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Abstract

Quality control of MRI is essential for excluding problematic acquisitions and avoiding
bias in subsequent image processing and analysis. Visual inspection is subjective and
impractical for large scale datasets. Although automated quality assessments have been
demonstrated on single-site datasets, it is unclear that solutions can generalize to
unseen data acquired at new sites. Here, we introduce the MRI Quality Control tool
(MRIQC ), a tool for extracting quality measures and fitting a binary (accept/exclude)
classifier. Our tool can be run both locally and as a free online service via the
OpenNeuro.org portal. The classifier is trained on a publicly available, multi-site dataset
(17 sites, N=1102). We perform model selection evaluating different normalization and
feature exclusion approaches aimed at maximizing across-site generalization and
estimate an accuracy of 76%±13% on new sites, using leave-one-site-out cross-validation.
We confirm that result on a held-out dataset (2 sites, N=265) also obtaining a 76%
accuracy. Even though the performance of the trained classifier is statistically above
chance, we show that it is susceptible to site effects and unable to account for artifacts
specific to new sites. MRIQC performs with high accuracy in intra-site prediction, but
performance on unseen sites leaves space for improvement which might require more
labeled data and new approaches to the between-site variability. Overcoming these
limitations is crucial for a more objective quality assessment of neuroimaging data, and
to enable the analysis of extremely large and multi-site samples.

Introduction

Image analysis can lead to erroneous conclusions when the original data are of low
quality (e.g. [1–4]). MRI images are unlikely to be artifact-free, and assessing their
quality has long been a challenging issue [5]. Traditionally, all images in a sample under
analysis are visually inspected by one or more experts, and those showing an insufficient
level of quality are excluded (some examples are given in Fig 1). Visual assessment is
time consuming and prone to variability due to inter-rater differences (see Fig 2), as well
as intra-rater differences arising from factors such as practice or fatigue. An additional
concern is that some artifacts evade human detection entirely [7], such as those due to
improper choice of acquisition parameters. Even though magnetic resonance (MR)
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systems undergo periodic inspections and service, some machine-related artifacts persist
unnoticed due to lenient vendor quality checks and drift from the system calibration
settings. In our experience, automated quality control (QC) protocols help detect these
issues early in the processing stream. Furthermore, the current trend towards acquiring
very large samples across multiple scanning sites [8–10] introduces additional concerns.
These large scale imaging efforts render the visual inspection of every image infeasible
and add the possibility of between-site variability. Therefore, there is a need for
fully-automated, robust and minimally biased QC protocols. These properties are
difficult to achieve for three reasons: 1) the absence of a “gold standard” impedes the
definition of relevant quality metrics; 2) human experts introduce biases with their
visual assessment; and 3) cross-study and inter-site acquisition differences introduce
uncharacterized variability. Machine-specific artifacts have generally been tracked down
in a quantitative manner using phantoms [11]. However, many forms of image

Figure 1. Visual assessment of MR scans. Two images
with prominent artifacts from the Autism Brain Imaging Data
Exchange (ABIDE) dataset are presented on the left. An
example scan (top) is shown with severe motion artifacts. The
arrows point to signal spillover through the phase-encoding
axis (right-to-left –RL–) due to eye movements (green) and
vessel pulsations (red). A second example scan (bottom) shows
severe coil artifacts. On the right, the panel displays one
representative image frame extracted from the animations
corresponding to the subjects presented on the left, as they are
inspected by the raters during the animation. This figure
caption is extended in Figure SI1.
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Figure 2. Inter-rater variability. The heatmap on the left shows the
overlap of the quality labels assigned by two different domain experts on 100
data points of the ABIDE dataset, using the protocol described in section
Labeling protocol. We also compute the Cohen’s Kappa index of both
ratings, and obtain a value of κ=0.39. Using the table for interpretation of κ
by Viera et al. [6], the agreement of both raters is “fair” to “moderate”.
When the labels are binarized by mapping “doubtful” and “accept” to a
single “good” label, the agreement increases to κ=0.51 (“moderate”). The
“fair” to “moderate” agreement of observers demonstrates a substantial
inter-rater variability. The inter- and intra- rater variabilities translate into
the problem as class-noise since a fair amount of data points are assigned
noisy labels that are not consistent with the labels assigned on the rest of the
dataset. An extended investigation of the inter- and intra- rater variabilities
is presented in SI: Impact of the labeling protocol and variability sources.
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degradation are participant-specific (e.g. the examples in Fig 1) or arise from practical
settings (for instance, aliasing produced by the use of headsets during acquisition).

The automated quality control of magnetic resonance imaging (MRI) has long been
an open issue. Woodard and Carley-Spencer [12] conducted one of the earliest
evaluations on a large dataset of 1001 T1-weighted (T1w) MR images from 143
participants. They defined a set of 239 no-reference (i.e. no ground-truth of the same
image without degradation exists) image-quality metrics (IQMs). The IQMs belonged
to two families depending on whether they were derived from Natural Scene Statistics
or quality indices defined by the JPEG consortium. The IQMs were calculated on image
pairs with and without several synthetic distortions. In an analysis of variance, some
IQMs from both families reliably discriminated among undistorted images, noisy images,
and images distorted by intensity non-uniformity (INU). Mortamet et al. [13] proposed
two quality indices focused on detecting artifacts in the air region surrounding the head,
and analyzing the goodness-of-fit of a model for the background noise. One principle
underlying their proposal is that most of the artifact signal propagates over the image
and into the background. They applied these two IQMs on 749 T1w scans from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. By defining cutoff
thresholds for the two IQMs, they assigned the images high or low quality labels, and
compared this classification to a manual assessment. They concluded that more specific
research was required to determine these thresholds and generalize them to different
datasets. However, many potential sources of uncontrolled variability exist between
studies and sites, including MRI protocols (scanner manufacturer, MR sequence
parameters, etc.), scanning settings, participant instructions, inclusion criteria, etc. For
these reasons, the thresholds they proposed on their IQMs are unlikely to generalize
beyond the ADNI dataset.

