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Abstract 

Large-scale efforts like the Encyclopedia of DNA Elements (ENCODE) Project have made 

tremendous progress in cataloging the genomic binding patterns of DNA-associated proteins 

(DAPs), such as transcription factors (TFs). However most chromatin immunoprecipitation-

sequencing (ChIP-seq) analyses have focused on a few immortalized cell lines whose activities 

and physiology deviate in important ways from endogenous cells and tissues. Consequently, 

binding data from primary human tissue are essential to improving our understanding of in vivo 

gene regulation. Here we analyze ChIP-seq data for 20 DAPs assayed in two healthy human 

liver tissue samples, identifying more than 450,000 binding sites. We integrated binding data 

with transcriptome and phased whole genome data to investigate allelic DAP interactions and 

the impact of heterozygous sequence variation on the expression of neighboring genes. We find 

our tissue-based dataset demonstrates binding patterns more consistent with liver biology than 

cell lines, and describe uses of these data to better prioritize impactful non-coding variation. 

Collectively, our rich dataset offers novel insights into genome function in healthy liver tissue 

and provides a valuable research resource for assessing disease-related disruptions. 

Introduction 

Complex gene regulatory networks underlie key aspects of human development, tissue 

physiology, and cell fate determination (Karlebach and Shamir 2008; Spitz and Furlong 2012). 

These gene expression programs are coordinated by DNA-associated proteins (DAPs), 

especially sequence-specific transcription factors (TFs), which bind to promoters, enhancers, 

silencers, insulators and other cis-regulatory elements (Spitz and Furlong 2012). Owing to their 

fundamental biological importance, disease can result from disruption or alteration of trans-

acting DAPs or the cis-regulatory elements to which they bind (Sur and Taipale 2016; Khurana 

et al. 2016). Accordingly, the interactions of DAPs and regulatory sequences has been 

investigated extensively (Birney et al. 2007; Bernstein et al. 2012; Gerstein et al. 2012; 
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Andersson et al. 2014). These studies have been greatly aided by high-throughput sequencing 

technologies to map genome-wide binding patterns of DAPs, in particular via chromatin 

immunoprecipitation sequencing (ChIP-seq) (Johnson et al. 2007; Robertson et al. 2007).  

 

The vast majority of genome-wide DAP binding maps, such as those from the Encyclopedia of 

DNA Elements (ENCODE) Project (https://www.encodeproject.org), are generated in a small 

number of mostly tumor-derived cell lines. Such data are clearly useful for understanding basic 

genome-wide protein-DNA interactions and allow for a variety of experimental perturbations 

(Savic et al. 2015, 2016; Reddy et al. 2012; Gertz et al. 2012a). However, these in vitro systems 

are likely to be limited in the extent to which they recapitulate in vivo tissue environments, 

especially for non-cancerous tissues (Ertel et al. 2006; Sandberg and Ernberg 2005).   

 

The generation of genome-wide, DAP binding patterns in healthy human tissue is essential to 

improving our understanding of transcriptional control within a physiological context. 

Comprehensive analyses of genome-wide DAP binding sites across a variety of different tissue 

types (Savic et al. 2013) and individuals can serve as a critical complement to existing cell line-

based catalogues. In support of these ideas, tissue-based studies have successfully defined cis-

regulatory elements critical for tissue differentiation and disease progression (Blow et al. 2010; 

Visel et al. 2013). Other investigations have provided evolutionary insights (Schmidt et al. 2010; 

Stefflova et al. 2013) and have highlighted the impact of non-coding, regulatory variation on 

drug response (Soccio et al. 2015). In addition, a comprehensive investigation of regulatory 

element usage across murine tissues and developmental time points has further illustrated the 

plasticity and spatiotemporal specificity of gene regulatory architecture (Nord et al. 2013). 

 

We generated ChIP-seq data for twenty DAPs in human liver tissue samples from two donors, 

one a young female (4 years of age) and the other an adult male (31 years of age), 
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(Supplemental Table 1 and 2).  These donors did not have any chronic or acute illnesses that 

might compromise their liver function and both succumbed to fatal accidents that spared their 

livers from observable damage. We selected DAPs based on the availability of a suitable ChIP-

seq grade antibody and their expression levels in the liver, ultimately assaying 17 sequence-

specific TFs, CTCF and RAD21, two DAPs involved in maintaining chromatin structure, and 

RNA polymerase II (RNAP2), which is directly involved in transcription. We also generated 

RNA-sequencing (RNA-seq) and whole genome data from the same samples. This dataset 

provides the most comprehensive genomic characterization of DAPs in a healthy tissue to date 

and is freely available (https://www.encodeproject.org).  

 

Here we present a broad analysis of these data, including an assessment of DAP interactions 

and a comparison of DAP occupancy between donor tissues and a widely studied liver cancer 

derived cell line (HepG2). We also analyzed genomic regions previously associated with liver 

biology or disrupted in liver cancer and describe an approach for using our DAP occupancy data 

to prioritize impactful non-coding variation. Binding data was integrated with previous histone 

modification data derived from liver tissue by the Epigenome Roadmap Consortium 

(http://www.roadmapepigenomics.org), tissue expression and expression-QTL data from the 

Genotype-Tissue Expression Project (http://www.gtexportal.org/), and hepatocellular carcinoma 

whole genome somatic mutation data from the International Cancer Genome Consortium 

(https://dcc.icgc.org). Our results provide compelling insights into human liver transcription and 

provide a valuable resource for future analyses of both mechanisms of gene regulation and 

relevance of non-coding variation to disease. 

 

Results 

DAPs display extensive co-localization 
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Liver tissue samples were acquired from a 4 year old female donor and a 31 year old male 

donor with consent from both donor families. We performed pairs of replicate ChIP-seq assays 

for each of the 20 DAPs (Supplemental Table 1) in both tissue samples, resulting in a total of 80 

independent ChIP-seq experiments. ChIP-seq experiments were conducted in accordance with 

ENCODE guidelines (Landt and Marinov 2012). All replicate pairs were strongly correlated and 

canonical motif enrichment was detected for all sequence-specific TFs (Supplemental Table 3, 

Supplemental Material). We identified between 909 and 60,597 binding events for each DAP 

and tissue sample (Supplemental Table 1), and identified more than 450,000 binding sites, 

spread over 150,000 unique genomic locations, across all DAPs in both livers. 

 

We first sought to examine relationships between DAP binding profiles in each liver that might 

suggest interactions between factors. Hierarchal clustering of normalized ChIP-seq read count 

correlations within the union of all binding sites revealed strong correlations between many pairs 

of DAPs in both tissues (median rho of 0.718 and 0.642, and max rho of 0.889 and 0.863, in the 

male adult and female child livers respectively), with no factors negatively correlated (Figure 1A-

B). We further identified largely consistent binding patterns between the two tissue samples 

despite age and sex differences, with ~75% of all DAP binding sites shared between the two 

donors (Figure 1C). We observed stronger binding similarity between maps of a given DAP from 

the two samples than between a given DAP and other factors in the same sample (Wilcox 

P<0.0001, Supplemental Figure 1-2). Consistent with their roles in maintaining genome 

insulation and three-dimensional genome structure (Merkenschlager and Nora 2016), RAD21 

and CTCF displayed the most distinctive binding patterns and clustered separately from all 

other DAPs in both tissues.  

 

To provide context to the degree of interaction between factors in the adult male liver, we used 

a previously described method to randomly sample genomic regions with length, GC content, 
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and repetitive sequence content matched to that of the observed binding sites (Fletez-Brant et 
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Figure 1 (A and B) Heatmaps of spearman correlation matrix of normalized DAP binding intensities at all observed 
binding sites in the adult (A) and child (B) liver respectively. (C) Stacked bar plot displaying the number of peaks for 
each TF.  Peaks are broken in to those that are shared among both replicates of both donors (shared, green), are 
shared between a donor and one replicate of the other donor (likely shared, purple), are specific to the adult donor 
(adult-specific, red), and are specific to the child donor (child-specific, blue). (D) Cumulative number of base pairs 
covered per binding site included in adult liver observed data (red) and null regions (black) matched for length, GC 
content, and repeat content. (E) Heatmap of a pair-wise Spearman correlation matrix, ordered identically to (1A) 
indicating the correlation of allele bias at shared peaks from the adult donor that overlap a heterozygous SNP for each 
pair of factors. The color of each panel indicates the strength of the correlation with gray indicating less than 25 peaks 
passed the quality filters for allele bias analysis for a given pair.  
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al. 2013). Compared to these randomly sampled regions, actual DAP binding sites covered 

~50% fewer bases (Figure 1D), indicating that observed overlap rates are far above random 

expectation. Binding sites of FOXA1, a previously described pioneer factor (Zaret and Carroll 

2011), had the highest mean number of sites overlapping with sites bound by other factors and 

the degree of co-localization at FOXA1 binding sites differed dramatically from non-FOXA1 

bound sites (Supplemental Figure 3). We next assessed coordination in allele-specific binding 

among DAPs in the adult liver tissue. Using a previously described method (DeSantiago et al. 

