycolysis: the Embden-Meyerhof-Parnas (EMP) pathway, which is common also
to eukaryotes, and the Entner-Doudoroff (ED) pathway, which provides a lower ATP yield at a much lower
enzyme demand [21]. (b) A simulated ED knockout strain that must use the EMP pathway. The heatmap
shows the relative growth advantage of the wild-type strain (i.e. of reintroducing the ED pathway to the
cell). The ED pathway provides its highest advantage at low oxygen and medium to low glucose levels. (c)
Growth advantage provided by the EMP pathway. The advantage is highest at glucose concentrations below
10 µM. (d) Comparison between the two knockout strains. Blue areas indicate conditions where ED is more
favorable, and red areas indicate conditions where EMP would be favored. The dark blue region at low
oxygen and medium glucose levels may correspond to the environment of bacteria such as Z. mobilis, which
uses the ED pathway exclusively [50]. The same data are shown as Monod surface plots in Figure S21 in S1
Text.

Discussion

Our case study on E. coli metabolism reinforces the notion that growth rate and biomass yield are not strictly

coupled. Instead, their correlations across EFMs, and the extent of rate/yield trade-offs along the Pareto

front, depend on details such as growth conditions and enzyme parameters. At high oxygen levels, growth-

maximizing flux modes have an almost maximal yield and the Pareto front is very narrow. In contrast, under

low-oxygen conditions the highest growth rates are obtained by low-yield strategies and a long Pareto front

emerges (Figure 4(a)). It is not surprising that experimental results indicating rate/yield trade-offs were

inconclusive and difficult to interpret. As shown in [9], wild-type cell populations might be far from the

Pareto front, and a selection for fast growth may push the populations and individuals closer to it. It would

be interesting to study whether these results are in fact dependent on oxygen availability.

EFCM predicts which flux modes are likely to be used by well-adapted cells. We expected that the EFM

with the highest growth rate (max-gr, in the standard conditions chosen in this study) would coincide with

the experimentally determined flux mode (exp) in the same conditions. However, this is not the case, and
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the two flux modes are not even very similar (correlation r = 0.41, see Figure S7(c) in S1 Text). Our

model predicts a much higher maximal biomass yield than the yield measured in batch cultures (18.6 vs

11.8 gr dry weight per carbon mole [51]), while the predicted growth rate is slightly lower (0.74 vs 0.89

h−1). However, for the experimentally determined flux mode (exp), we overestimate the yield (17.7 vs

11.8 [42]) and underestimate the growth rate (0.41 vs 0.89) as well, so some of the discrepancies may be

due to weaknesses of our model (e.g. wrong kinetic parameter values) rather than due to EFCM itself. The

overestimation of yield (which depends on network structure, not on kinetics) may be caused by the fact that

our model misses some waste products or additional processes that dissipate energy, or that our high-yield

EFMs are kinetically unfavorable in reality. The underestimated growth rates may result from our simplistic

conversion of enzyme costs into growth rates. However, we hope that these over- and underestimations

occur consistently across EFMs and do not affect the qualitative results of this study.

In contrast to the much simpler model by Basan et al. [49], our model does not predict growth-rate de-

pendent acetate overflow as observed in E. coli. In our standard aerobic conditions (see Figure 2 and Figure

S14(h)) in S1 Text, the winning mode, max-gr, is completely respiratory and produces no fermentation prod-

ucts. Only at low oxygen levels, EFMs with acetate overflow, such as aero-ace, become favorable (see Figure

4 and Figure S15(e) in S1 Text). This misprediction may depend on several factors:

First, we may have underestimated the effective cost of oxidative phosphorylation (oxphos), which becomes

costly at lower oxygen levels, or we may have overestimated the oxygen availability. The oxygen concen-

tration of [O2] = 0.21 mM, which we chose to represent typical laboratory conditions, may be inaccurate;

oxygen availability may be as complex as in yeast, where it seems to diffuse too slowly to supply the mito-

chondria fully with oxygen [48]. Moreover, the affinity of the reactions to oxygen is not precisley known, so

even a precise value of the oxygen concentration would not suffice.

