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Abstract

Quality control of MR images is essential for excluding problematic acquisitions and
avoiding bias in subsequent image processing and analysis. However, the visual
inspection of individual images is time-consuming and limited by both intra- and
inter-rater variance. The difficulty of visual inspection scales with study size and with
the heterogeneity of multi-site data. Here, we describe a tool for the automated
assessment of T1-weighted MR images of the brain – MRIQC. MRIQC calculates a set
of quality measures from each image and uses them as features in a binary
(include/exclude) classifier. The classifier was designed to ensure generalization to new
samples acquired in different centers and using different scanning parameters from our
training dataset. To achieve that goal, the classifier was trained on the Autism Brain
Imaging Data Exchange (ABIDE) dataset (N=1102), acquired at 17 locations with
heterogeneous scanning parameters. We selected random forests from a set of models
and pre-processing options using nested cross-validation on the ABIDE dataset. We
report a performance of ∼89% accuracy of the best model evaluated with nested
cross-validation. The best performing classifier was then evaluated on a held-out
(unseen) dataset, unrelated to ABIDE and labeled by a different expert, yielding ∼73%
accuracy. The MRIQC software package and the trained classifier are released as an
open source project, so that individual researchers and large consortia can readily
curate their data regardless the size of their databases. Robust QC is crucial to identify
early structured imaging artifacts in ongoing acquisition efforts, and helps detect
individual substandard images that may bias downstream analyses.

Introduction 1

Image analysis can lead to erroneous conclusions when the original data are of low 2

quality. MRI images are unlikely to be artifact-free, and assessing the quality of images 3

produced by MR scanning systems has long been a challenging issue [1]. Traditionally, 4

all images in the sample under analysis are visually inspected by one or more experts, 5

and those showing an insufficient level of quality are excluded (some examples are given 6

in Fig 1A). Visual assessment is time consuming and prone to variability due to 7

inter-rater differences (see Fig 1B), as well as intra-rater differences arising from factors 8
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such as practice or fatigue. An additional concern is that some artifacts evade human 9

detection entirely [2] for example those due to improper choice of acquisition 10

parameters. Even though magnetic resonance (MR) systems undergo periodic 11

inspections and service, some machine-related artifacts persist unnoticed due to lenient 12

A B

Figure 1. Visual assessment of MR scans and the quality control of the ABIDE dataset.
A. Two images with prominent artifacts from the ABIDE database are presented. An example scan (top) is shown with
severe motion artifacts. The arrows point to signal spillover through the phase-encoding axis (right-to-left –RL–) due to eye
movements (green) and vessel pulsations (red). A second example scan (bottom) shows severe coil artifacts. This figure
caption is extended in Figure SI1.
B. Info-graphic of the visual assessment of the T1-weighted (T1w) MR images of the ABIDE dataset performed by three
different experts, split by scanning site. Each scanning site has one stripe with three rows of colored circles, except sites with
large samples where the ratings are wrapped in two stripes. Each circle represents the rating of one image by one of the
experts, with the color encoding the quality label (green is “accept”, yellow is “doubtful”, red is “exclude” and white denotes
missing ratings). Each row is a different expert, thus the inter-rater consistency can be checked column-wise. A perfect
agreement occurs when the three circles of a column show the same color (for example, the first image of the “CALTECH”
scanning site). Some images yielded no agreement across raters (e.g. the second participant in the “PITT” sample). Next to
each site label, the spread of ratings is reported. Rows are the three raters, and columns the ratings. First (in green color) for
“accept”, second (gray) for “doubtful”, and third (red) is “exclude”. The aggregated (all sites of ABIDE) rates are presented
in the top-right box.
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vendor quality checks, and drift from the system calibration settings. In our experience, 13

automated Quality Control (QC) protocols help detect these issues early in the 14

processing stream. The current trend of neuroimaging towards acquiring very large 15

samples across multiple scanning sites [3–5] introduces additional concerns. These large 16

scale imaging efforts render the visual inspection of every image infeasible and add the 17

possibility of between-site variability. Therefore, there is a need for fully-automated, 18

robust, and minimally biased QC protocols. These properties are difficult to achieve for 19

three reasons: 1) the absence of a gold standard impedes the definition of sensitive 20

quality metrics; 2) human experts introduce biases with their visual assessment; and 3) 21

cross-study and inter-site acquisition differences also introduce uncharacterized 22

variability. 23

Machine-specific artifacts have been traditionally tracked down using phantoms [6] 24

in a quantitative manner. However, many forms of image degradation are 25

participant-specific or arise from practical settings (see Fig 1, panel A). Woodard and 26

Carley-Spencer [7] conducted one of the earliest evaluations of automated quality 27

assessment on a large dataset of 1001 T1w images from 143 participants. They defined 28

a set of 239 no-reference1 image-quality metrics (IQMs). The IQMs belonged to two 29

families depending on whether they were derived from Natural Scene Statistics or 30

quality indices defined by the JPEG consortium. The IQMs were calculated on image 31

pairs with and without several synthetic distortions. In an analysis of variance, the IQM 32

from both families reliably discriminated among undistorted images, noisy images, and 33

images distorted by intensity non-uniformity (INU). Mortamet et al. [8] proposed two 34

quality indices focused on detecting artifacts in the air region surrounding the head, and 35

analyzing the goodness-of-fit of a model for the background noise in that air area. One 36

principle underlying their proposal is that most of the artifact signal propagates over 37

the image and into the background. They applied these two IQMs in 749 T1w scans 38