2016), we assessed the degree of allele bias, measured as the fraction of ChIP-seq reads 

containing the human genome (hg19) reference sequence, for each DAP at all heterozygous 

single nucleotide variants (SNVs) that overlapped with an adult DAP binding site. Correlation 

analyses of the degree of allele bias at each SNV between all possible pairs of DAPs revealed 

that factors also tended to cluster on the same allele, indicative of cooperative binding to the 

same chromosome (Figure 1E, Supplemental Table 4). 

 

The relative importance of regions with varying degrees of DAP interaction was assessed by 

examining how evolutionary conservation and chromatin modifications relate to the number of 

factors bound at a site. We found that sites with higher numbers of DAPs tended to be more 

strongly conserved across the mammalian phylogeny (rho = 0.960, P = 7.08x10-6, Supplemental 

Figure 4A). These sites were also more heavily enriched for the activating histone 3 acetylation 

marks on lysine 9 (H3K9ac) and lysine 27 (H3K27ac) and relatively depleted for the repressive 

histone 3 methylation marks on lysine 9 (H3K9me3) and lysine 27 (H3K27me3) (Supplemental 

Figure 4B-E). Together, these data show that DAPs co-localize extensively, as previously 

demonstrated in cell line analyses (Yan et al. 2013), that they often show equivalent allele bias, 

and that sites of high interaction tend to be more highly evolutionarily conserved and more 

strongly associated with active chromatin marks. 
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DAP binding recapitulates known liver expression programs 

We next integrated DAP binding profiles with gene annotations in an attempt to infer DAP 

regulatory networks and assess the relationship between DAP occupancy and gene expression 

level. We found that 30% of all ENSEMBL (GRCh37_E75) annotated genes harbored at least 

one binding site within 1kb of their transcriptional start sites (TSSs), and more than 7% of genes 

harbored binding events for more than 6 different DAPs in both adult and child (Figure 2A, 

Supplemental Figure 5A). To identify correlations between gene expression and binding site 

maps, we performed quadruplicate RNA sequencing (RNA-seq) experiments on independent 

samples from each donor tissue. As expected, RNAP2 promoter binding within 1kb of a gene’s 

TSS was strongly associated with expression in both livers (Wilcoxon P<0.0001, mean TPM 

without RNAP2 = 22.3, and mean TPM with RNAP2 = 121.8). Gene expression level was also 
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Figure 2(A) Pie chart representing the percent of genes containing a specified number of bound DAPs within 1Kb of 
their TSS. Color scale reflects the number of neighboring DAPs required to be included in each slice. (B) Expression 
level of genes binned by the number of DAPs bound within 1Kb of their TSS. Data shown for the adult donor, child 
data shown in Supplemental Figure 5. (C) Correlation between expression level of genes and the number of factors 
bound (as described in Figure 2B above) for a range of distance to TSS thresholds. (D) Correlation between RNAP2 
binding and neighboring gene expression allele bias over a range of distance thresholds.  Ninety five percent 
confidence (red) intervals calculated by randomly shuffling all SNP pairs that met a distance threshold 100 times and 
computing a null correlation distribution. (E) Bar plot showing the fraction of expressed SNPs with significant allele 
bias with varying numbers of neighboring DAPs exhibiting allele bias within 20kb. Significance thresholds of binomial 
test P<0.01 (red), P<0.001 (blue), and P<0.0001 (black). 
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strongly correlated with the number of factors binding within 1kb of their TSS (rho=0.533 for 

adult and rho=0.526 for child, Figure 2B, Supplemental Figure 5B), however this effect 

diminished rapidly as the distance to TSS threshold expanded beyond 1kb (Figure 2C). 

 

Using phased whole genome sequencing data, we assessed how allele bias in DAP binding 

correlated with neighboring allele bias in gene expression. We found bias in RNAP2 occupancy 

within 1kb of a gene’s TSS was strongly correlated (rho=0.750) with expression bias and the 

strength of this correlation dropped precipitously as the distance between binding site and TSS 

was expanded (Figure 2D). A similar pattern was observed with the other assayed DAPs, 

although the strength of the correlations were largely reduced relative to that observed for 

RNAP2 and repressive factors such as REST and NR2F2 exhibited correlations in the opposite 

direction (Supplemental Figure 6-7, Supplemental Table 5). We also found the number of 

neighboring DAPs with significant allele bias was associated with the likelihood of observing 

significant allele bias in gene expression (Figure 2E).  

 

To define the gene regulatory networks associated with each DAP, we compared the 

distribution of the distances from the nearest DAP site to the TSSs of genes in every Reactome 

(http://www.reactome.org) pathway to that of the background transcriptome using a 

Kolgomorov-Smirnov (KS) test (Figure 3A, Supplemental Figure 8, Supplemental Table 6). This 

analysis revealed significant pathway enrichments for nearly all DAPs (median KS test P<0.05), 

including pathways known to be active in liver tissue such as lipid and carbohydrate 

metabolism, drug metabolism and complement activation. We also identified a second cluster of 

genetic pathways involved in regulating stem-cell state and cell division that was largely 

restricted to SP1, YY1, and GABPA binding events. An extreme example is the Hedgehog ‘on’ 

state (REACT_268718), a pathway that acts as an important regulator of animal development 

and differentiation (Ingham et al. 2011). SP1, YY1, and GABPA were all bound within 1kb of the 
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TSSs of nearly 50% of the 60 genes within this pathway. By comparison, a distance threshold of 

	
  

Figure 3 (A) Heatmap of KS-test statistic comparing distances of TSSs in a pathway to the nearest binding site for a 
given DAP compared to the background transcriptome for each Reactome pathway and each DAP. Concordant sites 
between both livers were used as input to this analysis. The color bar on the left indicates the mean expression level 
of genes within a pathway. (B) Representative private pathway cumulative distribution function plot demonstrating 
enrichment for proximal GABPA (blue), SP1 (green), and YY1 (red) binding. (C and D) Dots represent KS-statistic of 
enrichment for proximal binding of each factor to liver (red/purple), skin (blue) and cortex (green) -specific genes in 
adult liver tissue (C) and HepG2 cells (D). Data from the child donor is similar to that of the adult donor (Supplemental 
Figure 10). 

	
  

1Mb is required to achieve a similar level of occupancy for any other DAP (Figure 3B). SP1, 

YY1 and GABPA have been previously described as interacting partners (Galvagni et al. 2001; 

Rosmarin et al. 2004) and these pathway enrichments are consistent with previous studies 

implicating GABPA in controlling stem cell maintenance and differentiation (Yu et al. 2016).  
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We next analyzed promoter-proximal DAP binding to tissue-specific genes based on expression 

data from the Genotype-Tissue Expression Project (GTEx) (The GTEx Consortium 2015). We 

defined “liver-specific” genes as those with a mean RPKM, across all GTEx liver tissues, of at 

least two and at least five-fold higher than the mean RPKM in all other non-liver tissues. HNF4A 

and RXRA were the top TFs in terms of enrichment for binding near the TSSs of liver-specific 

genes (Figure 3C, Supplemental Figure 9), underscoring their importance in regulating liver-

specific functions (DeLaForest et al. 2011; Martinez-Jimenez et al. 2010; Li et al. 2015). 

Supporting the tissue specificity of DAP binding events, skin and cortex-specific genes exhibited 

a much lower enrichment for proximal DAP binding compared to liver-specific genes. Notably, a 

similar analysis of ChIP-seq data generated by our group in HepG2 cells for nearly all DAPs 

examined here revealed enrichment for promoter-proximal binding to liver-specific genes 

(Figure 3D). However, aggregated across all 20 DAPs, proximal binding enrichment was 

significantly more pronounced in liver tissue (Paired Wilcoxon P=1.29x10-4).  Only NR2F2 and 

HNF4G exhibited even nominally greater proximal binding enrichment in HepG2 cells than in 

liver tissue (Figure 3D). These results were robust to different thresholds used define tissue-

specificity (Supplemental Figure 10). 

 

DAP binding sites are enriched for expression-QTL SNPs 

We hypothesized that, by virtue of marking regulatory elements active in human liver, DAP 

binding sites would be enriched for expression-QTL (eQTL) SNPs previously catalogued in 

healthy human liver tissues by the GTEx Project. We compared the number of significant eQTL 

SNPs overlapping binding sites for a given DAP to 1,000 randomly sampled sets of SNPs that 

passed GTEx filtering and were matched for distance to nearest TSS and minor allele 

frequency. This analysis revealed significant enrichment (FDR<0.05) for 17 of the 20 assayed 

DAPs (Figure 4A, Supplemental Table 7A); JUND, FOXA1, and ATF3 were also enriched but at 
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higher FDRs. For most DAPs, this enrichment was specific to liver eQTL SNPs. Repeating the 

	
  

Figure 4 (A) Red dot indicates the number of eQTLs falling within a DAP binding site relative to the gray 
boxplots, which represent 1000 randomly sampled null SNPs matched for distance to TSS and minor 
allele frequency. (B) Relative rank of liver-specific eQTL compared to all GTEx tissue specific eQTLs in 
DAP binding sites assayed in HepG2 cells (blue) and adult liver tissue (red). (C) Difference in enrichment 
(delta Fisher’s exact test odds ratio) for SNPs associated liver-related phenotypes between binding sites 
for 19 common DAPs assayed in HepG2 cells and liver tissue. GWAS terms represented by bars are 
provided in Supplemental Table 9A. 
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analysis on three tissues (uterus, vagina, anterior cingulate cortex) with less than 35% eQTL 

SNPs shared with liver revealed significantly less overlap (Supplemental Table 7B). To examine 

tissue specificity more comprehensively, we assessed DAP binding site overlap with tissue-

specific eQTLs, defined as those eQTLs with a FDR corrected P < 0.05 in only a single tissue. 