Later efforts to develop IQMs appropriate for MRI include the Quality Assessment
Protocol (QAP), and the UK Biobank [14]. MRIQC extends the list of IQMs from the
QAP, which was constructed from a careful review of the MRI and medical imaging
literature [15]. Recently, Pizarro et al. [16] proposed the use of a support-vector
machine classifier (SVC) trained on 1457 structural MRI images acquired in one site
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Figure 3. Inter-site variability renders as a batch effect on the calculated IQMs. These plots display features
extracted by MRIQC (columns) of all participants (rows), clustered by site (17 centers from the ABIDE datasets, plus the
two centers where DS030 was acquired –“BMC” and “CCN”–). The plot of original features (left panel) shows how they can
easily be clustered by the site they belong to. After site-wise normalization including centering and scaling within site (right),
the measures are more homogeneous across sites. Features are represented in arbitrary units. For better interpretation, the
features-axis (x) has been mirrored between plots.
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with constant scanning parameters. They proposed three volumetric features and three
features targeting particular artifacts. The volumetric features were the normalized
histogram, the tissue-wise histogram and the ratio of the modes of gray matter (GM)
and white matter (WM). The artifacts addressed were the eye motion spillover in the
anterior-to-posterior phase-encoding direction, the head-motion spillover over the
nasio-cerebellum axis (which they call ringing artifact) and the so-called wrap-around
(which they refer to as aliasing artifact). They reported a prediction accuracy around
80%, assessed using 10-fold cross-validation. These previous efforts succeeded in
showing that automating quality ratings of T1w MRI scans is possible. However, they
did not achieve generalization across multi-site datasets.

The hypothesis motivating the present study is that the quality ratings of an expert
on previously unseen datasets (with dataset-specific scanning parameters) can be
predicted with a supervised learning approach that uses a number of IQMs as features.
The first limitation we shall encounter when trying to answer this question is the
inter-site variability of features extracted from MRI. Many efforts have been devoted to
the normalization across sites of the intensities of T1w MRI [17]. Particularly, this
inter-site variability renders as a batch effect problem in our derived IQMs (Fig 3), a
concept arising from the analysis of gene-expression arrays [18]. Furthermore, the
inherent subjectivity of the ratings done by experts, the difficulty of minimizing
inter-rater variability and the particular labeling protocol utilized all introduce
class-noise in the labels manually assigned. To demonstrate that the trained classifier
correctly predicts the quality of new data, we used two unrelated datasets to configure
the training and a held-out (test) datasets [19]. We first select the best performing
model on the training dataset using a grid strategy in a nested cross-validation setup.
We use the ABIDE dataset [9] as a training set because data are acquired in 17 different
scanning sites with varying acquisition parameters (Table 1). These data show great
variability in terms of imaging settings and parameters, which accurately represents the
heterogeneity of real data and introduces the batch effect into modeling. The best
performing classifier is then trained on the full ABIDE dataset and tested on the
held-out dataset (DS030 [20]), which is completely independent of ABIDE, to evaluate
prediction on new sites.

The contributions of this work are summarized as follows. First, we release an MRI
quality control tool called MRIQC (described in The MRIQC tool) to extract a vector
of 64 IQMs (Table 2) per input image (Extracting the Image Quality Metrics). Second,
MRIQC includes a visual reporting system (described in the Reports for visual
assessment section) to ease the manual investigation of potential quality issues. These
visual reports allow researchers to quickly evaluate the cases flagged by the MRIQC
classifier or visually identify potential images to be excluded by looking at the group
distributions of IQMs. Finally, we describe the results of the pre-registered report
corresponding to this study (see Software and data availability) on the feasibility of
automatic quality rating and the implications of the inter-site variability of IQMs
(sections Supervised classification and Results).

Materials and Methods

Training and test datasets

A total of 1367 T1w scans are used as training (1102 from ABIDE) and test (265 from
DS030 ) samples. These datasets are intentionally selected for their heterogeneity to
match the purpose of the study. A brief summary illustrating the diversity of
acquisition parameters is presented in Table 1, and a full-detail table in Table SI1.
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Table 1. Summary table of the train and test datasets. The ABIDE dataset is publicly availablea, and contains
images acquired at 17 sites, with a diverse set of acquisition settings and parameters. This heterogeneity makes it a good
candidate to train machine learning models that can generalize well to novel samples from new sites. We selected DS030 [20]
from OpenfMRIb as held-out dataset to evaluate the performance on data unrelated to the training set. A table summarizing
the heterogeneity of parameters within the ABIDE dataset and also DS030 is provided with the supplemental materials
(Table SI1).

Dataset Site ID
Scanner vendor & model

Sized [voxels] Resolutiond [mm]
TR/TE/TIc [sec], FA [deg], PE dir.

