New Results
16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model
View ORCID ProfileRuibang Luo, View ORCID ProfileMichael C. Schatz, View ORCID ProfileSteven L. Salzberg
doi: https://doi.org/10.1101/111393
Ruibang Luo
1Department of Computer Science, Johns Hopkins University,
2Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine,
Michael C. Schatz
1Department of Computer Science, Johns Hopkins University,
2Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine,
Steven L. Salzberg
1Department of Computer Science, Johns Hopkins University,
2Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine,
3Departments of Biomedical Engineering and Biostatistics, Johns Hopkins University

Article usage
Posted February 24, 2017.
16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model
Ruibang Luo, Michael C. Schatz, Steven L. Salzberg
bioRxiv 111393; doi: https://doi.org/10.1101/111393
Subject Area
Subject Areas
- Biochemistry
- Biochemistry (14172)
- Bioengineering (10826)
- Bioinformatics (34311)
- Biophysics (17654)
- Cancer Biology (14757)
- Cell Biology (20783)
- Clinical Trials (138)
- Developmental Biology (11180)
- Ecology (16502)
- Epidemiology (2067)
- Evolutionary Biology (20812)
- Genetics (13677)
- Genomics (19098)
- Immunology (14243)
- Microbiology (33154)
- Molecular Biology (13827)
- Neuroscience (72408)
- Paleontology (542)
- Pathology (2278)
- Pharmacology and Toxicology (3860)
- Physiology (6102)
- Plant Biology (12388)
- Synthetic Biology (3460)
- Systems Biology (8370)
- Zoology (1913)