Bound sites of 11 of the 20 assayed DAPs overlapped with liver-specific eQTL SNPs more 

frequently than with eQTL SNPs specific to other tissues (Supplemental Figure 11 and 

Supplemental Table 8).  

 

In HepG2 cells, we observed a similarly strong enrichment for liver eQTL SNP overlap for all 

factors except SP1 (Supplemental Figure 12A, Supplemental Table 7A). However, this 

enrichment was much less specific to liver eQTL SNPs as we observed a strong enrichment in 

uterine, vaginal, and anterior cingulate cortex eQTLs relative to the tissue-derived DAP binding 

(Supplemental Table 7C). Moreover, we observed a reduction in the level of enrichment for 

liver-specific eQTLs relative to non-liver tissue-specific eQTLs in 10 out of 19 DAPs that were 

assayed in HepG2 cells, suggesting that, at least for some DAPs, tissue ChIP-seq data better 

identify regions important for regulating tissue-specific gene expression (Figure 4B, 

Supplemental Figure 12B).  

 

We next compared HepG2 and liver tissue ChIP-seq binding site enrichment for overlap with 

SNPs previously associated with a liver-related phenotype in the NHGRI-GRASP genome wide 

association study (GWAS) catalog (https://grasp.nhlbi.nih.gov/Overview.aspx). We found 

greater enrichment (Paired Wilcoxon P=1.8x10-3) in liver tissue binding sites for a majority of 

GWAS terms (45 of 66), including insulin-like growth factor levels and response to statins 

(Figure 4C, Supplemental Table 9). However, HepG2 binding sites also showed enrichment for 

several terms, such as liver cancer risk and HDL cholesterol levels, at a higher level than that 

observed in liver tissue. 
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DAP binding analyses help prioritize impactful non-coding variation 

One of the promises of high-throughput cataloging of DAP binding is its utility in prioritizing non-

coding variation capable of disrupting regulatory elements. A challenge associated with using 

ChIP-seq data for this purpose is that DAP occupancy peaks are often broad, and it is unclear 

what proportion of sequence variation within a ChIP-seq peak is likely to significantly affect DAP 

binding dynamics. We therefore assessed the degree of mammalian evolutionary sequence 

conservation within ChIP-seq peaks using Genomic Evolutionary Rate Profiling (GERP) scores 

(Cooper et al. 2005). The mean GERP-RS score of each protein’s binding sites was significantly 

greater than the genome-wide average but lower than that of protein-coding exons 

(Supplemental Figure 13). While these data likely reflect reduced non-coding relative to coding 

constraints, they may also be due to the fact that ChIP-seq-defined DAP binding sites do not 

have the resolution to identify the most critical nucleotides for DAP binding, such as TF motifs, 

which are often more highly conserved than surrounding sequences (Bernstein et al. 2012; 

Timothy et al. 2012). However, recent sequence-based machine learning and allele-specific 

binding data have also indicated that the most important sequence elements for DAP binding 

may not necessarily reside solely in the canonical DNA sequence motif (Deplancke et al. 2016; 

Timothy et al. 2012; Tehranchi et al. 2016).  

 

Consequently, to systematically examine evolutionary conservation at base pairs most critical 

for DAP binding, we applied a previously described method (Lee 2016), to train 10mer-based 

support vector machines (SVMs) capable of distinguishing binding sites identified in DAP ChIP-

seq experiments from genomic loci matched for GC and repeat content, and without evidence of 

DAP binding (Figure 5A). These SVMs were successful in predicting DAP binding for all factors 

with a mean Receiver-Operator Characteristic Area Under the Curve (ROC-AUC) of 0.928 and 

Precision Recall Area Under the Curve (PR-AUC) of 0.702 (Supplemental Figures 14A and 
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14B). A subset of 10mers, each occurring in a small percentage of total binding sites, were most 

 

Figure 5 A) Diagram representing the pipeline for generating SVMs capable of distinguishing DAP binding 
sites from matched null regions and scoring the predicted impact of each mutation on each DAP. (B) 
Boxplots representing the GERP scores at each delta binding score percentile (higher percentile indicates 
increased predicted disruption of binding) from in silico mutations for CTCF. (C) Boxplots of CTCF binding 
site-overlapping heterozygous SNPs predicted to be in the top ~1% for decreasing binding affinity (red), 
to be in the top ~1% for increasing binding affinity (blue), and to have no significant impact on binding 
affinity (black). Y-axis indicates the fraction of ChIP reads mapping to the reference allele (D) SVM scores 
for reference and alternate GTEx liver eQTL SNP alleles for CTCF. Red dots indicate SNPs that hold a 
positive delta binding score in the top 0.1 percentile. Blue dots indicate SNPs that hold a negative delta-
binding score that falls in the bottom 0.1 percentile of all scores. (E and F) Boxplots representing the 
luciferase activity of reference (red) and mutant (blue) sequence in eQTL SNPs predicted to disrupt 
observed DAP binding (E) and induce aberrant TF binding (F). * indicates a two-tailed t-test P<0.05 and 
** indicates a P<0.005. 

	
  

predictive of DAP binding (Supplemental Figure 14C). We next computed a “delta” binding 

score for all possible point mutations within DAP binding sites, defined as the mean decrease in 

our SVMs’ classifier value for the mutant relative to the reference sequence. This strategy is 

similar to a previously developed approach, ‘deltaSVM’, that focuses on more local disruptions 

DAP of Interest

Concordant ChIP
Binding Site

Sequence

Matched Null
Genomic
Sequence

LS-GKM SVM Training

Delta-Binding Score

Ref- AATGGACAACACAGGTTGACAGA
Mut - AATGGACAACATAGGTTGACAGA

3.77 - Positive Regulatory
-1.71 - Negative Regulatory

Delta Binding Score = -5.48

−6
−2

0
2

4
6

Delta Binding Score Percentile

G
ER

P 
Sc

or
e

0 20 40 60 80 100

−4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Al
le

le
 B

ia
s 

(F
ra

ct
io

n 
R

ef
er

en
ce

)

Delta
Binding 
Score>1

Delta
Binding 
Score

>-0.5&<0.5

Delta
Binding 
Score<-1

4 2 0 2 4

4
2

0
2

4

CTCF

Wild Type Score

M
ut

an
t S

co
re

Wild Type Binding Score

M
ut

an
t B

in
di

ng
 S

co
re

Predicted Gain of Binding
Predicted Loss of Binding

A

C

B

D E

−1
.5

−0
.5

0.
5

1.
5

−1
0

1
2

Lu
ci

fe
ra

se
 R

ep
or

te
r A

ct
iv

ity
 (Z

-S
co

re
)

Lu
ci

fe
ra

se
 R

ep
or

te
r A

ct
iv

ity
 (Z

-S
co

re
)

rs3180232 rs2003932 rs2232015 rs3760372 rs11870935

REF MUT REF MUT

* ** *
p=0.26 p=0.95

F

Predicted Loss of Binding Predicted Gain of Binding

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111385doi: bioRxiv preprint 

https://doi.org/10.1101/111385
http://creativecommons.org/licenses/by/4.0/


	
   16	
  

of 10mer feature weights (Lee et al. 2015). Notably, bases with the most negative delta binding 

score tended to be the most highly conserved for most DAPs (Supplemental Table 10). DAPs 

with relatively low mean binding site GERP scores, such as GABPA and CTCF, harbored high 

levels of conservation at their most putatively vulnerable nucleotide position (Figure 5B).  We 

also observed a modest, but significant, correlation between delta binding scores and the 

observed degree of allele bias (FDR<0.05) in binding sites for 13/20 DAPs (Figures 5C, 

Supplemental Figure 15, Supplemental Table 11), further supporting our confidence in 

predicting putatively impactful variation at DAP binding sites.  