Second, the experimentally observed acetate production may result from additional, growth-rate dependent

flux constraints like those employed by Basan et al. in their model. In our model, we did not impose

any bounds on fluxes (aside from normalizing the flux modes to unit per biomass production), and thus

metabolic efficiency is maximized by an EFM. The growth rate does not even appear in the optimization.

We account for it only later, when metabolic efficiency is translated into an achievable growth rate. Thus,

it is possible that we miss some physiological constraints such as membrane real-estate [52], changing

biomass composition, or extracellular oxygen diffusion rates. Even without flux constraints, some EFMs mix

respiration and acetate production, e.g. aero-ace. However, none of them corresponds exactly to the fluxes

observed experimentally. Moreover, the measured relative rate of acetate production increases continuously

with the growth rate, which cannot be captured by a single constant EFM. A usage of flux constraints in

EFCM would be possible and would allow us, for example, to limit certain fluxes or to enforce some minimal

flux, e.g. in ATP-consuming maintenance reactions. To screen all vertices of the flux polytope, one may build

on the concept of elementary flux vectors [53, 54]. However, the number of these vertices may become very

large, and whenever flux bounds are changing (e.g. as a function of growth rate), this would change the set

of polytope vertices, and the entire calculation would have to be done for each growth rate.

Third, it is also possible that the experimentally observed acetate secretion is simply not optimal. In adaptive

laboratory evolution experiments [36, 37], the evolved strains grew about 1.5 times faster without a signif-

icant change in yield, but most of this increase could be explained by an increasing glucose uptake because

the relative rates of acetate overflow did not change. Apparently, if acetate secretion is due to a glucose

uptake constraint, this constraint can be bypassed by mutations and cells may be able to decrease acetate

secretion while growing faster. In a recent comparison of seven E. coli wild-type strains [35], three strains

were found to secrete no acetate at all in aerobic conditions (on glucose), but to use a fully respiratory strat-

egy without any by-product secretion. Two of these fully respiring strains grew just as fast as the evolved

strains from the adaptive evolution studies (about 1.0/h), and significantly faster than the lab strain that we
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used for our reference flux data and for the stoichiometric model (K-12). Again, this finding raises questions

about universal rate/yield trade-offs and supports our conclusion that the trade-off may almost disappear in

high-oxygen conditions.

Some variants of FBA manage to predict flux distributions with a suboptimal biomass yield by putting bounds

on enzyme investments. An example is FBAwMC (Flux Balance Analysis with Molecular Crowding), which

relates fluxes to enzyme demands and limits the cytoplasmatic protein density [55]. However, these methods

are insensitive to environmental conditions: the crowding coefficients assigned to reactions are constants,

and metabolite concentrations are not considered at all. In [20], Müller et al. ran a kinetic optimization

(which attempts to solve the nonlinear enzyme minimization problem directly) and compared it to a linear

approximation called satFBA. In this approximation, the constraints are exactly like in FBAwMC, except that

the crowding coefficients of exchange reactions are divided by saturation values. The saturation values, num-

bers between 0 and 1, account for the concentrations of external metabolites such as glucose and oxygen.

For a small metabolic network (comprising 5 reactions), satFBA yields the same qualitative predictions as a

kinetic optimization (and EFCM, for that matter), in particular with regard to the rate/yield trade-off. How-

ever, satFBA assumes that transport reactions are the only reactions affected by metabolite levels, whereas

EFCM models the interplay between metabolite levels, enzyme efficiencies, and enzyme investments in all

enzymatic reactions. It remains to be seen whether satFBA, with its single kinetic bottleneck, can reproduce

complex predictions of EFCM like the ones shown in Figure 4.