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Different cutoff 39

thresholds were defined for the two IQMs and compared to a binary (high/low quality) 40

classification performed by a human rater, concluding that more specific research was 41

required to determine these thresholds and generalize them to different datasets. They 42

achieved an 85% accuracy in an intra-site validation approach. However, many potential 43

sources of uncontrolled variability exist between studies and sites, including magnetic 44

resonance imaging (MRI) protocols (scanner manufacturer, MR sequence parameters, 45

etc.), scanning settings, participant instructions, inclusion criteria, etc. For these 46

reasons, the thresholds they proposed on their IQMs are unlikely to generalize beyond 47

the ADNI database. Recently, Pizarro et al. [9] proposed the use of a support-vector 48

machine classifier (SVC) trained on 1457 structural MRI images acquired in one site 49

with constant scanning parameters. They proposed three volumetric features and three 50

features targeting particular artifacts. The volumetric features were the normalized 51

histogram, the tissue-wise histogram and the ratio of the modes of gray matter (GM) 52

and white matter (WM). The artifacts addressed were the eye motion spillover in the 53

anterior-to-posterior phase-encoding direction, the head-motion spillover over the 54

nasio-cerebellum axis (which they call ringing artifact) and the so-called wrap-around 55

(which they refer to as aliasing artifact). They reported a prediction accuracy around 56

80%, assessed using 10-fold cross-validation. Some other recent efforts to develop IQMs 57

appropriate for MRI include the Quality Assessment Protocol2 (QAP) under the 58

preprocessed-connectomes project (PCP), and the UK Biobank [10]. 59

The hypothesis behind this study is that we can predict the quality ratings of an 60

expert on previously unseen datasets (with dataset-specific scanning parameters) in a 61

1A measure is called “no-reference” when no ground-truth of the same image without degradation is
available.

2Available online: http://preprocessed-connectomes-project.org/quality-assessment-protocol/.
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supervised learning approach that uses features derived from a broad selection of IQMs. 62

To demonstrate that the trained classifier correctly predicts the quality of new data, we 63

used two unrelated databases to configure the training and held-out (test) datasets [11]. 64

We first select the best performing model on the training dataset using a grid strategy 65

in a nested cross-validation setup. We use the ABIDE database [4] for the training set 66

because data are acquired in 17 different scanning sites with varying acquisition 67

parameters (Table 1). These data show great variability in terms of imaging settings 68

and parameters, what represents the heterogeneity of real world data. The best 69

performing classifier is then trained in the full ABIDE dataset, and tested in the 70

held-out dataset [12] to assess whether the performance on unseen data falls within the 71

range predicted by the nested cross-validation. 72

The contributions of this work are summarized as follows. First, we release a 73

software tool called MRIQC (described in The MRIQC tool) to extract of a number of 74

IQMs (Extracting the Image Quality Metrics) that characterize each input image. 75

Second, MRIQC includes a visual reporting system (described in the Visual reports 76

section) to ease the manual investigation of potential quality issues. These visual 77

reports allow researchers to quickly evaluate the cases flagged by the MRIQC classifier 78

or visually identify potential images to be flagged by looking at the group distributions 79

of IQMs. Finally, we report the results from a pre-registered analysis of this study 80

(https://osf.io/haf97/) on the feasibility of automatic quality control labeling (sections 81

Supervised classification and Results). 82

Materials and Methods 83

Training and test datasets 84

A total of 1375 T1w scans are used as training (1102 from ABIDE) and test (273 from 85

ds030) samples. These databases were intentionally selected for their heterogeneity to 86

match the purpose of the study. A brief summary illustrating the diversity of 87

acquisition parameters is presented in Table 1, and a full-detail table in Table SI1. 88

Labeling protocol The labeling process is aided by surface reconstruction, using the 89

so-called white (WM-GM interface) and the pial (delineating the outer interface of the 90

cortex) surfaces as visual cues for the rater. We utilize FreeSurfer [13] to reconstruct 91

the surfaces. FreeSurfer has been recently proposed as a visual aid tool to assess T1w 92

images [14]. For run-time considerations, and to avoid circular evaluations of FreeSurfer, 93

this tool is not used in the MRIQC workflow (see The MRIQC tool section). 94

The following protocol was used for the manual assessment of T1w images: 1) The 95

3D cortical surfaces were reconstructed using FreeSurfer 5.3.0. 2) An animated GIF 96

(graphics interchange format) file was generated from the coronal slices of the 3D 97

volume, including the projection of the 3D cortical surfaces in each slice3. Each 98

animation had a duration of around 20s. 3) A trained expert inspected the animation 99

several times (generally, three times), and assigned a quality level 100

(“exclude”/“doubtful”/“accept”). 101

During the visualization, the rater assessed the overall quality of the image. The 102

white and pial contours were used as evaluation surrogates, given that “exclude” images 103

usually exhibit imperfections and inaccuracies on these surfaces. When the expert found 104

general quality issues or the reconstructed surfaces revealed more specific artifacts, the 105