 

We subsequently searched among all GTEx liver eQTL SNPs for those most likely to alter a 

DAP binding site (Figure 5D). Because identifying common sequence variation with functional 

significance is challenging for eQTL analyses and genome-wide association studies (GWASs) 

(Edwards et al. 2013), weighting SNPs based on their likelihood to impact DAP binding could be 

a useful approach for prioritizing follow-up analyses of SNP associations. Considering the top 

0.1% of DAP-disruptive eQTL SNPs, we noted several that had been associated with one or 

more relevant phenotypes by querying the NHLBI-GRASP GWAS catalog (Supplemental 

Tables 12 and 13). Supporting the biological relevance of these analyses, the top 0.1% of our 

putative DAP-disrupting SNPs were significantly enriched (Fisher’s P<0.05) compared to all 

significant liver eQTL SNPs for various liver related GWAS catalog terms, including lipid level 

measurements, alcohol dependence, vitamin D levels, and levels of multiple enzymes produced 

by the liver (Supplemental Figure 16). To validate DAP binding disruptions, we selected two 

putative SNPs predicted to induce cryptic binding, as well as three SNPs predicted to disrupt 

binding, to test with a luciferase reporter assay in HepG2 cells (Supplemental Table 14, Figure 

5E-F). Predicted disruptions were confirmed for three out of the five SNPs tested (two loss of 

binding and one gain of binding) confirming our approaches ability to identify SNPs with 

potential regulatory impact.  
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Disruption of DAP activity in hepatocellular carcinoma 

Our catalog of DAP binding provides an opportunity to assess cancer-related disruptions of 

gene regulation in healthy tissue. An examination of the degree of adult DAP binding 

	
  

Figure	
  6 (A) Color bars indicating the KS-test statistics for enrichment of binding of each DAP proximity to the TSS of 
genes with significantly decreased (blue) or increased (red) expression in tumor tissue compared to adjacent normal 
tissue. (B and C) Percent of probes with significantly increased or decreased methylation in tumor compared to 
adjacent normal tissue overlapping a binding site of each DAP. Red dashed lines indicate 95% confidence intervals 
based on random sampling of an equivalent number of null probes. (D and E) Bars representing the number of 
somatic mutations (D) or matched 1000 Genome (E) mutations observed at contiguous 10bp bins covering all FOXA2 
peaks and flanking 1kb regions. (F) Delta binding scores of all binding site overlapping cancer somatic SNVs (red) or 
matched 1000 Genome mutations (blue). (G) KS-test statistics for enrichment of binding of each DAP proximal to the 
TSS of genes with significantly increased or decreased expression in tumor tissue compared to adjacent normal 
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tissue in HepG2 cells (blue) and adult liver tissue (red) for all 19 commonly assayed DAPs. Regions are shaded 
according to whether HepG2- or tissue-derived peaks display greater enrichment. (H) Mean somatic mutation burden 
of DAP binding sites over flanking regions in HepG2 cells (blue) and adult liver tissue (red) for all 19 commonly 
assayed DAPs. Regions are shaded according to whether HepG2- or tissue-derived peaks display greater 
enrichment. 

	
  

enrichment near genes differentially expressed between The Cancer Genome Atlas project 

(TCGA, https://cancergenome.nih.gov) hepatocellular carcinoma tumor and adjacent normal 	
  

tissue (DESeq2, FDR<0.001) revealed a general trend for preferential DAP localization near 

genes down-regulated in liver cancer (Figure 6A). This is consistent with a model wherein the 

majority of DAP-associated regulatory elements function to maintain cell identity and 

differentiation, both of which are widely disrupted during tumorigenesis (Sur and Taipale 2016). 

GABPA and SP1 stood out as outliers with strong enrichment (FDR<0.05) for binding in 

proximity to genes up-regulated in tumor tissue. This may be due to the importance of GABPA 

and SP1 proteins for regulating stem cell state and cell division as described in the Reactome 

pathway enrichment analysis performed above (see Figure 3A).  

 

An analysis of genome-wide DNA methylation at DAP binding sites showed a relative depletion 

in significant differences between tumor and adjacent normal tissue (Figures 6B and 6C), 

suggesting that the CpG methylation status at most DAP binding events is unrelated to 

tumorigenesis. FOXA1, which is known to be methylation-sensitive (Zhu et al. 2016; Bartke et 

al. 2010), was the only TF whose binding site exhibited a significant enrichment for differential 

methylation. Nearly 25% of FOXA1 binding sites overlapping CpG dinucleotides had 

significantly increased methylation in tumor compared to adjacent normal tissue (FDR<0.05). 

Both FOXA1 and FOXA2 genes were expressed at significantly higher levels in TCGA tumor 

tissue compared to adjacent normal (FDR<0.01), alluding to a functional role for these FOX 

proteins in hepatocellular carcinoma.  
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We assessed the degree of somatic variation at all DAP binding sites. Analysis of whole 

genome somatic single nucleotide variation (SNV) data from 258 hepatocellular carcinoma 

patients obtained from the International Cancer Genome Consortium (ICGC, http://icgc.org) 

revealed dramatically increased somatic mutation burden in DAP binding sites compared to 

flanking regions for the majority of tested DAPs (Figure 6D, Supplemental Figure 17). This effect 

was not observed in an equivalent sample of variants from the 1000 Genomes Project matched 

for reference and alternate base pair composition (TG, http://www.internationalgenome.org) 

(Figure 6E). However, a significant proportion of this increased mutation burden is likely driven 

by increased tumor mutation rates at cytosine and guanine nucleotides (Supplemental Figure 

18), which are enriched in DAP binding sites (Kaiser et al. 2016). FOXA1 and FOXA2 binding 

sites were outliers with the strongest increased somatic mutation burden after correcting for 

base-pair composition (P=0.01, 0.03), but the robustness of this observation is unclear given 

that these effects did not survive correction for the scope of hypothesis testing (FDR=0.285, 

Figure 6D, Supplemental Figure 17, Supplemental Table 15). Interestingly, liver cancer 

mutations falling within FOXA2 binding sites had a more damaging delta binding score, on 

average, compared to binding sites overlapping TG SNVs (Wilcoxon P=6.4x10-38, Figure 6F).  

 

Our tissue-based DAP binding exhibited increased enrichment for proximal binding near genes 

down-regulated in liver cancer compared to adjacent normal tissue (Paired Wilcoxon P=4.6x10-

3), and conversely HepG2-derived DAP binding sites showed greater enrichment for proximal 

binding near up-regulated genes (Figure 6G, Paired Wilcoxon P=2.1X10-4).  Moreover, HepG2-

derived binding sites exhibited a lower somatic mutation burden relative to flanking regions for 

all factors except for NR2F2 (Figure 6H, Paired Wilcoxon P=3.8x10-5). Overall, these data 

demonstrate that DAP binding sites harbor an increased number of somatic mutations 

compared to flanking regions, and although a majority of this trend can be attributed to 

nucleotide composition-related tumor mutational processes, disruption of DAP binding sites may 
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be an important mechanism for altering normal liver gene expression programs. Furthermore, 

non-cancerous tissue-based ChIP-seq assays may provide insight to regulatory regions 

disrupted in cancer. 

 

Discussion 

We provide a comprehensive evaluation of DAP binding dynamics by generating 80 

independent ChIP-seq datasets comprised of replicate ChIP-seq experiments for 20 different 

DAPs in liver tissues from two individuals. These data reveal a high level of concordance 

between both tissues with roughly 75% of DAP binding sites shared between donors. It also 

highlights interactions between DAPs, with >7% of genes containing more than 6 DAP binding 

sites within 1kb of their TSS. We demonstrate the degree of DAP co-occupancy is associated 

with several metrics of activity including conservation, histone marks of open chromatin, and 

neighboring gene expression. Moreover, DAPs exhibited highly correlated biases in allele 

occupancy suggesting factors are highly interactive and effects of disruptive sequence variation 

tend to be shared by neighboring factors. Our data also suggest that DAP influence on 

neighboring gene expression is highly dependent upon proximity to a gene’s TSS. Both the 

degree to which allele bias in DAP occupancy is correlated with allele bias in gene expression 

and the degree to which the number of number of factors bound influences gene expression 

drops precipitously the further factors are bound from a TSS, suggesting that a substantial 

majority of DAP activity, at least for the factors assayed, is confined to proximal promoter 

regions. 

 

Our analysis highlights the value in performing tissue-based ChIP-seq analysis to characterize 

tissue-specific gene regulation. The DNA-binding proteins we analyzed show a high degree of 

promoter-proximal binding near genes uniquely expressed in the liver and these DAP binding 
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events are also preferentially enriched in liver specific-eQTL SNPs compared to eQTLs specific 

to other tissues. These tissue specific correlations were diminished in data generated for the 

same DAPs in the HepG2 cell line, demonstrating the potential utility of our data in providing a 

better understanding of the regulation of gene expression programs relevant for in vivo liver 

physiology, as well as the disruptions that may occur in hepatic disease states. In particular, we 

find our data to be highly complementary to HepG2 data in terms of understanding cancer-

related disruptions in regulatory regions of the genome. While HepG2-derived DAP binding sites 

showed a higher affinity for proximal binding near genes over expressed in liver tumors 

compared to adjacent normal tissue, the tissue-derived DAP binding sites we identified here 

showed a corresponding affinity for proximal binding in genes with decreased expression in 

tumors. Furthermore, tissue-derived DAP binding sites exhibited higher enrichment for somatic 

mutations compared to flanking regions than that observed in HepG2 cells. These observations 

suggest that our data are well suited to inform investigations into cancer-mediated disruptions of 

cis-regulatory elements in healthy liver. A higher enrichment for overlap with SNPs associated 

with liver related phenotypes via previous GWAS studies further suggests this utility may 

expand beyond cancer as well. 