Constraint-based whole-cell models such as Resource Balance Analysis (RBA) [56, 57] or ME-models [58]

treat protein production as a part of the cellular network and couple metabolic rates to production rates of

the catalyzing enzymes. These methods differ from EFCM in three main ways: in the modeling of protein

production, of catalytic rates, and of biomass composition and enzyme cost weights. (i) While RBA and

ME model protein production in detail, EFCM is limited to metabolism: the partitioning between metabolic

enzymes and ribosomes is captured by a formula that effectively converts enzyme cost into growth rate (see

Methods). (ii) In reality, enzymes often operate below their maximal speed (i.e. the kcat value), at a catalytic

rate called apparent kcat value [59]. This capacity utilization lower than 1 depends on metabolite levels

and is quantified by the efficiency factors of ECM [34]. For each enzyme, the capacity utilization computed

by EFCM varies across EFMs, but remains close to some typical value. These values, for different enzymes,

span almost the entire range between 0 and 1 (see Figure S11 in S1 Text). In a linearized variant of EFCM

that assumes full capacity utilization, the growth rate would be overestimated and the growth differences

between EFMs would be distorted. In fact, our predicted enzyme cost is between 1.4 and 4.7 times higher

(depending on the EFM considered) than the ideal costs of enzymes operating at their maximal capacity

(see Figure S3 in S1 Text). RBA avoids this problem by replacing the kcat values by empirically determined,

growth-rate dependent apparent catalytic rates. Constraint-based methods that ignore this effect [23, 60]

underestimate the actual enzyme demand, thus suggesting an “unused enzyme fraction” in cells [61]. We

think that “unexplained enzyme fraction” would be a better term, because the enzyme amount predicted for

fully efficient enzymes is an ideal value that would simply not suffice to catalyze the required fluxes in reality,

given all thermodynamic and kinetic constraints [34, 62]. (iii) In contrast to RBA and ME models, EFCM

assumes a fixed biomass composition and fixed cost weights for the enzyme molecules. This means that cells,

in EFCM, lack some strategic options that exist in RBA and ME models: to fine-tune the biomass composition

towards a usage of “cheap” precursors, or to decrease the cost weights of proteins by cost-optimizing the

production of limiting protein components such as iron. Again, these options would be hard to implement

in EFCM because biomass composition is a defining part of the stoichiometric model, and any growth-rate

dependent changes in biomass composition would also change the set of EFMs.

Although efficient protein allocation may be important for fast growth [63], there is empirical evidence that

cells do not always minimize enzyme cost. Lactococcus lactis, for example, can undergo a metabolic switch
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that leads to big changes in growth rate, but involves no changes in protein levels [64]. These cells could,

in theory, save enzyme resources while maintaining the same metabolic fluxes, but do not do so – possibly

because their enzyme levels provide other benefits, e.g. anticipating metabolic changes to come. EFCM

ignores such complex objectives: it describes fully optimal, but “short-sighted” cell strategies which define

a lower bound on the enzyme demand. By considering secondary objectives, e.g., a need for preemptive

protein expression or safety margins to counter expression fluctuations, one would predict higher demands

and lower growth rates.

Our study has demonstrated that enzyme kinetics is a useful addition to constraint-based flux prediction

(see Section 1.4 in S1 Text)). In contrast to the minimal model in [49], our model was not fitted to reca-

pitulate a specific known phenomenon, but was made to derive predictions ab initio in the spirit of “testing

biochemistry” [65]. As long as in vivo kinetic constants are not precisely known, this harbours the risk

of mispredictions. Curiously, for example, the EFMs with the highest predicted growth rates bypass upper

glycolysis and use the pentose phosphate pathway instead. On the contrary, an ab initio approach allows

modelers to recover empirical laws directly from cell biological knowledge, for example, the shape of Monod

curves and Monod surfaces (see Figure S15 and Section 4.6 in S1 Text for general simplified Monod func-

tions). It allows us to compute quantitative effects of allosteric regulation or mutated enzymes (see Figure S2

in S1 Text), the residual glucose concentration in chemostats (see Figure S15 in S1 Text), and the trade-offs

between metabolic strategies at different glucose levels (see Figure S19 in S1 Text). The decomposition into

EFMs also greatly facilitates calculating the epistatic interactions between reaction knockouts (see Figure S2

(f) in S1 Text). Although yield-related epistatic interactions were previously computed using FBA (see Sec-

tion 3.5 in S1 Text), environment-dependent epistatic effects on growth rate have not been computed so far.