ABIDE
N=1102

CALTECH
Siemens Magnetom TrioTim,
1.59/2.73·10-3/0.8, 10, AP

176±80×256±32×256±32 1.00×1.00±0.03×1.00±0.03

CMU
Siemens Magnetom Verio,
1.87/2.48·10-3/1.1, 8, AP

176±15×256±62×256±62 1.00×1.00×1.00

KKI
Philips Achieva 3T,
8·10-3/3.70·10-3/0.8, 8, NA

256×200±30×256±30 1.00×1.00×1.00

LEUVEN
Philips Intera 3T,
9.60·10-3/4.60·10-3/0.9, 8, RL

256×182×256 0.98×1.20×0.98

MAX MUN
Siemens Magnetom Verio,
1.8/3.06·10-3/0.9, 9, AP

160±16×240±16×256±16 1.00×1.00±0.02×1.00±0.02

NYU
Siemens Magnetom Allegra,
2.53/3.25·10-3/1.1, 7, AP

128×256×256 1.33×1.00×1.00

OHSU
Siemens Magnetom TrioTim,
2.3/3.58·10-3/0.9, 10, AP

160×239±1×200±1 1.10×1.00×1.00

OLIN
Siemens Magnetom Allegra,
2.5/2.74·10-3/0.9, 8, RL

208±32×256×176 1.00×1.00×1.00

PITT
Siemens Magnetom Allegra,
2.1/3.93·10-3/1.0, 7, AP

176×256×256 1.05×1.05×1.05

SBL
Philips Intera 3T,
9·10-3/3.5·10-3/NA, 7, NA

256×256×170 1.00×1.00×1.00

SDSU
General Electric Discovery MR750 3T,
11.1·10-3/4.30·10-3/0.6, 8, NA

172×256×256 1.00×1.00×1.00

STANFORD
General Electric Signa 3T,
8.4·10-3/1.80·10-3/NA, 15, NA,

256×132×256 0.86×1.50×0.86

TRINITY
Philips Achieva 3T,
8.5·10-3/3.90·10-3/1.0, 8, AP

160×256±32×256±32 1.00×1.00±0.07×1.00±0.07

UCLA
Siemens Magnetom TrioTim,
2.3/2.84·10-3/0.85, 9, AP

160±16×240±26×256±26 1.20±0.20×1.00±0.04×1.00±0.04

UM
General Electric Signa 3T,
NA/1.80·10-3/NA, 15, AP

256±154×256×124 1.02±0.38×1.02±0.16×1.20±0.16

USM
Siemens Magnetom Allegra,
2.1/3.93·10-3/1.0, 7, AP

160±96×480±224×512±224 1.20±0.20×0.50±0.50×0.50±0.50

YALE
Siemens Magnetom TrioTim,
1.23/1.73·10-3/0.6, 9, AP

160±96×256×256 1.00×1.00×1.00

DS030
N=265

BMC
CCN

Siemens Magnetom TrioTim,
2.53/3.31·10-3/1.1, 7, RL

176×256×256 1.00×1.00×1.00

a http://fcon 1000.projects.nitrc.org/indi/abide/. b https://openfmri.org/dataset/ds000030/. c Please note that each vendor reported a different definition for
TR and TE, thus their values are not directly comparable. d Sizes and resolutions are reported as follows: median value along each dimension ± the
most extreme value from the median (either above or below).

Labeling protocol Based on our experience and minimizing the time-cost of
inspecting each of the 1367 images, we designed an agile labeling protocol as follows.
The experts visualize an animated GIF (graphics interchange format) video sequentially
showing coronal slices (in anterior to posterior ordering) of the image under assessment.
Each animation has a duration of around 20s (see Software and data availability).
During the visualization, the rater assesses the overall quality of the image. Raters were
asked to assign a quality label (“exclude”, “doubtful” or “accept”) based on their
experience after inspection of each animation. The animation is replayed in loop until
the rater makes a decision.

The labeling process is aided by surface reconstructions, using the so-called white
(WM-GM interface) and the pial (delineating the outer interface of the cortex) surfaces
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INU Correction
Skull-stripping

Spatial
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Head mask 
calculation

Brain tissue 
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Image Quality Metrics (IQMs)
extraction

Figure 4. MRIQC’s processing data flow. Images undergo a minimal processing
pipeline to obtain the necessary corrected images and masks required for the
computation of the IQMs.

as visual cues for the rater. The white and pial contours are used as evaluation
surrogates, given that “exclude” images usually exhibit imperfections and inaccuracies
on these surfaces. When the expert finds general quality issues or the reconstructed
surfaces reveal more specific artifacts, the “exclude” label is assigned and the rater
notes a brief description, for example: “low signal-to-nose ratio (SNR)”, “poor image
contrast”, “ringing artifacts”, “head motion”, etc. We utilize FreeSurfer 5.3.0 [21] to
reconstruct the surfaces. FreeSurfer has been recently reported as a good quality proxy
to assess T1w images [22]. For run-time considerations, and to avoid circular
evaluations of FreeSurfer, this tool is not used in the MRIQC workflow (see The
MRIQC tool section).

The first rater (MS) assessed 601 images of ABIDE, covering ∼55% of the dataset.
The second rater (DB) also assessed 601 images from the ABIDE dataset, and all the
265 images of the DS030 dataset. Since both raters covered more than half of ABIDE,
one hundred images of the dataset were rated by both experts. Such overlap of
assessments enables the characterization of inter-rater variability (Fig 2) using those
images with double ratings. For training, we randomly draw fifty ratings of each expert
(without replacement) from the one hundred data points assessed twice. The images of
the ABIDE dataset were randomized before splitting by rater. Additionally, the
participant identifier was blinded in the animations. Participants in both datasets were
randomized before rating to avoid inducing site-specific class-noise. Finally, the ABIDE
rating process yielded a balance of 337/352/412 exclude/doubtful/accept data points
(31%/32%/37%, see SI: Impact of the labeling protocol and variability sources).
Balances for DS030 are 75/145/45 (28%/55%/17%).

Software instruments and calculation of the IQMs

The MRIQC tool MRIQC is an open-source project, developed under the following
software engineering principles. 1) Modularity and integrability : MRIQC implements a
nipype [23] workflow (see Fig 4) to integrate modular sub-workflows that rely upon
third party software toolboxes such as FSL [24], ANTs [25] and AFNI [26]. 2) Minimal
preprocessing : the workflow should be as minimal as possible to estimate the IQMs. 3)
Interoperability and standards: MRIQC is compatible with input data formatted
according to the the Brain Imaging Data Structure (BIDS, [27]) standard, and the
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software itself follows the BIDS Apps [28] standard. For more information on how to
convert data to BIDS and run MRIQC, see SI: Converting datasets into BIDS and SI:
Running MRIQC respectively. 4) Reliability and robustness: the software undergoes
frequent vetting sprints by testing its robustness against data variability (acquisition
parameters, physiological differences, etc.) using images from the OpenfMRI resource.
Reliability is checked and tracked with a continuous integration service.

Extracting the Image Quality Metrics The final steps of MRIQC’s workflow
compute the different IQMs, and generate a summary JSON file per subject. The IQMs
can be grouped in four broad categories (see Table 2), providing a vector of 64 features
per anatomical image. Some measures characterize the impact of noise and/or evaluate
the fitness of a noise model. A second family of measures uses information theory and
prescribed masks to evaluate the spatial distribution of information. A third family of
measures looks for the presence and impact of particular artifacts. Specifically, the INU
artifact, and the signal leakage due to rapid motion (e.g. eyes motion or blood vessel
pulsation) are identified. Finally, some measures that do not fit within the previous
categories characterize the statistical properties of tissue distributions, volume overlap
of tissues with respect to the volumes projected from MNI space, the
sharpness/blurriness of the images, etc. The ABIDE and DS030 datasets are processed
utilizing Singularity [29] (see SI: Reproducing the experiments).

Reports for visual assessment. In order to ease the screening process of individual
images, MRIQC generates individual reports with mosaic views of a number of cutting
planes and supporting information (for example, segmentation contours). The most
straightforward use-case is the visualization of those images flagged by the classifier.
After the extraction of IQMs from all images in the sample, a group report is generated
(Fig 5). The group report shows a scatter plot for each of the IQMs, so it is particularly
easy to notice cases that are outliers for each metric. The plots are interactive, such
that clicking on any particular sample opens up the corresponding individual report of
that case. Examples of group and individual reports for the ABIDE dataset are
available online at mriqc.org.
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Table 2. Summary table of IQMs. The 14 IQMs spawn a vector of 64 features per anatomical image on which the
classifier is learned and tested.