“exclude” label was assigned and the rater noted a brief description, for example: “low 106

3We distribute with MRIQC the script fs2gif which produces such animations. The animations used to
evaluate the ds030 dataset are found here https://drive.google.com/drive/u/1/folders/0BxI12kyv2olZTDhiUVVMc2FyRDg.
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Table 1. Summary table of the train and test datasets. The ABIDE dataset is publicly availablea, and contains
images acquired at 17 sites, with a diverse set of acquisition settings and parameters. This heterogeneity makes it a good
candidate to train machine learning models that can generalize well to novel samples from other sites We selected ds030 [12]
from OpenfMRIb as held-out dataset to evaluate the performance on data unrelated to the training set. A table summarizing
the heterogeneity of parameters within the ABIDE dataset and also ds030 is provided as supplemental material (Table SI1).

Dataset Site ID
Scanner vendor & model

Sizec [voxels] Resolutionc [mm]
TR/TE/TI [sec], FA [deg], PE dir.

ABIDE
N=1102

CALTEC
Siemens Magnetom TrioTim,
1.59/2.73·10-3/0.8, 10, AP

176±80×256±32×256±32 1.00×1.00±0.03×1.00±0.03

CMU
Siemens Magnetom Verio,
1.87/2.48·10-3/1.1, 8, AP

176±15×256±62×256±62 1.00×1.00×1.00

KKI
Philips Achieva 3T,
8·10-3/3.70·10-3/0.8, 8, NA

256×200±30×256±30 1.00×1.00×1.00

LEUVEN
Philips Intera 3T,
9.60·10-3/4.60·10-3/0.9, 8, RL

256×182×256 0.98×1.20×0.98

MAX MUN
Siemens Magnetom Verio,
1.8/3.06·10-3/0.9, 9, AP

160±16×240±16×256±16 1.00×1.00±0.02×1.00±0.02

NYU
Siemens Magnetom Allegra,
2.53/3.25·10-3/1.1, 7, AP

128×256×256 1.33×1.00×1.00

OHSU
Siemens Magnetom TrioTim,
2.3/3.58·10-3/0.9, 10, AP

160×239±1×200±1 1.10×1.00×1.00

OLIN
Siemens Magnetom Allegra,
2.5/2.74·10-3/0.9, 8, RL

208±32×256×176 1.00×1.00×1.00

PITT
Siemens Magnetom Allegra,
2.1/3.93·10-3/1.0, 7, AP

176×256×256 1.05×1.05×1.05

SBL
Philips Intera 3T,
9·10-3/3.5·10-3/NA, 7, NA

256×256×170 1.00×1.00×1.00

SDSU
General Electric Discovery MR750 3T,
11.1·10-3/4.30·10-3/0.6, 8, NA

172×256×256 1.00×1.00×1.00

STANFORD
General Electric Signa 3T,
8.4·10-3/1.80·10-3/NA, 15, NA,

256×132×256 0.86×1.50×0.86

TRINITY
Philips Achieva 3T,
8.5·10-3/3.90·10-3/1.0, 8, AP

160×256±32×256±32 1.00×1.00±0.07×1.00±0.07

UCLA
Siemens Magnetom TrioTim,
2.3/2.84·10-3/0.85, 9, AP

160±16×240±26×256±26 1.20±0.20×1.00±0.04×1.00±0.04

UM
General Electric Signa 3T,
NA/1.80·10-3/NA, 15, AP

256±154×256×124 1.02±0.38×1.02±0.16×1.20±0.16

USM
Siemens Magnetom Allegra,
2.1/3.93·10-3/1.0, 7, AP

160±96×480±224×512±224 1.20±0.20×0.50±0.50×0.50±0.50

YALE
Siemens Magnetom TrioTim,
1.23/1.73·10-3/0.6, 9, AP

160±96×256×256 1.00×1.00×1.00

DS030
N=273

BMAP
STAGLIN

Siemens Magnetom TrioTim,
2.53/3.31·10-3/1.1, 7, RL

176×256×256 1.00×1.00×1.00

a http://fcon 1000.projects.nitrc.org/indi/abide/. b https://openfmri.org/dataset/ds000030/. c Sizes and resolutions are reported as follows: median value along
each dimension ± the most extreme value from the median (either above or below).

signal-to-nose ratio (SNR)”, “poor image contrast”, “ringing artifacts”, “head motion”, 107

etc.). The images in ds030 were randomized before rating. 108

Software instruments and calculation of the IQMs 109

The MRIQC tool MRIQC is an open-source project, developed under the following 110

software engineering principles. 1) Modularity and integrability : MRIQC implements a 111

nipype [15] workflow (see Fig 2) to integrate modular sub-workflows that rely upon third 112

party software toolboxes such as FSL [16], ANTs [17] and AFNI [18]. 2) Minimal 113

preprocessing : the workflow described before should be as minimal as possible to 114

estimate the IQMs on the original data or their minimally processed derivatives. 3) 115

Interoperability and standards: MRIQC follows the the brain imaging data structure 116

(BIDS, [19]), and it adopts the BIDS-App [20] standard. An example of the ease of 117
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running MRIQC is presented in Listing SI1. 4) Reliability and robustness: the software 118

undergoes frequent vetting sprints by testing its robustness against data variability 119

(acquisition parameters, physiological differences, etc.) using images from the 120

OpenfMRI resource. Reliability is checked and maintained with the use of a continuous 121

integration service.