 

 We have also provided one possible approach to effectively using our DAP occupancy data to 

prioritize impactful non-coding sequence variations, which was validated by observations of 

conservation, allele-specific bias in DAP occupancy at sites of heterozygous SNPs, and in vitro 

reporter assays. Several putative DAP-disruptive eQTL SNPs were associated with relevant 

phenotypes to liver tissue, including glucose homeostasis, drug metabolism and circulating lipid 

levels, and therefore represent a promising resource for future mechanistic follow-up 

experimentation. Of particular interest is the SNP rs11870935, which has previously been 

identified as GWAS SNP significantly associated with several risk factors for cardiovascular 

disease including LDL cholesterol and circulating triglyceride levels (Teslovich 2010) and 
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characterized as an intronic/promoter liver eQTL SNP for KPNB1, a gene encoding an importin 

beta subunit critical for nucleocytoplasmic transport regulating cholesterol biosynthesis and 

insulin resistance via SREBP and NF-kB respectively (Nagoshi and Yoneda 2001; Wang et al. 

2015). We found the alternate allele for this SNP ranked in the top 0.1% of all eQTL SNPs for 

inducing cryptic RXRA binding and was capable of driving increased expression in an in vitro 

reporter assay in HepG2 cells. 

 

There are important limitations to our study. First, we prioritized the breadth of factors assayed, 

which constrained us to conducting assays on only two individuals. This limits our ability to 

make conclusions in several important areas such as constructing reasonable estimates of the 

natural variability of DAP occupancy and identifying robust associations between DAP 

occupancy and donor demographics like age, sex or ethnicity. Furthermore, we have assayed 

only a small portion of the known DAPs expressed in humans (Fulton et al. 2009) and 

repressive factors are particularly underrepresented in our sample. It is likely sampling a larger 

number of DAPs will provide more insight into the magnitude and complexity of DAP-

interactions and uncover more putatively disruptive regulatory sequence variants. 

 

Despite the significant amount of work to be done in fully characterizing the regulatory 

landscape of the human genome, the application of genomic techniques has shed light on the 

high level of coordination required for the precise, spatiotemporal control of gene expression. 

Although painstaking efforts by large consortia have greatly contributed to our understanding of 

these intricate molecular processes, one notable hurdle that remains is validating functional 

genomic data generated in cell culture models in tissues. To this end, we generated this 

comprehensive dataset of genome-wide DAP binding events in two healthy human liver tissues 

and provided an analytical overview providing insight into gene regulation in tissue and disease 

related disruptions. We believe that this work will serve as an important resource to the research 
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community and will further facilitate a broader functional genomic investigation of DAP functions 

across an array of additional human tissues. By systematic integration of genomic datasets from 

complementary efforts using cellular and tissue models, the complexity of regulatory genome 

architecture will be steadily uncovered. 

 

Methods 

ChIP-seq experimentation and DAP interaction analysis  

Tissue procurement 

Liver tissue was obtained from both deceased donors and flash frozen with liquid nitrogen at the 

time of organ procurement through Mid-America Transplant Services/Washington University (St. 

Louis, MO). Research consents from donor families were obtained.  

Chromatin immunoprecipitation and next-generation sequencing 

ChIP-seq experimentation was performed using a previously established method (Savic et al. 

2013). Briefly, for each ChIP-seq replicate in each liver, an independent dry pulverization was 

performed in Covaris tissueTUBES attached to glass vials. After pulverization, tissue was 

collected in the attached vial, fixed, washed, and stored as a pellet at -80oC. To avoid bias from 

batch effects, each replicate for each ChIP experiment was prepped together in a single batch 

(resulting in two total batches) and the ChIP assay and subsequent library preparations were 

conducted as previously reported (Reddy et al. 2012). Antibodies used for ChIP-seq assays are 

listed in Supplemental Table 16. All antibodies have been previously used in conjunction with 

cell line based ChIP experiments conducted at HudsonAlpha and made publically available 

through the ENCODE Project. All ChIP-seq libraries were run on an Illumina HiSeq2500 

sequencer using 50bp single-end sequencing. Binding sites were identified using the MACS 

peak caller using an mfold cutoff of 15 (Zhang et al. 2008) while enriched binding motifs were 

identified through MEME (Bailey et al. 2009). Narrow peaks were defined as 100bp segments of 
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DNA centered on the peak summit. ChIP-seq replicates were used to identify concordant peaks 

for downstream analysis. Concordant peaks were defined as narrow peaks that were present in 

both replicate and overlapped by at least one base pair. 

DAP-interaction analysis 

Normalized binding intensity at the union of all narrow peak DAP binding sites in each tissue 

was obtained by merging all narrow peaks, determining the total number of reads that were 

mapped to each merged region for each ChIP experiment, normalizing these values by the total 

number of reads mapped for each ChIP experiment (in other words, converted to reads per 

million), and constructing a Spearman correlation matrix for all factors in each tissue (Quinlan 

2014). To identify DAP binding clusters, hierarchical clustering was performed on the correlation 

matrices for all pair-wise factor combinations and plotted as a heatmap. The correlation matrix 

was also used to construct a network diagram of DAP interactions with the R package “qgraph” 

(Epskamp et al. 2012). Histone modifications were obtained from the Epigenome Roadmap 

Project (Consortium et al. 2015). The total amount of genome covered by merged narrow peaks 

from the adult liver was compared to an equivalent number of matched null sequences 

generated from the Beer Lab galaxy (http://kmersvm.beerlab.org) “Generate Null Sequence” 

function allowing 2% repeat and GC content error. To assess conservation at binding sites with 

increasing numbers of DAPs bound, narrow peaks were first merged in a manner that tracked 

the number of overlapping factors bound at a given site. Next, mean GERP scores were 

determined for each site using base-wise GERP rejected substitution scores from the Sidow lab 

website (http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_scores.tar.gz). To 

obtain histone modification intensities at each merged peak, BigWig files were obtained for adult 

liver tissue from the Epigenome Roadmap data portal 

(http://egg2.wustl.edu/roadmap/web_portal/) and converted to BEDgraph files with the UCSC 

genome browser (https://genome.ucsc.edu/goldenpath/help/bigWig.html) “bigWigtoBedGraph” 

function. Mean BedGraph intensities, calculated as fold change over a reverse cross-linked 
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control, were calculated for each merged peak. Each DAPs relative overlap with a histone mark 

was calculated by obtaining liver tissue narrow peak BED files for each histone modification 

from the data portal and calculating the fraction of DAP narrow peaks that overlapped with a 

given histone modification peak. 

Whole-genome sequencing and allele-specific binding analysis 

10X Chromium, whole genome sequencing and phased BAM and VCF files were generated 

from frozen liver tissue from each donor via the 10X genomics longranger pipeline by the 

HudsonAlpha Genomic Services Lab (https://gsl.hudsonalpha.org/information/10X). Allele bias 

in the adult liver was assessed with ChIP-seq data using the R package “BaalChIP” 

(DeSantiago et al. 2016). BaalChIP requires binary alignment/map (BAM) files generated from 

replicate ChIP-seq experiments, a BAM file from genomic DNA (gDNA) sequenced, and a VCF 

file with heterozygous SNPs overlapping previously called ChIP-seq binding sites. BaalChIP 

calculates expected allele frequencies from gDNA BAM files, filters SNPs with “MAPQ” value 

<15 and “QUAL”<10, filters SNPs in regions with UCSC mappability scores<1 or present in 

UCSC blacklisted mappability tracks and repeat regions, adjusts for reference mapping bias, 

filters possible homozygous SNPs, and uses a beta-binomial Bayesian model to detect allele 

specific binding events. BaalChIP output consists of corrected allelic ratios of reads overlapping 

each heterozygous SNP and a Boolean variable indicating whether significant allele bias was 

detected at SNP. A pair-wise Spearman correlation matrix was generated comparing allele bias 

at SNPs passing BaalChIP quality filters for each pair of factors. At least 25 peaks had to pass 

quality filters for a pair of factors to be included in the analysis (30 out of 380 possible pairs 

were removed). 

Regulation of liver-specific gene expression 

RNA extraction and sequencing and alignment 

Four independent tissue pulverization, as described previously, were performed on each liver. 