Measures based on noise measurements

CJV
The coefficient of joint variation of GM and WM was proposed as objective function by Ganzetti et al. [30] for the optimization

of INU correction algorithms. Higher values are related to the presence of heavy head motion and large INU artifacts.

CNR
The contrast-to-noise ratio [31] is an extension of the SNR calculation to evaluate how separated the tissue distributions of GM

and WM are. Higher values indicate better quality.

SNR
MRIQC includes the signal-to-nose ratio calculation proposed by Dietrich et al. [32], using the air background as noise reference.

Additionally, for images that have undergone some noise reduction processing, or the more complex noise realizations of current

parallel acquisitions, a simplified calculation using the within tissue variance is also provided.

QI2
The second quality index of [13] is a calculation of the goodness-of-fit of a χ2 distribution on the air mask, once the artifactual

intensities detected for computing the QI1 index have been removed. The description of the QI1 is found below.

Measures based on information theory

EFC
The entropy-focus criterion [33] uses the Shannon entropy of voxel intensities as an indication of ghosting and blurring induced

by head motion. Lower values are better.

FBER
The foreground-background energy ratio [15] is calculated as the mean energy of image values within the head relative the mean

energy of image values in the air mask. Consequently, higher values are better.

Measures targeting specific artifacts

INU
MRIQC measures the location and spread of the bias field extracted estimated by the intensity non-uniformity correction. The

smaller spreads located around 1.0 are better.

QI1
The first quality index of [13] measures the amount of artifactual intensities in the air surrounding the head above the

nasio-cerebellar axis. The smaller QI1, the better.

WM2MAX

The white-matter to maximum intensity ratio is the median intensity within the WM mask over the 95% percentile of the full

intensity distribution, that captures the existence of long tails due to hyper-intensity of the carotid vessels and fat. Values

should be around the interval [0.6, 0.8].

Other measures
FWHM The full-width half-maximum [34] is an estimation of the blurriness of the image using AFNI’s 3dFWHMx. Smaller is better.

ICVs
Estimation of the intracranial volume of each tissue calculated on the FSL FAST’s segmentation. Normative values fall around

20%, 45% and 35% for cerebrospinal fluid (CSF), WM and GM, respectively.

rPVE
The residual partial volume effect feature is a tissue-wise sum of partial volumes that fall in the range [5%-95%] of the total

volume of a pixel, computed on the partial volume maps generated by FSL FAST. Smaller residual partial volume effects (rPVEs)

are better.

SSTATs
Several summary statistics (mean, standard deviation, percentiles 5% and 95%, and kurtosis) are computed within the following

regions of interest: background, CSF, WM, and GM.

TPMs
Overlap of tissue probability maps estimated from the image and the corresponding maps from the ICBM nonlinear-asymmetric

2009c template [35].
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1

32

Data points in the scatter plots of the group 
report can be clicked to open the corresponding 
individual report. This feature is particularly 
useful to identify low-quality datasets visually.

The individual reports show the calculated 
IQMs and metadata in the summary, and a 
series of image mosaics and plots designed 
for the visual assessment of images.

Figure 5. Visual reports. MRIQC generates one individual report per subject in the input folder and one group report
including all subjects. To visually assess MRI samples, the first step (1) is opening the group report. This report shows
boxplots and strip-plots for each of the IQMs. Looking at the distribution, it is possible to find images that potentially show
low-quality as they are generally reflected as outliers in one or more strip-plots. For instance, in (2) hovering a suspicious
sample within the coefficient of joint variation (CJV) plot, the subject identifier is presented (“sub-51296”). Clicking on that
sample will open the individual report for that specific subject (3). This particular example of individual report is available
online at https://web.stanford.edu/group/poldracklab/mriqc/reports/sub-51296 T1w.html.

PLOS 9 / 23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2017. ; https://doi.org/10.1101/111294doi: bioRxiv preprint 

https://web.stanford.edu/group/poldracklab/mriqc/reports/sub-51296_T1w.html
https://doi.org/10.1101/111294
http://creativecommons.org/licenses/by/4.0/


Supervised classification

We propose a supervised classification framework using the ABIDE dataset as the
training set and DS030 as the held-out dataset. Both datasets are rated as described in
Labeling protocol by two experts. Labels are binarized mapping the “doubtful” and
“accept” labels to a single “accept” quality rating. We use cross-validation to evaluate
the performance of the models. Prior to model selection using cross-validation, we first
investigate the appropriate cross-validation design most adequate to pick on the batch
effects, avoiding an overly optimistic evaluation of the performance (see What data split
should be used in cross-validation?). We then present a two-step approach to predicting
the quality labels of the held-out dataset. First, we perform a preliminary evaluation
using nested cross-validation utilizing only the ABIDE dataset (see Step 1: Tested
models and selection) to choose the best performing model. Then, we optimize it in a
refined grid of hyper-parameters with a single-loop cross-validation on the ABIDE
dataset. Finally, the model is evaluated using the held-out dataset (see Step 2:
Validation on the held-out dataset). The cross-validation workflows are built upon
scikit-learn [36] and run utilizing Singularity [29] (see SI: Reproducing the experiments).

Step 1: Tested models and selection

Based on the number of features (64) and training data available (∼1100 data points),
we compare two families of classifiers: SVCs and random forests classifiers (RFCs). We
evaluate several preprocessing alternatives to overcome the batch effects. In order to
deal with the class-imbalance, we also evaluate all models with and without class
weighting during resampling. When enabled, weighting is inversely proportional to class
frequencies in the input data.

The support-vector machine classifier (SVC) A support-vector machine [37]
finds a hyperplane in the high-dimensional space of the features that robustly separates
the classes of interest. The SVC then uses the hyperplane to decide the class that is
assigned to new samples in the space of features. Two hyper-parameters define the
support-vector machine algorithm: a kernel function that defines the similarity between
data points to ultimately compute a distance to the hyperplane, and a regularization
weight C. In particular, we analyzed here the linear SVC implementation (as of now,
“SVC-lin”) and the one based on radial basis functions (denoted by “SVC-rbf”). During
model selection, we evaluated the regularization weight C of both SVCs and the γ
parameter (kernel width) particular to the SVC-rbf.