Figure 2. MRIQC’s processing data flow. Images undergo an
optimized processing pipeline to: 1) realign images in a conformed
space using AFNI realign; 2) INU estimation using N4ITK; 3)
skull-stripping using AFNI 3dSkullStrip; 4) brain tissue segmentation
using FSL-FAST; 5) computation of an air/tissue mask using the
magnitude of the gradient image [8]; 6) mapping of an exclusion
mask defined in MNI space into the subject using an affine
registration scheme with ANTs; 7) computation of an air mask
excluding the region below the plane crossing the nasio-cerebellum
axis; 8) computation of artifactual regions [8]; and 9) computation of
a surrounding air-mask without artifacts; 10) projection of all the
computed masks and segmentations to the original (native) space of
the image volume

122

Extracting the Image Quality Metrics The final steps of the MRIQC’s workflow 123

compute the different IQMs, and a summary JSON file per subject is generated. The 124

IQMs can be grouped in four broad categories (see Table 2), providing a vector of 56 125

features per anatomical image. Some measures characterize the impact of noise and/or 126

evaluate the fitness of a noise model. A second family of measures use information 127

theory and prescribed masks to evaluate the spatial distribution of information. A third 128

family of measures look for the presence and impact of particular artifacts. Specifically, 129

the INU artifact, and the signal leakage due to rapid motion (e.g. eyes motion or blood 130

vessel pulsation) are identified. Finally, some measures that do not fit within the 131

previous categories characterize the statistical properties of tissue distributions, volume 132

overlap of tissues with respect to the volumes projected from MNI space, the 133

sharpness/blurriness of the images, etc. The ABIDE and ds030 datasets were processed 134

with MRIQC–v.0.9.0-rc2 using the Lonestar5 supercomputer at the Texas Advanced 135

Computing Center, University of Texas, TX, USA. 136

Visual reports. In order to ease the screening process of individual images, MRIQC 137

generates individual reports with mosaic views of a number of cutting planes and 138

supporting information (for example, segmentation contours). The most straightforward 139

use-case is the visualization of those images flagged as low-quality by the classifier. 140
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Table 2. Summary table of IQMs. The 14 IQMs spawn a vector of 56 features per anatomical image on which the
classifier is learned and tested.

Measures based on noise measurements

CJV
The coefficient of joint variation of GM and WM was proposed as objective function by Ganzetti et al. [21] for the optimization

of INU correction algorithms. Higher values are related to the presence of heavy head motion and large INU artifacts.

CNR
The contrast-to-noise ratio [22] is an extension of the SNR calculation to evaluate how separated the tissue distributions of GM

and WM are. Higher values indicate better quality.

SNR
MRIQC includes the signal-to-nose ratio calculation proposed by Dietrich et al. [23], using the air background as noise reference.

Additionally, for images that have undergone some noise reduction processing, or the more complex noise realizations of current

parallel acquisitions, a simplified calculation using the within tissue variance is also provided.

QI2
The second quality index of [8] is a calculation of the goodness-of-fit of a χ2 distribution on the air mask, once the artifactual

intensities detected for computing the QI1 index have been removed.

Measures based on information theory

EFC
The entropy-focus criterion [24] uses the Shannon entropy of voxel intensities as an indication of ghosting and blurring induced

by head motion. Lower values are better.

FBER
The foreground-background energy ratio is calculated as the mean energy of image values within the head relative the mean

energy of image values in the air mask. Consequently, higher values are better.

Measures targeting specific artifacts

INU
MRIQC measures the location and spread of the bias field extracted estimated by the intensity non-uniformity correction. The

smaller spreads located around 1.0 are better.

QI1
The first quality index of [8] measures the amount of artifactual intensities in the air surrounding the head above the

nasio-cerebellar axis. The smaller QI1, the better.

WM2MAX

The white-matter to maximum intensity ratio is the median intensity within the WM mask over the 95% percentile of the full

intensity distribution, that captures the existence of long tails due to hyper-intensity of the carotid vessels and fat. Values

should be around the interval [0.6, 0.8].

Other measures
FWHM The full-width half-maximum is an estimation of the blurriness of the image using AFNI’s 3dFWHMx. Smaller is better.

ICVs
Estimation of the intracranial volume of each tissue calculated on the FSL FAST’s segmentation. Normative values fall around

20%, 45% and 35% for cerebrospinal fluid (CSF), WM and GM, respectively.

rPVE
The residual partial volume effect feature is a tissue-wise sum of partial volumes that fall in the range [5%-95%] of the total

volume of a pixel, computed on the partial volume maps generated by FSL FAST. Smaller residual partial volume effects (rPVEs)

are better.