RNA was extracted from pulverized samples using Qiagen RLT buffer +1% BME. RNA was 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111385doi: bioRxiv preprint 

https://doi.org/10.1101/111385
http://creativecommons.org/licenses/by/4.0/


	
   26	
  

purified from 350 uL of tissue lysate using the Norgen Animal Tissue RNA purification kit. RNA-

seq libraries were generated using Tn-RNA-seq, a transposase-mediated construction method, 

as previously described (Gertz et al. 2012b). All replicates were prepped in a single batch and 

and sequenced using an Illumina HiSeq 2500 to generate 50bp paired-end reads. Sequencing 

reads were aligned using a previously described pipeline (Alonso et al. 2017). Briefly, reads 

were trimmed using TrimGalore with default settings prior to being aligned and converted into a 

raw count table using STAR (Dobin et al. 2012). Percent unique alignment was consistent 

across samples and ranged from 75 to 81% uniquely aligned reads. Transcripts were aligned to 

hg19 reference genome and the genomic coordinates of all transcripts were obtained from the 

Ensembl genome browser (http://useast.ensembl.org/index.html) grch37_E75 gene transfer 

format (GTF) file. Gene expression levels were normalized to transcript length as well as total 

read depth, and expressed as transcripts per kilobase million (TPM). 

Allele-specific expression analysis 

Allele specific expression was calculated for each expressed heterozygous SNP using the 

GATK “ASEReadCounter” function according to previously described best practices (Castel et 

al. 2015). SNPs with a read depth less than 10, less than 5 reads assigned to each allele, had a 

“MAPQ” value <10 and “QUAL” value <2, and had a UCSC genome browser mappability score 

<1 were filtered prior to analysis. A simple binomial test using the R “binom.test” was performed 

to assess the significance of the observed number of reference reads out of the total number of 

reads at each SNP with the null ratio assumed to be the average genome-wide reference bias 

of 0.5397 after performing quality filtering. Only SNPs present within the same phase set 

(labeled PS within the phased .VCF file INFO column) were used in DAP-binding and 

expression allele bias correlations. Ninety-five percent confidence intervals for this analysis 

were generated by randomly shuffling DAP overlapping and expression SNP pairs that were 

within a given distance threshold and assessing the correlation 100 times. 

Gene set-ChIP binding proximity analysis 
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Reactome pathway information was obtained from http://www.reactome.org/pages/download-

data/ (Fabregat et al. 2016). Promoter-proximal pathway enrichment was calculated as follows. 

For a given pathway, the distribution of distances from the TSS of each gene to the nearest 

binding site for a given factor was compared to the distribution of TSS to nearest binding site 

distances for the entire transcriptome as previously described (Savic et al. 2016) and 

significance was determined using the non-parametric Kologomorov-Smirnov test. Concordant 

narrow peaks that were present in all replicates from both livers were used for pathway analysis. 

Mean pathway expression was calculated as the mean TPM normalized expression for each 

gene in a given pathway. Median RPKM normalized expression levels of each transcript for 

each tissue were obtained from the GTEx data portal (GTEx_Analysis_v6p_RNA-seq_RNA-

SeQCv1.1.8_gene_median_rpkm.gct.gz). Tissue specific transcripts were defined as transcripts 

that had an RPKM value greater than 2 and a 5-fold higher expression in a given tissue 

compared to the average expression in all remaining GTEx tissues. Replicate BAM files for 

each protein factor analyzed in our human tissue donors, except for EGR1, were obtained from 

previous work in our group in HepG2, which is publically available at the ENCODE data portal 

(https://www.encodeproject.org). BAM files were processed as described above for the liver 

tissue ChIP-seq experiments prior to analysis. 

DAP-binding site overlap with GTEX eQTL SNPs 

GTEx eQTL sites were obtained with permission from the GTEx project download portal 

“GTEx_Analysis_v6p_eQTL.tar” file. Binding site-eQTL overlaps were assessed with adult liver 

replicate concordant narrow peaks. Enrichment for liver eQTL overlap was assessed by 

comparing the observed significant (GTEx Q-value <0.05) eQTL overlap to 1000 random 

permutations of non-significant SNPs (GTEX Q-value>0.05) that passed the GTEx consortium 

quality filters. Null SNPs were matched to significant eQTL SNPs for distance to a TSS and 

minor allele frequency based on the Thousand Genomes Project data 

(http://www.internationalgenome.org). Matching was performed by binning SNPs into twenty 
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quantiles based on distance to the nearest TSS and then separately binning SNPS into twenty 

quantiles based minor allele frequencies. Successive rounds of randomly sampling was then 

performed such that number of SNPs sampled from each bin was equivalent to the number of 

significant eQTLs present in each bin at each round. Enrichment for overlap with liver-specific 

eQTLs was performed in a similar manner except percent overlap with eQTLs with a GTEx q-

value < 0.05 only in liver was compared to tissue specific eQTLs in all other tissue types. The 

number of tissue-specific eQTLs ranged from ~2500 to ~25000 and liver fell roughly at the 

median with ~5000 eQTLs. To assess relative eQTL enrichment between DAPs a linear model 

was fit regressing the number of observed significant eQTL overlaps by the total number of 

binding sites for each factor (Number of Significant eQTL Overlapping Sites ~ Number of Total 

Sites) with the R “lm” function. The relative enrichment for each factor was assessed as the 

residual error for each factor from the expected overlap fit by the linear model.  This enrichment 

was compared to the coefficient of variation or relative standard deviation (σ/µ) to all genes with 

TSSs within 5Kb (and a variety of other thresholds) of a given factor’s binding site. 

DAP-binding site overlap with NHLBI GRASP GWAS SNPs 

The NHLBI GRASP2.0 catalog of GWAS studies 

(https://s3.amazonaws.com/NHLBI_Public/GRASP/GraspFullDataset2.zip) was used to obtain 

genomic coordinates of published GWAS SNPs.  All SNPs present in the catalog were used for 

analysis. Prior to analysis, phenotype terms relevant to liver physiology were selected for 

comparing HEPG2 and Tissue ChIP-seq experiments. Next, overlapping binding sites from all 

DAPs (excluding EGR1, which wasn’t assayed in HepG2) were merged into a master binding 

site list and GWAS SNPs associated with each phenotype in the GRASP catalog located in a 

HEPG2 or adult tissue binding site were counted. A simple Fisher’s exact test was performed 

comparing the proportion of each individual GWAS phenotype term’s SNPs that fell within a 

binding site to the total number GWAS SNPs in the GRASP catalog that overlapped a binding 

site.  
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Prioritizing impactful non-coding variation 

Support vector machine training 

 Support vector machines (SVMs) were trained on replicate-concordant narrow peak sites from 

the adult liver using a method previously established (Lee 2016; Ghandi et al. 2014).  Briefly, 

genome sequence was obtained in FASTA format for each narrow peak using the Bedtools 

“getfasta” command. A GC content, repeat content, and length matched set of null peak sites 10 

times greater in number than the number of concordant peak sites observed for each factor was 

obtained from the kmersvm galaxy web site (http://kmersvm.beerlab.org) using the “Generate 

Null Sequence” function. SVMs were trained on narrow peak and matched background 

sequences using gapped 10-bp kmers and allowing for 3 non-informative bases using the 

“gkmtrain” executable obtained from the ls-gkm github webpage (https://github.com/Dongwon-

Lee/lsgkm). All other settings were left at default. This resulted in 20 SVMs, one for each DAP 

analyzed. Model performance was determined using receiver-operator characteristic area under 

the curve (ROC-AUC) and precision recall area under the curve (PR-AUC) on predictions from 

5-fold cross validation. ROC-AUC and PR-AUC curves were constructed using the “PRROC” 

package in R.  

Delta binding score and GERP Correlation 

To determine the relationship of conservation and the importance of each base pair in predicting 

binding site status in the SVM, we performed individual in silico mutations of every reference 

sequence nucleotide in each narrow peak site by mutating them to the three other possible 

alternates for each DAP. This resulted in 100bp sequences with a single base-pair change for 

each base in the reference narrow peak, generating a total of 300 mutant sequences for each 

narrow peak. Each mutant sequence was scored with the original SVM trained on its respective 

DAP. The classifier value obtained for the 3 possible alternate alleles at each reference base 

was averaged and then subtracted from the reference sequence classifier value to obtain a 

delta binding score for each base within each narrow peak, indicative of the relative importance 
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of each base for SVM classification performance. These scores were correlated with GERP-RS 

conservation and allele-specific bias at each site.  