The random forests classifier (RFC) Random forests [38] are a nonparametric
ensemble learning method that builds multiple decision trees. The RFC assigns to each
new sample the mode of the predicted classes of all decision trees in the ensemble. In
this case, random forests are driven by a larger number of hyper-parameters.
Particularly, we analyze the number of decision trees, the maximum tree-depth, the
minimum number of samples per split, and the minimum node size.

Objective function The performance of each given model and parameter selection
can be quantified with different metrics. Given the imbalance of positive and negative
cases –with lower prevalence of “exclude” samples–, we select the area under the curve
(AUC) of the receiver-operator characteristic as objective score. Additionally, we report
the classification accuracy (ACC) as implemented in scikit-learn (see Equation SI1).
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Preprocessing In order to address the batch effect and build models more robust to
this problem, we include three preprocessing steps in the framework. The first
preprocessing step is a site-wise normalization of features. For robustness, this
normalization calculates a center (as the median feature value) and a spread (as the
interquartile range) per feature for demeaning and scaling data. This filter can center
only, scale only or perform both centering and scaling.

The second preprocessing step available is a dimensionality reduction filter excluding
features highly predictive of the site of origin of data points. To do so, we fit a classifier
based on extremely randomized trees [39], where the variables are the features and the
responses are the sites of acquisition. We iteratively fit the classifier and remove the
feature most predictive of the site at each step, until certain convergence criteria is met
(either a maximum number of features to remove is reached or the performance of the
classifier is very low and thus the remaining features do not predict the site at all).

Finally, a third preprocessing step implements the Winnow algorithm [40] using
extremely randomized trees in a similar way to the previous filter, but comparing
features to a synthetic, randomly-generated feature. This feature selection filter removes
those IQMs below a certain SNR level.

All the hyper-parameters (normalization centering and/or scaling and the two
feature elimination algorithms) can be switched on and off during model selection.
Finally, they are optimized in a cross-validation framework.

Cross-validation and nested cross-validation Cross-validation is a model
selection and validation technique that can be robust to data inhomogeneities [41] with
the appropriate choice of the data split scheme. We use nested cross-validation, which
divides the process into two validation loops: an inner loop for selecting the best model
and hyper-parameters, and an outer loop for evaluation. In cross-validation, data are
split into a number of folds, each containing a training and a test set. For each fold, the
classifier is trained on the first set and evaluated on the latter. When cross-validation is
nested, the training set is split again into folds within the inner loop, and
training/evaluation are performed to optimize the model parameters. Only the best
performing model of the inner loop is then cross-validated in the outer loop. Models
and their hyper-parameters are evaluated within the inner loop, optimizing for the best
average AUC score.

Data split scheme To prevent the inflation of evaluation scores due to batch effects,
we defined a leave-one-site-out (LoSo) partition strategy. The LoSo split leaves out a
whole site as test set at each cross-validation fold. Therefore, no knowledge of the test
site is leaked into the training set (the remaining N − 1 sites). In a preliminary
experiment (What data split should be used in cross-validation?) we justify the use of
LoSo over a more standard repeated and stratified 10-fold. If a batch effect exists it will
result in over-fitting on the training data compared to the unseen test data. The
performance measured in the outer cross-validation loop on the ABIDE dataset will be
higher than that evaluating the classifier on the held-out dataset, unrelated to ABIDE.

Feature ranking One tool to improve the interpretability of the RFC is the
calculation of feature rankings [38] by means of variable importance or Gini importance.
Since we use scikit-learn, the implementation is based on Gini importance, defined for a
single tree as the total decrease in node impurity weighted by the probability of
reaching that node. We finally report the median feature importance over all trees of
the ensemble.
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Table 3. Selecting the appropriate split strategy for cross-validation. The
cross-validated area under the curve (AUC) and accuracy (ACC) scores calculated on
the ABIDE dataset (train set) are less biased when LoSo is used to create the outer
folds, as compares to the evaluation scores obtained in DS030 (held-out set).

ABIDE (train) DS030 (held-out) Bias (∆)
Outer split Inner split AUC ACC (%) AUC ACC (%) AUC ACC

10-Fold
5-Fold .87±.04 83.75±3.6 .68 75.7 .19 7.0
LoSo .86±.04 81.93±3.5 .71 77.0 .15 5.0

LoSo
5-Fold .71±.15 75.96±16.8 .68 76.2 .03 -0.2
LoSo .71±.15 75.21±17.8 .68 76.6 .03 -1.4

Step 2: Validation on the held-out dataset

In the second step, we use the model selected in step 1, and trained on the full ABIDE
dataset to evaluate the performance on the held-out dataset (DS030 ).

Results

All images included in the selected datasets are processed with MRIQC. After
extraction of the IQMs from the ABIDE dataset, a total of 1101 images have both
quality ratings and quality features (one image of ABIDE is skull-stripped, thus it is not
valid for the extraction of measures with MRIQC and was excluded). In the case of
DS030, all the 265 T1w images have the necessary quality ratings and features.

What data split should be used in cross-validation?

Before fitting any particular model to the IQMs, we identify the cross-validation design
most appropriate for the application. We confirm that the batch effects are overlooked
when using a 10-Fold cross-validation like [16], producing a biased estimation of the
performance. To support that intuition we run four nested cross-validation experiments,
with varying split strategies for the inner and outer loops. First, the nested
cross-validation is performed on the ABIDE dataset. We use a randomized search
(evaluating 50 models) for the inner loop. Second, the cross-validated inner model is
fitted onto the whole ABIDE dataset. The result in Table 3 shows that the LoSo
splitting has a closer train-test accuracy than 10-Fold cross-validation.

Model evaluation and selection

Once the LoSo cross-validation scheme is selected, we use nested cross-validation to
compare the three models investigated (SVC-lin, SVC-rbf, and RFC ). Note that only
the ABIDE dataset is used, therefore the DS030 dataset is kept unseen during model
selection. Again, the search strategy implemented for the inner cross-validation loop is a
randomized search of 50 models. The best performing model is the RFC with all the
optional preprocessing steps enabled. Therefore, the model includes the robust site-wise
normalizer (with centering and scaling), the feature elimination based on predicting the
site of origin and the Winnow-based feature selection. Fig 6 shows the AUC and ACC
scores obtained for the three models evaluated, for each data split in the outer
cross-validation loop.