SSTATs
Several summary statistics statistics (mean, standard deviation, percentiles 5% and 95%, and kurtosis) are computed within the

following regions of interest: background, CSF, WM, and GM.

TPMs
Overlap of tissue probability maps estimated from the image and the corresponding maps from the ICBM nonlinear-asymmetric

2009c template [25].

After the extraction of IQMs in all the images of our sample, a group report is 141

generated (Fig 3). The group report shows a scatter plot for each of the IQMs, so it is 142

particularly easy to identify the cases that are outliers for each metric. The plots are 143

interactive, such that clicking on any particular sample opens the corresponding 144

individual report of that case. Examples of group and individual reports for the ABIDE 145

dataset are available online at mriqc.org. 146
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1

32

Data points in the scatter plots of the group 
report can be clicked to open the corresponding 
individual report. This feature is particularly 
useful to identify low-quality datasets visually.

The individual reports show the calculated 
IQMs and metadata in the summary, and a 
series of image mosaics and plots designed 
for the visual assessment of images.

Figure 3. Visual reports. MRIQC generates one individual report per subject in the input folder and one group report
including all subjects. To visually assess MRI samples, the first step (1) is opening the group report. This report shows
boxplots and strip-plots for each of the IQMs. Looking at the distribution, it is possible to find images that potentially show
low-quality as they are generally reflected as outliers in one or more strip-plot. For instance, in (2) hovering a suspicious
sample within the coefficient of joint variation (CJV) plot, the subject identifier is presented (“sub-51296”). Clicking on that
sample will open the individual report for that specific subject (3). This particular example of individual report is available
online at https://web.stanford.edu/group/poldracklab/mriqc/reports/sub-51296 T1w.html.
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Supervised classification 147

Our supervised learning approach to predicting the binary ratings of a human expert is 148

structured in two steps. First, we perform a preliminary model selection and evaluation 149

using repeated (x1000) and nested cross-validation, on the ABIDE dataset (see Step 1: 150

Tested models and selection). Then, a second optimization in a refined grid of 151

hyper-parameters for the model selected previously is performed with a single-loop 152

cross-validation on the ABIDE dataset. The best performing model of this second 153

cross-validation step is evaluated using the held-out dataset (see Step 2: Validation on 154

the held-out dataset). The cross-validation workflows are built upon scikit-learn [26] 155

and run using the Stampede supercomputer at the Texas Advanced Computing Center, 156

University of Texas, TX, USA. 157

Step 1: Tested models and selection 158

Based on the number of features (56) and training data available (∼1100 data points), 159

we compare two families of classifiers: SVCs and random forests classifiers (RFCs). 160

Given the diversity of scanning sites, in the model selection loop we also investigate the 161

need for normalizing (zscoring) features. In the following, models including a 162

preliminary zscoring will show the suffix “-zs” while those using the original features 163

without such transformation are noted with the suffix “-nzs”. 164

The support-vector machine classifier (SVC) A support-vector machine [27] 165

finds a hyperplane in the high-dimensional space of the features that robustly classifies 166

the data. The SVC then uses the hyperplane to decide the class that is assigned to new 167

samples in the space of features. Two hyper-parameters define the support-vector 168

machine algorithm: a kernel function that defines the similarity between data points to 169

ultimately compute a distance to the hyperplane, and a regularization weight C. In 170

particular, we analyzed here the linear SVC implementation (as of now, “SVC-lin”) and 171

the one based on radial basis functions (denoted by “SVC-rbf”). During model selection, 172

we evaluated the regularization weight C and the γ parameter (kernel width) of the 173

SVC-rbf. 174

The random forests classifier (RFC) Random forests [28] are an nonparametric 175

ensemble learning method that builds multiple decision trees. Then, a RFC assigns to 176

each new sample the mode of the predicted classes of all decision trees in the ensemble. 177

In this case, random forests are driven by a larger number of hyper-parameters. 178

Particularly, in this work we analyze the maximum tree-depth, the minimum number of 179

samples per split and the total number of decision trees. 180

Objective function The performance of each given model and parameter selection 181

can be quantified with different metrics. Given the imbalance of positive and negative 182

cases –with lower prevalence of “reject” samples–, we select the area under the curve 183

(AUC) of the receiver-operator characteristic as objective score. We also report the 184

classification accuracy as an additional performance measure. 185

Cross-validation and nested cross-validation Cross-validation is a model 186

selection and validation technique robust to inhomogeneities [29]. We use nested 187

cross-validation, which divides the process in two validation loops: an inner loop for 188

selecting the best model and hyper-parameters, and an outer loop for evaluation. In 189

cross-validation, the data are split into a number of folds, each containing a training 190

and a test set. For each fold, the classifier is trained on the first set and evaluated on 191

the latter. When cross-validation is nested, the training set is split again into folds 192
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within the inner loop, and training/evaluation are performed to optimize the model 193

parameters. Only the best performing model of the inner loop is then cross-validated in 194

the outer loop. In order to increase the robustness against model variability, we repeat 195

