New Results
16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model
View ORCID ProfileRuibang Luo, View ORCID ProfileMichael C. Schatz, View ORCID ProfileSteven L. Salzberg
doi: https://doi.org/10.1101/111393
Ruibang Luo
1Department of Computer Science, Johns Hopkins University,
2Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine,
Michael C. Schatz
1Department of Computer Science, Johns Hopkins University,
2Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine,
Steven L. Salzberg
1Department of Computer Science, Johns Hopkins University,
2Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine,
3Departments of Biomedical Engineering and Biostatistics, Johns Hopkins University
Posted February 24, 2017.
16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model
Ruibang Luo, Michael C. Schatz, Steven L. Salzberg
bioRxiv 111393; doi: https://doi.org/10.1101/111393
Subject Area
Subject Areas
- Biochemistry
- Biochemistry (14180)
- Bioengineering (10833)
- Bioinformatics (34333)
- Biophysics (17662)
- Cancer Biology (14762)
- Cell Biology (20788)
- Clinical Trials (138)
- Developmental Biology (11199)
- Ecology (16511)
- Epidemiology (2067)
- Evolutionary Biology (20826)
- Genetics (13683)
- Genomics (19111)
- Immunology (14250)
- Microbiology (33196)
- Molecular Biology (13845)
- Neuroscience (72493)
- Paleontology (543)
- Pathology (2278)
- Pharmacology and Toxicology (3860)
- Physiology (6104)
- Plant Biology (12395)
- Synthetic Biology (3464)
- Systems Biology (8377)
- Zoology (1913)