PLOS 12 / 23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2017. ; https://doi.org/10.1101/111294doi: bioRxiv preprint 

https://doi.org/10.1101/111294
http://creativecommons.org/licenses/by/4.0/


RFC

SVC_lin

SVC_rbf

Model

0.0

0.2

0.4

0.6

0.8

1.0

C
A

LT
E

C
H

C
M

U

K
K

I

LE
U

V
E

N

M
A

X
_M

U
N

N
Y

U

O
H

S
U

O
LI

N

P
IT

T

S
B

L

S
D

S
U

S
T

A
N

F
O

R
D

T
R

IN
IT

Y

U
C

LA U
M

U
S

M

Y
A

LE

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a 
un

de
r 

th
e 

cu
rv

e 
(A

U
C

)

RFC

SVC_lin

SVC_rbf

Model

0.0

0.2

0.4

0.6

0.8

1.0
C

A
LT

E
C

H

C
M

U

K
K

I

LE
U

V
E

N

M
A

X
_M

U
N

N
Y

U

O
H

S
U

O
LI

N

P
IT

T

S
B

L

S
D

S
U

S
T

A
N

F
O

R
D

T
R

IN
IT

Y

U
C

LA U
M

U
S

M

Y
A

LE

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y 
(A

C
C

)

Figure 6. Nested cross-validation for model selection. The plots on the left
represent the scores (AUC on top, ACC below) obtained in the outer loop of nested
cross-validation, using the LoSo split. The plots show how certain sites are harder to
predict than others. On the right, the corresponding violin plots that summarize the
overall performance. In both plots, the dashed lines represent the averaged
cross-validated performance for the three models: RFC (blue line, AUC=0.73±0.15,
ACC=76.15%±13.38%), SVC-lin (light orange, AUC=0.68±0.18,
ACC=67.54%±20.82%), and SVC-rbf (dark orange, AUC=0.64±0.17,
ACC=69.05%±18.90%).

Evaluation on held-out data

Finally, we run a non-nested cross-validation to find the best model and test it on the
held-out dataset. In this case, we use a grid search strategy to evaluate all possible
combinations of hyper-parameters (a total of 512 models). The specific grid we evaluate
is available in the GitHub repository (mriqc/data/classifier settings.yml). In order to
assess the above-chance accuracy performance, we run a permutation test [42] shuffling
labels of both training and test sets at each repetition (1000 permutations). The
evaluation on DS030 is summarized on Table 4, and shows an AUC of 0.707, and
ACC=76% (p=0.001). The performance is slightly higher than that
(AUC/ACC=0.5/72%) of a naive classifier that labels all data points “accept”. The
model selected includes the robust normalization (with both centering and scaling) and
the site-prediction feature selection. The features finally selected are presented in the
plot of feature importances of Fig 7 (panel A). The QI2 [13] is the most important
feature, followed by background and WM tissue statistics. The recall (Equation SI2) is
particularly low (0.28, Table 4B) and indicates over-fitting to the training set. To
understand the problem, we visualized the images in the test set that were predicted
“accept” but rated “exclude” by the expert, and found a signal ghost artifact in ∼18% of
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Table 4. Evaluation on the held-out dataset. The model cross-validated on the ABIDE dataset performs with
AUC=0.707 and ACC=76% on DS030. The confusion matrix shows an insensitivity of the classifier to many “exclude” cases
(see the recall column for the “exclude” label in Table B).

A. Confusion matrix

Predicted
accept reject total

True
accept 180 10 190
reject 54 21 75
total 234 31

B. Performance report

precision recall F1 score support
accept 0.77 0.95 0.85 190
exclude 0.68 0.28 0.40 75
avg / total 0.74 0.76 0.72 265

the images in the test set that was not present in any image of the training set. Most of
the images containing this artifact are rated as “exclude” by the expert, when the ghost
artifact overlapped the cortical sheet of the temporal lobes. Some examples are
reproduced in Fig 7B. To assess the performance in the absence of the ghosting artifact
on DS030, we run the classifier trained on ABIDE on the test set after removing the
images showing this artifact. The results of this exploratory analysis are presented in SI:
The idiosyncratic ghost of DS030. Without the ghosting artifact, the performance
improves to AUC/ACC=0.83/87%. The sensitivity to “exclude” images increases to
0.46. To ensure this increase of sensitivity is a direct consequence of the removal of the
ghosting artifact, we re-run the nested cross-validation of the RFC model (see Model
evaluation and selection) with a modification to report the recall. We obtain a value of
0.48 (±0.3), consistent with the previous result on the ghosting-free subsample of the
DS030 dataset.

Discussion

Quality control (QC) protocols identify faulty datasets that can bias analyses. We
propose a quantitative approach to the QC of T1w MRI acquisitions of the brain.
Human brain images can be degraded by various sources of artifacts related to the
scanning device, session parameters, or the participants, themselves. Automating the
QC process is particularly necessary for large scale, multi-site studies such as the UK
Biobank. Previous efforts [12,13,16,43] in the quantification of image quality are also
based on no-reference image-quality metrics (IQMs), but did not attempt to solve the
generalization of prediction to unseen samples from new sites.

In this work, we investigate the prediction of binary quality labels from a set of
IQMs. As planned in the corresponding pre-registered report (see Software and data
availability), we focus specifically on the generalization of prediction to image sets
acquired in sites unseen by the classifier. Most of the IQMs used in this work and in
previous literature [12,13,16,43] are highly dependent on the specific acquisition
parameters and particular scanning settings of each site. This inter-site variability is
transfered into the IQMs producing batch effects [18] that impede the generalization of
predictions to new sites (or “batches”). For these reasons, we pre-registered an
experimental design based on a supervised learning framework using the ABIDE dataset
as training set for its heterogeneity (acquired in 17 different sites), and one OpenfMRI
dataset (DS030 ) as held-out dataset. We slightly deviate from the pre-registered design
in minor details, for instance we do not use Bayesian estimation of hyper-parameters [44]
since the use of grid search and randomized search are sufficient for the problem.
Further deviations from the pre-registration are the increment on the number of IQMs
used (we proposed 34, and use 64 here) and the final implementation of the MRIQC
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workflow. We also diverged in the finally applied Labeling protocol, since two different
experts (instead of only one) manually rate a total of 1367 T1w images, and they did
not revisit the “exclude” and “doubtful” cases using freeview. One expert evaluated 601
images belonging to the ABIDE dataset, and the second expert rated 601 images of
ABIDE plus the full DS030 (265 images). Thus, one hundred images of ABIDE selected
randomly are rated by both experts. We utilize these overlapping ratings to investigate
the inter-observer reliability using the Cohen’s Kappa (κ=0.39, “fair” agreement [6]).