Scoring GTEx eQTL SNPs 

To identify GTEx liver eQTL SNPs likely to disrupt DAP binding or cause de novo DAP binding, 

we obtained a 100-bps of genome sequence centered on each liver eQTL SNP using the 

BEDTools “getfasta” command to generate two, 100bp sequence windows containing the 

reference or the alternate allele. The reference and alternate sequences were subsequently 

scored with the each of the 20 SVMs trained on each DAP analyzed. The reference classifier 

value was subtracted from the alternate allele to obtain a delta binding score as described 

above. Putative eQTL SNPs with DAP loss of binding had to overlap with a replicate-concordant 

narrow peak binding site, have a delta enhancer score in the bottom 0.1 percentile of all eQTL 

SNPs and possess a mutant classifier value less than 0. Conversely, putative eQTL SNPs with 

DAP gain of binding were defined as those not overlapping with a replicate-concordant narrow 

peak site and were required to yield a delta enhancer score in the top 99.9 percentile and 

possess a mutant classifier value greater than 0. Putative gain and loss of binding eQTL SNPs 

were queried in the NHLBI GRASP2.0 catalog of GWAS studies for potential disease relevance 

(Eicher et al. 2015). Enrichment for GRASP phenotype terms was assessed by Fisher’s exact 

test comparing the proportion of eQTL SNPs scoring in the top 1% of delta binding scores and 

significantly associated with a given GRASP phenotype term to the proportion of SNPs 

significantly associated with a given GRASP phenotype term in the entire population of liver 

eQTL SNPs. 

In vitro reporter assays 

All reporter assays were performed in HepG2 hepatocarcinoma cell lines. We randomly 

selected five liver eQTL SNPs in the top 0.1% of all delta binding scores. Reference and mutant 

sequences for each SNP were cloned into the pGL4.23 vector (Promega) multiple cloning site 

upstream of a minimal promoter driving luciferase (luc2) expression using Gibson Assembly 
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(Gibson Assembly Master Mix, NEB). Plasmid DNA was extracted from three separate colonies 

with the Spin Miniprep Kit (Qiagen) and sequence verified with Sanger sequencing (MCLAB, 

San Francisco, CA). Each colony was treated as a separate biological replicate for a given 

sequence. HepG2 cells were seeded at 40,000 cells per well in antibiotic free DMEM with 10% 

FBS in a 96-well plate. After 24 hours, 300ng of plasmid DNA for each biological replicate was 

transfected into HepG2 cells using FuGENE (Promega) in duplicate, resulting in 6 total 

replicates (3 biological X 2 technical) per reference or mutant sequence. Luciferase activity was 

measured 48-hours post-transfection with a 2-second integration time on a LMax II 384 

Luminometer (Molecular Devices). Background subtracted luminescence values for each SNP 

were z-scored. Significance in expression was determined using a 2-tailed Student’s T-test. 

Liver cancer analyses 

RNA-seq analysis 

RNA-seq, DNA methylation and copy number variation data was obtained with permission from 

NCI-GDC data portal (https://gdc-portal.nci.nih.gov/). Raw RNA-seq read counts were obtained 

from matched tumor and adjacent normal pairs for 49 TCGA patients. Differential expression 

between tumor and adjacent normal was determined using DESeq2 (Love et al. 2014) using 

default settings. Enrichment for proximal binding near differentially expressed genes was 

performed using the Kologomorov-Smirnov test-based approach described above by comparing 

differentially expressed genes (DESeq2 FDR<0.001, n=9,832) with a background set of genes 

that received at least one sequencing read in one sample.  

DNA methylation analysis 

Methylation beta values from the Illumina Infinium HumanMethylation450 chip array were 

obtained for 50 matched tumor and adjacent normal tissue pairs.  Probes with missing values 

(n=105,836) or with variance less than 0.001 (n=91,495) were removed prior to the analysis. 

Differential methylation was determined using the R package “samr” (Tusher et al. 2001). The 

non-parametric “SAM” function was used with the “resp.type” set to “Two class paired” and 
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“nperms” set to 3,000. Differentially methylated probes were defined as those with a median 

beta value difference greater than 0.1 between tumor and adjacent normal tissues and a SAM 

q-value less than 5 (n=85,088). The percent of replicate-concordant narrow peaks overlapping a 

differentially methylated probe for each DAP was determined using the BEDTools “intersect” 

function. This was compared to the percent in overlap using 1000 randomly-selected probes of 

equivalent number.  

Somatic copy number variation analysis 

Somatic Affymetrix SNP 6.0 based DNA copy number data was obtained for 376 tumors from 

the TCGA data portal. Only deep deletions and amplifications classified as genome segments 

with a normal-masked segment mean with an absolute value greater than 1.0 were used for 

analysis. The percentage of deleted or amplified binding sites for each DAP in at least 5 patients 

was computed using the Bedtools “intersect” command on CNV data obtained for all patients.  

Somatic single nucleotide variant analysis 

Somatic mutation data was obtained from the International Cancer Genome Consortium (ICGC) 

data release 23 from the LIRI-JP project consisting of somatic SNVs from 258 patients with liver 

cancer (Fujimoto et al. 2016). A total of 2,691,076 SNVs were found in this dataset. Somatic 

mutation burden at the binding site and flanking regions for each DAP were obtained by 

intersecting the somatic mutation coordinates with contiguous 10-bp bins spanning the binding 

site regions, along with 1000bp of flanking sequence. A similar analysis was performed on the 

Thousand Genomes (TG) project SNVs by randomly sampling mutations from the Phase 3 

variant call format file while conserving the nucleotide mutation proportions relative to the 

observed cancer mutations (Auton et al. 2015). A simple logistic regression was performed with 

the “glm” function in R to test for significant enrichment of somatic mutation burden within 

binding sites for each DAP compared to flanking regions, while correcting for GC content as 

follows: 

Binding Site Status ~ GC content + Somatic Mutation Count 
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where binding site status is a binary variable indicating whether a 10-bp window is contained 

within a narrow peak or a flanking region, GC content is a continuous variable ranging from 0 to 

1 indicating the fraction of G or C nucleotides in a 10bp window and Somatic Mutation Count is 

the number of SNVs found within a 10bp bin. To identify putative binding-disruptive somatic 

SNVs, a similar method was used as described above for GTEx eQTL SNPs. Briefly a 100-bp of 

sequence centered on the SNV was obtained and scored with all 20 SVMs trained on each DAP 

for the reference and alternate allele. The delta-binding scores were calculated as the difference 

in SVM classifier or fitted decision values between the mutant and wild-type sequence. 

 

Data Access 

All data is freely available at the ENCODE data portal (https://www.encodeproject.org) under the 

sample accession numbers ENCDO882MMZ and ENCDO060AAA. 
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Figure Legends 

Figure 1. (A and B) Heatmaps of spearman correlation matrix of normalized DAP binding 

intensities at all observed binding sites in the adult (A) and child (B) liver respectively. (C) 

Stacked bar plot displaying the number of peaks for each TF.  Peaks are broken in to those that 

are shared among both replicates of both donors (shared, green), are shared between a donor 

and one replicate of the other donor (likely shared, purple), are specific to the adult donor (adult-

specific, red), and are specific to the child donor (child-specific, blue). (D) Cumulative number of 

base pairs covered per binding site included in adult liver observed data (red) and null regions 

(black) matched for length, GC content, and repeat content. (E) Heatmap of a pair-wise 

Spearman correlation matrix, ordered identically to (1A) indicating the correlation of allele bias 

at shared peaks from the adult donor that overlap a heterozygous SNP for each pair of factors. 

The color of each panel indicates the strength of the correlation with gray indicating less than 25 

peaks passed the quality filters for allele bias analysis for a given pair.  

 

Figure 2. (A) Pie chart representing the percent of genes containing a specified number of 

bound DAPs within 1Kb of their TSS. Color scale reflects the number of neighboring DAPs 
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required to be included in each slice. (B) Expression level of genes binned by the number of 

DAPs bound within 1Kb of their TSS. Data shown for the adult donor, child data shown in 

Supplemental Figure 5. (C) Correlation between expression level of genes and the number of 

factors bound (as described in Figure 2B above) for a range of distance to TSS thresholds. (D) 

Correlation between RNAP2 binding and neighboring gene expression allele bias over a range 

of distance thresholds.  Ninety five percent confidence (red) intervals calculated by randomly 

shuffling all SNP pairs that met a distance threshold 100 times and computing a null correlation 

distribution. (E) Bar plot showing the fraction of expressed SNPs with significant allele bias with 

varying numbers of neighboring DAPs exhibiting allele bias within 20kb. Significance thresholds 

of binomial test P<0.01 (red), P<0.001 (blue), and P<0.0001 (black). 

 

Figure 3. (A) Heatmap of KS-test statistic comparing distances of TSSs in a pathway to the 

nearest binding site for a given DAP compared to the background transcriptome for each 

Reactome pathway and each DAP. Concordant sites between both livers were used as input to 

this analysis. The color bar on the left indicates the mean expression level of genes within a 

pathway. (B) Representative private pathway cumulative distribution function plot demonstrating 

enrichment for proximal GABPA (blue), SP1 (green), and YY1 (red) binding. (C and D) Dots 

represent KS-statistic of enrichment for proximal binding of each factor to liver (red/purple), skin 

(blue) and cortex (green) -specific genes in adult liver tissue (C) and HepG2 cells (D). Data from 

the child donor is similar to that of the adult donor (Supplemental Figure 10). 