EFCM could be applied to larger models and models with flux constraints, and other cost functions could be

implemented (see Section 1.6 in S1 Text). As a fully mechanistic method, it puts existing biochemical mod-

els and ideas about resource allocation to test and enables us to address fundamental issues of unicellular

growth and cell metabolism, such as the trade-off between growth rate and biomass yield.

Methods

Optimal enzyme and metabolite profiles

A metabolic state is characterized by cellular enzyme levels, metabolite levels, and fluxes. All these variables

are coupled by rate laws, which depend on external conditions and enzyme kinetics. The EFCM algorithm

finds optimal metabolic states in the following way. First, we enumerate the elementary flux modes of a

network, which constitute the set of potentially growth-optimal flux modes. Then we consider a specific

simulation scenario, defined by kinetic constants and external metabolite levels, and compute the growth

rates for all EFMs. To determine the optimal metabolic state – a state expected to evolve in a selection for

fast growth – we choose the EFM with the highest growth rate.

The optimal state (v, c,E) can be found efficiently by a nested screening procedure (Figure 1(b-c)). First,

we consider all EFMs, normalized to a given biomass production rate vBM. To determine the relative en-

zyme demand of an EFM, we predefine vBM, scale our EFM to realize this production rate, and compute the

enzyme demand by applying Enzyme Cost Minimization (ECM), i.e. an optimization of metabolite levels c

and enzyme levels E. ECM has recently been applied to a similar model of E. coli’s core carbon metabolism

[34]. It assumes a given flux distribution (in our case, an EFM) and treats the enzyme concentrations as

explicit functions of substrate and product levels and fluxes. Given a flux mode v, we consider all feasible

possible metabolite profiles ln c, consistent with the flux directions and respecting predefined bounds on
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metabolite levels. For each such profile, we compute the enzyme demands El and the total enzyme mass

concentration Emet =
∑
i wiEi (in mg l−1), where wi denotes the molecular mass of enzyme l in Daltons

(mg mmol−1) and enzyme concentrations are measured in mM (i.e., mmol l−1). As a function of the loga-

rithmic metabolite levels, Emet is convex; this allows us to find the global minimum efficiently. In the model,

we use common modular rate laws [39], for which the enzymatic cost in log-metabolite space is strictly

convex (Joost Hulshof, personal communication). The optimized enzyme cost is a concave function in flux

space [30–32]. This combination of convexity and concavity allows for a fast optimization of enzyme levels

and fluxes for each condition and set of kinetic parameters.

Online tool for Enzyme Cost Minimization

We implemented ECM in the Network-Enabled Optimization System (NEOS), an internet-based client-server

application that provides access to a library of optimization solvers. The NEOS Server is available free of

charge and offers a variety of interfaces for accessing the solvers, which run on distributed high-performance

machines enabled by the HTCondor software. The NEOS Guide website (https://neos-guide.org) showcases

optimization case studies, presents optimization information and resources, and provides background in-

formation on the NEOS Server. Using our online service, users can run EFCM for their own models, using

different rate laws. With our E. coli model, the optimization for one flux distribution takes a few seconds,

and for the complete set of all EFMs several minutes on a shared Dell PowerEdge R430 server with 32 intel

xeon cores. Details can be found in Section 1.2 in S1 Text, and on the web page (www.neos-guide.org/

content/enzyme-cost-minimization).