A. Feature importances
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Figure 7. Evaluation on the held-out dataset. A. A total of 50 features are selected by the preprocessing steps. The
features are ordered from highest median importance (the QI2 [13]) to lowest (percentile 5% of the intensities within the GM
mask). The boxplots represent the distribution of importances of a given feature within all trees in the ensemble. B. (Left)
Four different examples of false negatives of the DS030 dataset. The red boxes indicate a ghosting artifact, present in more
than 20% of the images. Only extreme cases where the ghost overlaps the cortical GM layer of the occipital lobes are
presented. (Right) Two examples of false positives. The two examples are borderline cases that were rated as “doubtful”.
Due to the intra- and inter- rater variabilities, some data points with poorer overall quality are rated just “doubtful”. These
images demonstrate the effects of the noise in the quality labels.
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When the ratings are binarized, κ increases to 0.51 (“moderate” [6]). This “fair” to
“moderate” agreement unveils a second source of variance alongside the batch effects : the
class-noise (or the variability in the assigned labels).

We use cross-validation and nested cross-validation for model selection and
evaluation. Before addressing the question of quality prediction, we first investigate the
appropriate design of data splits for datasets showing batch effects. In section What
data split should be used in cross-validation? we show that leave-one-site-out (LoSo) is
a less optimistic and less biased design than a standard 10-fold split as in Pizarro et
al. [16]. Once the cross-validation scheme is defined, we select the random forests
classifier (RFC) model over two variants of the support-vector machine classifier (SVC)
in a nested cross-validation scheme using only the ABIDE dataset. Finally, we select the
final model and hyper-parameters in a non-nested cross-validation, train the model on
the ABIDE dataset, and evaluate its performance on the held-out dataset (DS030 ). We
obtain an area under the curve (AUC) score of ∼0.71 and an accuracy (ACC) score of
∼76%. We ensure the classifier is capturing the structure of quality labels from the data
running a permutation test (p=0.001, 1000 permutations). The ultimately selected
model includes the normalization of features (with both centering and scaling), and the
feature elimination based on the site prediction (which removed 14 features highly
correlated with the site of origin).

Intrigued by the poor sensitivity to positive (“exclude”) data points, we discover
that DS030 shows a systematic ghosting artifact in a substantial number of the images
that is not present in any of the training examples (Fig 7B). Most of the images
showing that artifact (except for a few where the ghost was present but did not overlap
the cortical layer) are rated as “exclude” by the expert. In a subsequent exploratory
analysis where we remove the data points presenting the artifact, we find that
sensitivity to “exclude” cases rises from 0.28 to 0.46, and AUC/ACC improve from
0.71/76% to 0.83/87%. Therefore, the performance improves, albeit moderately. The
sensitivity to “exclude” data points on the ghost-free test set is consistent to that
estimated by means of nested cross-validation. On one hand, we argue that DS030 is
not a representative held-out dataset due to this structured artifact. On the other hand,
it is likely that many scanning sites show idiosyncratic artifacts that are not present in
our training set (ABIDE). We discuss this limitation with some others below.

We propose LoSo as cross-validation scheme in datasets showing batch effects. In the
particular problem at hand, RFC outperforms SVCs and requires site-wise
normalization of features to handle the heterogeneity of sites. The model selected in
cross-validation also includes the feature selection by removing those features that best
predicted the site of origin of samples. We interpret these results as a modest
confirmation of the initial hypothesis, since the classifier captures the quality structure
of features and it predicts the quality of the held-out dataset with above-chance
accuracy. The performance we report is relatively low (even though not too far from
recent studies using single-site data [16]), and we can hypothesize that it is easy to find
a new sample that confuses the classifier just looking for particular artifacts not present
in ABIDE and DS030. Therefore, the intent of generalization to new sites made in our
initial hypothesis is only weakly confirmed at best.

One clear limitation of the presented classifier is the need for additional labeled data,
acquired in new sites with scanners (vendor, model, software versions) and scanning
parameters under-represented in the ABIDE dataset. Moreover, the images distributed
under the ABIDE dataset have undergone a realignment process through resampling,
that slightly modified the original intensity distributions and smoothed the images. One
additional route to enhance the predictive power of the classifier is reducing the
class-noise by refining the ratings done by the experts. Along the same lines, the ABIDE
dataset could be augmented with images from new sites for which we correct MRIQC’s
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predictions a posteriori, and including these fixed data points within the training set. A
similar approach to adding new sites to the training set would use techniques like label
propagation [45], where only a random subset of the sample is manually rated and the
labels are propagated to the remaining samples through an unsupervised clustering
procedure. One more alternative to boost the prediction performance leverages the
property of RFCs of assigning a continuous score in the [0.0,1.0] range to each data
point. Thus, the decision threshold (which is at 0.5 by default) can be calibrated for
samples from new sites using a small subset of manually rated data points. We can
support this claim on the observation that the predicted “probability” of the RFC was
close but below the default threshold of 0.5 (in the binary classification problem) for
many of the misclassified data points of the held-out set DS030.

A second limitation of this work is the vague definition of MRI quality in our
pre-registered report, which is closely related to the lack of agreement on how to grade
the quality of images within the neuroimaging community. Instructing the experts with
more detailed information on how to rate the images would have likely reduced the
inter-rater variability and consequently the class-noise level. The labeling protocol
presented here is very fast for the experts to visualize many images, but it is prone to
class-noise as demonstrated by a fairly high inter-rater variability. In the early version
of this manuscript, we used a quality assessment of ABIDE done by one of our experts
with a different protocol. The change of protocol severely impacted the ratings (see SI:
Impact of the labeling protocol and variability sources) and the performance evaluated
on the held-out set due to the inconsistency of labeling protocols. An additional
limitation of our labeling protocol is the use of reconstructed surfaces to aid raters. This
approach introduces a bias in their judgment that would turn the general quality
assessment into an evaluation of the particular tool used in the reconstruction
(FreeSurfer). Therefore, the labeling protocol could be improved adding more resources
to the rating settings (like the possibility of toggling the visualization of surfaces on and
off, or the addition of visual reports generated from other processing tools or MRIQC
itself). The raters do not pinpoint localized surface errors when no general defect is
identified as their cause, in order not to bias their rating towards the evaluation of the
reconstruction outcomes instead of the overall quality. Along the same lines, MRIQC
does not include FreeSurfer in the extraction of IQMs to prevent leaking its
performance into the features.