the nested cross-validation procedure 1000 times. 196

Data split scheme Since we wanted to estimate the performance in datasets 197

acquired at sites and with parameters different from those in the ABIDE dataset, we 198

selected a leave-one-site-out (LoSo) partition strategy for the outer loop of 199

cross-validation. The LoSo split leaves a whole site as a test set at each cross-validation 200

iteration. Therefore, no knowledge of the testing set is leaked into the training set (the 201

remaining N − 1 sites). For the inner loop (model selection) we compared the 202

performance of a stratified 10-fold and LoSo over the remaining 16 sites (one site is held 203

out by the outer loop). All the possible combinations of models and their 204

hyper-parameters (over 5000) are evaluated repeatedly (1000 times) in a grid search for 205

the best average AUC score in the inner cross-validation loop. 206

Feature ranking One tool to improve the interpretability of the RFC is the 207

calculation of feature rankings [28] by means of variable importance or Gini importance. 208

Since we use scikit-learn, the implementation uses Gini importance, defined for a single 209

tree as the total decrease in node impurity weighted by the probability of reaching that 210

node. We finally report the median feature importance over all trees of the ensemble. 211

Step 2: Validation on the held-out dataset 212

In the second step, we cross-validated the model selected in step 1, optimizing a grid 213

search refined to the selection of parameters done before. For this second 214

cross-validation, we use the LoSo split strategy given the results obtained in the 215

previous step. The best performing model is then trained on the full ABIDE dataset 216

and the resulting classifier is used in the prediction of quality ratings of the held-out 217

dataset (ds030). 218

Results 219

All images included in the selected datasets were processed with MRIQC. After 220

extraction of the IQMs from the ABIDE, a total of 1102 images had both quality 221

ratings and quality features (ten T1w images of the ABIDE are missing in the 222

database). In the case of ds030, 265 images had the necessary quality ratings and 223

features (eight images were not rated and/or failed during feature extraction). 224

Model selection 225

The results of the step 1 (nested cross-validation) are summarized in Fig 4. The best 226

performing model, regardless of inner loop split strategy, was the random forests 227

classifier without zscoring (RFC-nzs). The RFC-nzs using LoSo in the inner loop 228

yielded the following averaged scores off all repeated outer loops: 229

AUC=0.862 (σ=±0.121) and accuracy of 89.4% (σ=±9.95%). The corresponding 230

averaged scores for the 10-fold strategy were: AUC=0.848 (σ=±0.135) and accuracy of 231

88.6% (σ=±11.5%). These results indicated that there is no practical difference 232

between the two split strategies as regards model selection through cross-validation on 233

this dataset. Therefore, since the averaged scores using LoSo cross-validation in the 234

inner loop were slightly higher, it was selected as split strategy for the cross-validation 235

in step 2. Note that the split strategy is not a model feature, and thus this decision can 236
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Figure 4. Results of the step 1, nested cross-validation. (Left) Model selection – inner loop. All the possible
combinations of model, zscoring and hyper-parameters were evaluated. The violinplot shows the distribution of scores of the
best performing hyper-parameters per model and preprocessing combination. The scores obtained using the stratified 10-fold
split are presented in blue. In orange, the results corresponding to LoSo. In general, the 10-fold splitting was more optimistic
for all models, whereas the LoSo scores are closer to results obtained in the outer (evaluation) loop. In all iteration loops,
regardless of split strategy and cross-validation repetition, the RFC-nzs achieved the best score, with varying parameters. As
expected, zscoring the features was necessary for both SVC lin and SVC rbf to exhibit acceptable performances, but always
below that of the RFC-nzs. (Right) Evaluation – outer loop. On the right hand panel, colors represent again the split
strategy used in the inner loop. With colored markers, the average cross-validated score is annotated in a box with the µ
symbol. Below, the spread of the distribution is noted. Please note that, since the scores are bounded above 1.0, the values of
the standard deviation σ are probably underestimated. The distributions of nested cross-validated scores for both AUC and
accuracy were rather independent from the split strategy used in the inner loop. The results for both metrics obtained in the
evaluation of the held-out dataset (ds030) are represented in the corresponding distribution of nested cross-validation scores,
showing that the performance on unseen data falls very close to one standard deviation below the average score. In this case,
the average cross-validated score was higher for LoSo (AUC=0.862/accuracy≈89.4%) as compared to the 10-fold split
(AUC=0.848/accuracy≈88.6%). Also the spread of cross-validated scores is slightly lower for LoSo
(AUC=±0.121/accuracy=±9.95% vs. AUC=±0.135/accuracy=±11.5%).

be made based on the results of the outer loop of nested cross-validation, as opposed to 237

the model selection that is done based on the inner cross-validation loops. 238

The best performing model and parameters selected as the maximum average of the 239

AUC score in the inner loop, across all repetitions of the nested cross-validation was the 240

RFC-nzs, with 50 trees (n estimators), maximum tree depth (max depth) of 20, and a 241

minimum of 2 samples per split (min samples split). However, the cross-validation was 242

very variable in the selection of hyper-parameters, indicating that there was little 243

difference in performance for all the points in the hyper-parameters grid. 244

Evaluation on held-out data 245

In the second cross-validation step, only the previously selected RFC-nzs model was 246

optimized, in a refined grid centered around the best performing parameters of step 1 247
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Figure 5. Feature importances in the final classifier. The features used by the best-performing RFC-nzs classifier
used to evaluate the held-out dataset are presented. For each feature the boxplot represents the distribution of feature
importances within the trees in the ensemble. The features are ordered from highest median importance (the CJV) to lowest
(average SNR computed as in [23], snrd total).