Converting enzyme-specific biomass rates into growth rates

Following the approach of Scott et al. [66], cell growth rates can be predicted from the demand for metabolic

enzyme, divided by the rate of biomass production (see Section 1.3 in S1 Text)). A cell’s growth rate is given

by µ = vBM/cBM, where cBM is the biomass amount per cell volume and vBM is the biomass production

rate (biomass amount produced per cell volume and time). If cell biomass consisted only of metabolic

enzymes (more precisely, of enzymes considered in the cost Emet), the enzyme-specific biomass production

rate rBM = vBM/Emet would be equal to the cellular growth rate. Since this is not the case, we convert

between Emet and cBM using the approximation Emet/cBM = fprot(a− b µ), where fprot = 0.5 is the fraction

of protein mass within the cell dry mass and the parameters a = 0.27 and b = 0.2 h were fitted to describe

the metabolic enzyme fraction in proteomics data, assuming a linear dependence on growth rate [66]. As

shown in the S1 Text (Equations 8–9 and Figure S1), we obtain the conversion formula

µ =
a fprot vBM

Emet + b fprot vBM
. (1)

Note that the biomass flux vR70 in our model is set to 1 mM s−1 by convention, and the kcat of this reaction

was set to a sufficiently high value so that it would never become a bottleneck (see Figure S5 in S1 Text).

By simple unit conversion we obtain vBM = 7.45× 107 mg l−1 h−1. As shown above, the total enzyme mass

concentration is given by Emet =
∑
i wiEi in units of mg l−1, so it requires no further conversion. The final

formula for growth rates, with proper units, reads

µ =
1.01× 107 mg l−1 h−1∑
i wiEi + 7.45× 106 mg l−1

. (2)
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It shows that maximizing the growth rate µ is equivalent to minimizing the enzyme cost Emet. The link

between biomass production, total enzyme mass concentration, and growth rate can also be understood

through the cell doubling time. We first define the enzyme doubling time τmet ≡ ln(2)
rBM

= ln(2)·Emet

vBM
, the

doubling time of a hypothetical cell consisting only of core metabolism enzymes. Since E. coli cells contain

also other biomass components, the real doubling time is longer and depends on the fraction of these other

components within the total biomass. Furthermore, this fraction decreases with the doubling time, as seen

in experiments [67] and as expected from trade-offs between metabolic enzymes and ribosome investment

[66]. This leads to a constant offset in the final cell doubling time formula:

T = 7.4 · τmet + 0.51 [h] =

= 6.9× 10−8h l mg−1 ·
∑
i

wiEi + 0.51 [h]. (3)

Growth rate sensitivities

The calculation of sensitivities between enzyme parameters and growth rate is based on the following rea-

soning. If a parameter change slows down a reaction rate, this change can be compensated by increasing the

enzyme level in the same reaction while keeping all metabolite levels and fluxes unchanged. For example,

when a catalytic constant changes by a factor of 0.5, the enzyme level needs to be increased by a factor

of 2. The cost increase is given by ∆cost = (
kcat,old
kcat,new

− 1) ·[old enzyme cost]. Also for other parameters,

the local enzyme increase can be simply computed from the reaction’s rate law. Instead of adapting only

one enzyme, the cell may save some costs by adjusting all enzyme and metabolite levels in a coordinated

fashion. However, the extra cost advantage is only a second-order effect and can be neglected for small

parameter variations. Hence, the first-order local and global cost sensitivities are completely identical (proof

in Section 4.2 in S1 Text). Sensitivities to external parameters (e.g. extracellular glucose concentration) can

be computed similarly. The growth sensitivities for a given EFM are computed by multiplying the enzyme

cost sensitivities by the derivative between growth rate and enzyme cost.

Supporting Information

S1 Text Supplementary text containing Figures S1 - S30, Tables T1 - T10, and a list of supplementary

data files available on GitHub.
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