The spatial distribution of artifacts versus the global quality rating is another future
line of research and current limitation. For example, the local motion of the eyes
typically generates signal leakage through the phase-encoding axis. If the
phase-encoding axis is anterior-posterior as opposed to left-right, the degradation is
substantially more troublesome since the spillover will affect the lower regions of the
occipital lobes (see Figure SI1). Future extensions of MRIQC should include the
regional localization of the current IQMs. The feasibility of this approach is probably
limited by the design principle of minimal preprocessing. Alternatively, the presented
unsupervised framework could be replaced by a deep learning solution where the feature
extraction is part of the design, and localization of quality features can be trained. We
will also explore the integration of different modalities (e.g. T2-weighted). For instance,
Alexander-Bloch et al. [4] propose the use of head motion estimated on same-subject,
functional MRI time series as a proxy measure for motion during the T1w acquisition.

The quantitative assessment of quality using the RFC is the central piece of the
three-fold contribution of this paper. The first outcome of this study is the MRIQC
toolbox, a set of open-source tools which compute quality features. Second, MRIQC
generates interactive visual reports that allow further interpretation of the decisions
made by the classifier. Finally we propose the automated quality control tool described
above to generate include/exclude decisions. We publicly release all the source code, the
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Singularity images and two classifiers to ensure the repeatability and transparency our
experiments (see Software and data availability). Along with the tool, we release the
quality ratings and all artifacts derived from training and testing the classifier to allow
researchers to build upon our results or develop their own alternatives. For example, the
quality ratings will allow MRI practitioners to train the model on a subset of their
images and use a version of it customized for their site.

The MRIQC toolbox is a fork of the Quality Assessment Protocol (QAP). Since
MRIQC was started as a standalone project, the implementation of most of the IQMs
has been revised, and some are supported with unit tests. As with QAP, MRIQC also
implements a functional MRI (fMRI) workflow to extract IQMs and generate their
corresponding visual reports. Some new IQMs have been added (for instance, the CJV,
those features measuring the INU artifacts, or the rPVEs). The group and individual
reports for structural and functional data are also new contributions to MRIQC with
respect to the fork from QAP. The last diverging feature of MRIQC with respect to
QAP is the automated QC framework.

MRIQC is one effort to standardize methodologies that make data-driven and
objective QC decisions. Automated QC can provide unbiased exclusion criteria for
neuroimaging studies, helping avoid “cherry-picking” of data. A second potential
application is the use of automated QC predictions as data descriptors to support the
recently born “data papers” track of many journals and public databases like
OpenfMRI [46]. For instance, MRIQC is currently available in the OpenNeuro [47]
platform. The ultimate goal of the proposed classifier is its inclusion in automatic QC
protocols, before image processing and analysis. Ideally, minimizing the run time of
MRIQC, the extraction and classification process could be streamlined in the
acquisition, allowing for the immediate repetition of ruled out scans. Integrating
MRIQC in our research workflow allowed us to adjust reconstruction methodologies,
tweak the instructions given to the participant during scanning, and minimize the time
required to visually assess one image with the visual reports.

Conclusion

The automatic quality control of MRI scans and the implementation of tools to assist
the visual assessment of individual images are in high demand for neuroimaging
research. This paper partially confirmed a pre-registered hypothesis about the feasibility
of automated binary classification (“exclude”/“accept”) of the overall quality of MRI
images. We trained a random forests classifier on a dataset acquired at 17 sites, and
evaluated its performance on a held-out dataset from two unseen scanning centers.
Classification performed similarly to previous works conducted on single-site samples.
The hypothesis was not fully confirmed because we found that the classifier is still
affected by a certain level of over-fitting to the sites used in training. Strategies aimed
at combating site effects such as within site normalization and feature removal helped,
but did not fully mitigate the problem. It is likely that adding labeled data from new
sites will eventually ease this problem. We release all the tools open-source, along with
the labels used in training and evaluation, the best performing classifier and all the
derivatives of this work to allow researchers to improve its prediction and build
alternative models upon this work.

Author contributions

OE lead the development of MRIQC, implemented the cross-validation workflow,
pre-registered the report, drafted the manuscript, run the experiments and interpreted
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the results. DB rated 601 data points of the ABIDE dataset and the DS030 dataset in
full. MS rated 601 data points of the ABIDE dataset, helped understand the problems
of inter- and intra- rater variabilities. OOK contributed in the design of the
cross-validation workflow, pre-registered the report and interpreted the results. RAP
devised and coordinated the project, advised in all aspects of MRIQC, the
cross-validation workflow and the manuscript design, pre-registered the report and
interpreted the results. KJG devised the machine learning approach to quality control,
coordinated the project, contributed to MRIQC and the cross-validation workflow,
pre-registered the report, and interpreted the results. All the authors have read and
edited the manuscript.

Software and data availability

The pre-registered report is available online at https://osf.io/haf97/.
MRIQC is available under the BSD 3-clause license. Source code is publicly

accessible through GitHub (https://github.com/poldracklab/mriqc). We provide four
different installation options: 1) using the source code downloaded from the GitHub
repository; 2) using the PyPI distribution system of Python; 3) using the
poldracklab/mriqc Docker image; or 4) using BIDS-Apps [28]. For detailed information on
installation and the user guide, please access http://mriqc.rtfd.io.

Two distributable classifiers are released. The first classifier was trained on ABIDE
only, and it is the result of the experiment presented in Model evaluation and selection.
The second classifier was trained on all the available data (including the full-ABIDE
and the DS030 datasets) for prediction on new datasets. Along with the tool, we release
the quality ratings and all artifacts derived from training and testing the classifier. The
animations used by the experts to rate the images are available at the pre-registration
website. The Singularity images utilized in all the experiments presented here have been
deposited to the Stanford Digital Repository (https://purl.stanford.edu/fr894kt7780).

The ABIDE dataset is available at http://fcon 1000.projects.nitrc.org/indi/abide/. The
DS030 dataset is available at https://openfmri.org/dataset/ds000030/.

MRIQC can be run via a web interface without the need to install any software
using OpenNeuro [47].
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