 

Figure 4. (A) Red dot indicates the number of eQTLs falling within a DAP binding site relative to 

the gray boxplots, which represent 1000 randomly sampled null SNPs matched for distance to 

TSS and minor allele frequency. (B) Relative rank of liver-specific eQTL compared to all GTEx 

tissue specific eQTLs in DAP binding sites assayed in HepG2 cells (blue) and adult liver tissue 

(red). (C) Difference in enrichment (delta Fisher’s exact test odds ratio) for SNPs associated 
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liver-related phenotypes between binding sites for 19 common DAPs assayed in HepG2 cells 

and liver tissue. GWAS terms represented by bars are provided in Supplemental Table 9A. 

 

Figure 5. (A) Diagram representing the pipeline for generating SVMs capable of distinguishing 

DAP binding sites from matched null regions and scoring the predicted impact of each mutation 

on each DAP. (B) Boxplots representing the GERP scores at each delta binding score 

percentile (higher percentile indicates increased predicted disruption of binding) from in silico 

mutations for CTCF. (C) Boxplots of CTCF binding site-overlapping heterozygous SNPs 

predicted to be in the top ~1% for decreasing binding affinity (red), to be in the top ~1% for 

increasing binding affinity (blue), and to have no significant impact on binding affinity (black). Y-

axis indicates the fraction of ChIP reads mapping to the reference allele (D) SVM scores for 

reference and alternate GTEx liver eQTL SNP alleles for CTCF. Red dots indicate SNPs that 

hold a positive delta binding score in the top 0.1 percentile. Blue dots indicate SNPs that hold a 

negative delta-binding score that falls in the bottom 0.1 percentile of all scores. (E and F) 

Boxplots representing the luciferase activity of reference (red) and mutant (blue) sequence in 

eQTL SNPs predicted to disrupt observed DAP binding (E) and induce aberrant TF binding (F). 

* indicates a two-tailed t-test P<0.05 and ** indicates a P<0.005. 

 

Figure 6. (A) Color bars indicating the KS-test statistics for enrichment of binding of each DAP 

proximity to the TSS of genes with significantly decreased (blue) or increased (red) expression 

in tumor tissue compared to adjacent normal tissue. (B and C) Percent of probes with 

significantly increased or decreased methylation in tumor compared to adjacent normal tissue 

overlapping a binding site of each DAP. Red dashed lines indicate 95% confidence intervals 

based on random sampling of an equivalent number of null probes. (D and E) Bars representing 

the number of somatic mutations (D) or matched 1000 Genome (E) mutations observed at 

contiguous 10bp bins covering all FOXA2 peaks and flanking 1kb regions. (F) Delta binding 
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scores of all binding site overlapping cancer somatic SNVs (red) or matched 1000 Genome 

mutations (blue). (G) KS-test statistics for enrichment of binding of each DAP proximal to the 

TSS of genes with significantly increased or decreased expression in tumor tissue compared to 

adjacent normal tissue in HepG2 cells (blue) and adult liver tissue (red) for all 19 commonly 

assayed DAPs. Regions are shaded according to whether HepG2- or tissue-derived peaks 

display greater enrichment. (H) Mean somatic mutation burden of DAP binding sites over 

flanking regions in HepG2 cells (blue) and adult liver tissue (red) for all 19 commonly assayed 

DAPs. Regions are shaded according to whether HepG2- or tissue-derived peaks display 

greater enrichment. 

 

Supplemental Figure Legends 

Supplemental Figure 1. Correlation network diagram showing relationships between 

normalized DAP binding intensities at all observed binding sites of both livers. Blue and red 

nodes indicate adult and child binding sites, respectively, and the width of each edge indicates 

the strength of the spearman correlation between each factor. 

 

Supplemental Figure 2. Boxplots showing the spearman correlations of normalized binding 

intensities between the same DAP across donors and all DAP pairs for the adult and child 

donor. 

 

Supplemental Figure 3. Bar plot indicating the proportion of factors bound at merged DAP 

binding sites in which FOXA1 is bound (blue) or is absent (red). 

 

Supplemental Figure 4. (A) Mean GERP score of genomic regions containing an increasing 

number of factors bound. (B-E) Epigenome Roadmap project histone mark fold enrichments 
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over background at sites with increasing numbers of factors bound. 

 

Supplemental Figure 5. (A) Pie chart representing the percent of genes containing a specified 

amount of bound DAPs within 1Kb of their TSS for the child liver. Color scale reflects the 

number of neighboring DAPs required to be included in each slice. (B) Expression level of 

genes binned by the number of DAPs bound within 1Kb of their TSS for the child liver.  

 

Supplemental Figure 6. Scatter plot indicating the number of RNA-seq reads mapping to the 

reference and alternate allele at expressed heterozygous SNPs in the adult liver. Red dots 

indicate SNPs that hold a Bonferonni corrected P-value<0.05 for differential allele expression 

while blue dots indicate SNPs with a P-value>0.05. 

 

Supplemental Figure 7. Plot indicating the correlation in DAP binding allelic bias and 

neighboring gene expression allelic bias at a variety of binding site-TSS distance thresholds for 

each DAP. A positive correlation indicates a DAP tends to predominantly bind on the same 

allele that is predominantly expressed. A correlation of zero is indicated by the blue dashed line. 

Ninety five percent confidence (red) intervals calculated by randomly shuffling all SNP pairs that 

met a distance threshold 100 times and computing a null correlation distribution. 

 

Supplemental Figure 8. Diagram visually demonstrating the TSS-DAP binding proximity-based 

pathway analysis for identifying cis-regulatory networks for two DAPs.  

 

Supplemental Figure 9. Dots represent KS-statistic of enrichment for proximal binding of each 

DAP to liver (red/purple), skin (blue) and cortex (green) -specific genes in child liver tissue. 

 

Supplemental Figure 10. Enrichment for proximal binding to liver specific expression analysis, 
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as shown in Figure 3C-D, over a range of fold enrichment threshold cutoffs. From top to bottom, 

tissue specific transcripts were defined as those with a mean RPKM of 2 in a given tissue of 

interest and 2, 3, 4, and 5-fold increased mean expression in the tissue of interest relative to the 

mean expression across all other tissues. Dots represent KS-statistic of enrichment for proximal 

binding of each DAP to liver (red/purple), skin (blue) and cortex (green) -specific genes in adult 

liver tissue (left) and HepG2 cell line (right). 

 

Supplemental Figure 11. Red dot indicates the percent of liver-specific eQTLs overlapping 

binding sites for each DAP relative to the boxplots representing the percent overlap of all other 

GTEx tissue-specific eQTLs. 

 

Supplemental Figure 12. (A) Red dot indicates the number of eQTLs falling within a HepG2 

DAP binding site relative to the gray boxplots representating 1000 randomly sampled null SNPs 

matched for distance to TSS and minor allele frequency. Plot is the HepG2 compliment to 

Figure 3A. (B) Red dot indicates the percent of liver-specific eQTLs overlapping binding sites for 

each HepG2 DAP relative to the boxplots representing the percent overlap of all other GTEx 

tissue-specific eQTLs. Plot is the HEPG2 compliment to Figure 3B. 

 

Supplemental Figure 13. Mean GERP score of all adult peaks for each DAP. 

 

Supplemental Figure 14. (A) ROC curve AUC values for SVMs trained on each DAP. (B) 

Precision-recall curve AUC vales for SVMs trained on each DAP.  Representative plot for SVM 

models in ATF3. Plots the frequency of each 10mer in ATF3 binding sites against its SVM 

weight. Color of each point reflects the GC content of the 10mer. 

 

Supplemental Figure 15. Paneled pairs of plots for each DAP overlapping at least one SNP 
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with significant allele bias and at least one SNP with a delta binding score falling in the top 

percentile (15/20). The left figure for each factor is a scatterplot demonstrating the correlation 

between delta binding score and the observed ChIP-seq allele bias at heterozygous SNPs 

overlapping a  binding site. Red points indicate SNPs with significant bias towards an alternate 

allele, blue points indicate bias towards the reference allele, and black points indicate no 

significant allele bias was observed. The right figure consists of boxplots of binding site-

overlapping heterozygous SNPs predicted to be in the top ~1% for decreasing binding affinity 

(red), to be in the top ~1% for increasing binding affinity (blue), and to have no significant impact 

on binding affinity (black). Y-axis indicates the fraction of ChIP reads mapping to the reference 

allele. 

 

Supplemental Figure 16. Fisher’s p-value of enrichment for NIH GRASP GWAS catalog terms 

associated with putative DAP-disruptive SNPs relative to background enrichment in all GTEx 

liver eQTL SNPs. 

 

Supplemental Figure 17. Panels for each DAP showing the number of cancer somatic 

mutations (top left) or matched 1000 Genome (top right) observed in each DAP peak and 

flanking 1Kb region. The percent base pair composition at each position (bottom left) and delta 

binding scores for cancer somatic mutations and matched 1000 Genome mutations (bottom 

right) are plotted as well. 

 

Supplemental Figure 18. The number of liver cancer somatic mutations observed for each 

nucleotide per occurrence of that nucleotide in the genome. Colors within each bar represent 

the proportion of nucleotides to which the reference allele is mutated. 
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