(n estimators=50, max depth=20, min samples split=2). The AUC on the evaluation set was 248

0.695 and the accuracy 72.83%. We also analyzed the relevance of each feature in the 249

overall forest decision (Fig 5). The most relevant features are the coefficient of joint 250

variation (CJV) and the SNR measured on the WM tissue mask. 251

Discussion 252

We propose a quantitative approach to quality control T1w MRI of the brain, enabling 253

the automatic identification of sub-standard acquisitions. Quality control protocols are 254

implemented to exclude faulty datasets that can bias the final results. Human brain 255

images can be degraded by various sources of artifacts, related to the scanning device 256

and settings or due to the participants themselves. Machine-derived artifacts are 257

efficiently mitigated in a quantitative manner with calibration. However, due to the lack 258

of reliable quality quantification tools, subject-specific artifacts and drifts from the 259

service settings are assessed visually. The visual inspection of every MRI acquisition of 260

the brain is a time-consuming and bias-prone task that would be ideally replaced by 261

decision algorithms. Automating the QC process is particularly necessary for ongoing 262

studies such as the UK Biobank that will collect data from tens of thousands of 263

individuals. 264

Previous efforts [7, 30] in the quantification of image quality for their assessment 265

included the definition of image-quality metrics (IQMs). However, the approach was 266

unfeasible for a total automation due to the limited sensitivity of the available IQMs to 267

the most prevalent artifacts. Subsequent efforts [8] were focused on specific samples, 268

setting generalization to new datasets as a future line of their work. Pizarro et al. [9] 269

recently presented a similar approach to quality control images. They obtain a 270

cross-validated accuracy of ∼80% for their support-vector machine classifier (SVC), in a 271

single-site sample with homogeneous acquisition parameters. 272
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In this work, we train a random forests classifier and evaluate its performance to 273

predict the quality assessment of human raters on completely novel samples. We show 274

that linear SVCs do not perform well on heterogeneous samples with diversity of 275

acquisition parameters, and they always require normalization of features derived from 276

multi-site data. Our results invariably indicated a better performance of a random 277

forests classifier (RFC), with and without normalization of features. Particularly, the 278

best performing model (RFC-nzs, for “not zscored”) achieved a ∼89.4% (σ=±9.95%) 279

accuracy. This improved performance over the one reported by Pizarro et al. may also 280

be related to the selection of classification features proposed in this paper. Even though 281

they reported that classification improved with the addition of features addressing 282

certain artifacts, in our feature importance analysis the first IQM addressing a specific 283

artifact was ranked in 9th position. This result suggests that there are complex 284

relationships between the features (in multi-site studies) that may not be captured by 285

SVCs. When tested on unseen data, the RFC-nzs classifier yielded an area under the 286

curve (AUC) score of ∼0.695 and accuracy of 73%. This performance falls within the 287

performance previously evaluated with nested cross-validation. We could not compare 288

these results with [9] since they did not test their resulting classifier on a held-out 289

dataset. The performance drop between the nested cross-validated score (∼89%) and 290

the score obtained on the held-out data (∼73%) may be explained by the interplay of 291

several factors. First, we introduced an unplanned inter-rater bias since the held-out 292

dataset could not be rated by the same expert who rated the ABIDE dataset. This 293

limitation could be reduced by calibrating the ratings of the held-out data having the 294

second expert rate a random subsample of the training dataset. Second, the share of 295

scanning vendors, models and corresponding images in the ABIDE dataset is not 296

uniform. The use of a more uniform training dataset could potentially help generalize 297

better to new datasets. 298

We used nested cross-validation to select the most predictive classifier, ensuring that 299

the evaluation loop was unbiased using a leave-one-site-out (LoSo) splitting strategy. In 300

this cross-validation scheme, the accuracy is bound below by that measured during the 301

test validation loop. Therefore, the final classifier is ultimately trained using all the 302

available data to push its predictive accuracy above the evaluated performance. 303

This quantitative assessment of quality is the central piece of the three-fold 304

contribution of this paper. The first outcome of this study is the MRIQC toolbox, a set 305

of open-source tools which compute quality features. Second, MRIQC generates 306

interactive visual reports that allow further interpretation of the decisions made by the 307

classifier. Finally we propose the automated quality control tool described before to 308

generate include/exclude decisions. The MRIQC toolbox is a fork of the Quality 309

Assessment Protocol (QAP). Since MRIQC was started as a standalone project, the 310

implementation of most of the IQMs have been revised, and some are supported with 311

unit tests. As QAP, MRIQC also implements a functional MRI (fMRI) workflow to 312

extract IQMs and generate their corresponding visual reports. Some new IQMs have 313

been added (for instance, the CJV, those features measuring the INU artifacts, or the 314

rPVEs). The group and individual visual reports for structural and functional data are 315

also new contributions to MRIQC with respect to the fork from QAP. The last 316

diverging feature of MRIQC with respect to QAP is the cross-validation work and the 317

release of the trained classifier. 318

MRIQC is one effort to standardize methodologies that make data-driven and 319

objective QC decisions. Automated QC can provide unbiased exclusion criteria for 320

neuroimaging studies, helping avoid “cherry-picking” of data. A second potential 321

application is the use of automated QC predictions as data descriptors to support the 322

recently born “data papers” track of many journals and public databases like 323

OpenfMRI [31]. The ultimate goal of the proposed classifier is its inclusion in automatic 324
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QC workflows, before image processing and analysis. Ideally, minimizing the run time of 325

MRIQC, the extraction and classification process could be streamlined in the 326

acquisition, allowing for the immediate repetition of ruled out scans. Integrating 327

MRIQC in our research workflow allowed us to adjust reconstruction methodologies, 328

tweak the instructions given to the participant during scanning, and minimize the time 329

required to visually assess one image with the visual reports. 330

Conclusion 331

We propose MRIQC, a quality control software tool to assess structural MRI of the 332

human brain. MRIQC generates visual reports to speed the screening process, and a set 333

of features which were used to train an automated decision tool. We trained a random 334

forests classifier on the ABIDE dataset (N=1102), acquired at 17 scanning sites with 335

diverse acquisition parameters. We utilized repeated-and-nested cross-validation, with a 336

leave-one-site-out splitting strategy. This avoided hidden feature relationships leaking 337

from the site under test to the training set, ensuring that the evaluated performance 338

was agnostic to site and ultimately represented well the generalization of performance to 339

unseen data. The nested cross-validation evaluation yielded a ∼89.4% (σ=±9.95%) 340

accuracy. We double checked this generalization evaluating the performance of the 341

classifier in a previously unseen dataset (N=265) unrelated to ABIDE. The performance 342

on the held-out dataset was ∼73% accuracy. This performance fell within the spread of 343

the cross-validated evaluation. We release MRIQC open-source, along with the best 344

performing classifier. The automatic QC of MRI scans, and the implementation of tools 345

to assist the visual assessment of individual images are two tools in high demand for 346

neuroimaging research. 347
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image; or 4) using BIDS-Apps [20]. For detailed information on installation and the 364

user guide, please access http://mriqc.rtfd.io. A distributable version of the classifier is 365

also released, trained on all the available data (including the full-ABIDE and the ds030 366
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Supporting Information

Table SI1 Image acquisition parameters. A table containing all the acquisition
parameters is maintained in GitHub: https://github.com/oesteban/mriqc/blob/

c9bdfa863ca47894d5cdcb605071a5088840afcc/mriqc/data/csv/scan parameters.tsv.

Listing SI1 Running MRIQC. The BIDS standard makes MRIQC compatible
with almost any input dataset without need for custom settings. Since all the metadata
associated to the dataset are found in bids-data/, the following example would nicely run
without further settings. The second positional argument, out/ indicates where the
outputs will be written, and finally, the participant keyword instructs MRIQC to run the
first level analysis as specified in BIDS Apps.� �

mriqc bids -data/ out/ participant

mriqc bids -data/ out/ participant --participant_label S001 S002� �
Listing SI2 Running MRIQC – Group Level. If the participant level was run
setting some --participant label, the group level is not triggered by default. It can be
done manually, pointing the input data folder to the derivatives folder generated with
the participant level analysis:� �

mriqc out/derivatives/ out/ group� �
Listing SI2 Predicting quality. Although the group runlevel will generate a CSV
table with the quality label predicted for each sample, it is possible to run the classifier
individually:� �

mriqc_clf --load -classifier -X aMRIQC.csv -o mypredictions.csv� �
The default classifier can be replaced by a custom one using:� �
mriqc_clf --load -classifier my_custom_classifier.pklz -X aMRIQC.csv -o

mypredictions.csv� �
The documentation website contains more detailed information on how to train

custom classifiers, or generate refined results from prediction:
http://mriqc.readthedocs.io/en/latest/classifier.html.

Figure SI1 Extended caption of Fig 1A. An example scan (top) is shown with
severe motion artifacts. The reduced contrast between tissues and the ringing intensity
waves in the anterior region of the brain in the presented slice suggest a large head
movement occurred during acquisition. The green arrows point to signal spillover due to
eye movements through the phase-encoding axis (in this case, right-to-left –RL–).
Oftentimes, the RL or LR axes are selected for phase-encoding because the signal
leakage from the eyeballs does not overlap with brain tissue, as opposed to selecting
anterior-posterior directions. However, the red arrows point to signal spillover caused by
vessel pulsations. Given the location of the vessel, in this case signal leakage overlaps
brain tissue and affects the quality of this image. The phase-encoding axis has less
bandwidth and thus, is more sensitive to movement. For that reason, it is generally
selected to have the shortest field of view. A second example scan (bottom) shows
severe coil artifacts.
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