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ABSTRACT

The skyline plot is a graphical representation of estimated past scaled effective population size as a func-
tion of time. Its inference is based on models without an a priori assumption on a mathematical function
determining the shape of the demographic change, typically a constant piecewise model. Because of this,
it is considered to achieve a more realistic description of the complex demographies occurring in natural
populations. Currently, there are implementations of the skyline plot based on coalescent samplers and a
composite likelihood approach. In the present work we provide an equivalent implementation within the
Approximate Bayesian Computation (ABC) framework and provide an assessment of its performance
for microsatellite data. The method correctly retrieves the signal of contracting, constant and expanding
populations, although the graphical shape of the plot is not always an accurate representation of true
demographic trajectory. Because of the flexibility of ABC, similar approaches can be extended to other
type of data, to models with multiple populations, or to other parameters that could change through time,
such as the migration rate.

Inferring the historical demography of populations by means of genetic data is key to many studies
addressing the ecological and evolutionary dynamics of natural populations. Population genetics infer-
ence, with appropriate dating, can identify the likely factors (such as climatic events) determining the
demography of a species. With enough research resources, this can be done with an outstanding detail
(e.g. in humans, reviewed in Nielsen et al., 2017). Demographic inference can also be used to generate
null models for the detection of loci under selection (as discussed in Hoban et al., 2016).

At present, most of the methods to estimate demography from genetic data are based on the coalescent.
The coalescent (see Wakeley, 2008, for a review) is a mathematical model that describe the rate at which
genetic lineages coalesce (i.e. join in a common ancestor) towards the past forming the genealogy of the
sample. The coalescence probability depends on the effective population size at each time in the past, that
is, the demographic history of the population. Given a genealogy, the coalescent allows calculating the
likelihood of the demographic model. Inference is obtained by calculating the likelihood of the model
given the data, which requires to integrate over all possible genealogies for the data. This is approximated
by means of Monte Carlo algorithms known as coalescent samplers (see review by Kuhner, 2009).

Alternatively, the coalescent can be used to calculate the likelihood of the number of genetic differences
for a pair of gene copies under a given demographic model. This can be done for all pairs in a sample to
obtain a composite-likelihood (because pairs are not independent and they are related by their genealogy).
By ignoring this dependency, the composite-likelihood score can be used as a criterion to estimate
the parameters of the model with faster algorithms than the coalescent samplers although with lower
performance, particularly regarding confidence intervals (e.g. Navascués et al., 2009; Nikolic and Chevalet,
2014).

Coalescent models can also be used in the likelihood-free framework known as Approximate Bayesian
Computation (ABC, Tavaré et al., 1997; Beaumont et al., 2002). In this approach, the likelihood is
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substituted by the similarity between the observed data and simulated data generated from a given model.
Similarity is usually evaluated by means of a distance between observed and simulated summary statistics.
This distance allows select the simulations close to the observed data and reject those too far away.
Posterior probability distributions are estimated from the collection of parameter values used in the
accepted simulations (see Beaumont, 2010, for a review on ABC).

A classical way to address the estimation of past population size changes by these methods is to
assume simple parametric models, such as exponential, logistic or instantaneous demographic change.
However, these are sometimes considered too simple to describe the dynamics of real populations. In
the skyline plot methods (see Ho and Shapiro, 2011, for a review) the underling demographic model
consists in a piecewise constant population size model, i.e. the demographic history consists of several
periods of constant size, with instantaneous changes of sizes between each two consecutive periods.
The aim is to provide a more flexible framework that could capture the complex demography expected
in natural populations. Such models have been implemented in Markov chain Monte Carlo coalescent
samplers (software BEAST; Drummond et al., 2005; Minin et al., 2008; Heled and Drummond, 2008), an
importance sampling coalescent sampler (Ait Kaci Azzou et al., 2015) for the analysis of sequence data.
The incorporation of microsatellites to the software BEAST (Wu and Drummond, 2011) allowed to make
skyline plot inference for this type of data (e.g. Allen et al., 2012; Molfetti et al., 2013; Minhós et al.,
2016). Also for microsatellite data, a composite-likelihood approach has been developed (R package
VarEff; Nikolic and Chevalet, 2014).

It is worth noting that similar piecewise models of inference have been proposed in the context of
population genomics (e.g. Li and Durbin, 2011; Terhorst et al., 2016). The methods discussed above
assume a set of independent (unlinked) genetic markers. However, if a large proportion of the genome
has been sequenced, the studied polymorphism are no independent. Methods such as the Pairwise
Sequentially Markovian Coalescent (PSMC, Li and Durbin, 2011) and its successors profit from the
additional information from linkage disequilibrium for the inference. We will not further discuss this
family of methods because the focus of this work will be on datasets of independent molecular markers,
such as microsatellites, which remain reliable markers for low-budget projects. Note, however, the
PSMC-like implementation on ABC by Boitard et al. (2016).

The use of the skyline plot in the ABC framework was first proposed in Burgarella et al. (2012). Here,
we provide a suite of R scripts (DIYABCskylineplot) to produce approximate-Bayesian-computation
skyline plots from microsatellite data and evaluate its performance on simulated pseudo-data. We show
the method to be useful to detect population decline and expansion and discuss its limits. ABC skyline
plots are then build for four study cases (whale shark, leatherback turtle, Western black-and-white colobus
and Temminck’s red colobus) and compared with the demographic inference obtained by an alternative
full likelihood method.

METHODS

ABC skyline plot
For a demographic skyline plot analysis within the ABC framework, our model consisted of a single
population with constant size that instantaneously changes to a new size n times through time. The
parameters (from present to past, as in the coalescent model) the present scaled population size θ0 = 4N0µ

(where N0 is the effective population size in number of diploid individuals and µ is the mutation rate per
generation) which changes to θ1 at time τ1 = T1µ (where T is the time measured in generations), remains
at θ1 and then it changes to θ2 at τ2, and so on, until the last change to θn at τn. Note that other models
and parametrization could have been used for our purpose, as in the alternative model that we present in
the supplementary material section S1.2.

The objective of a standard ABC analysis would be to estimate the posterior distribution for each
parameter of the model. In our case, the parameters {(θi,τi); i ∈ [0,n]} have been treated as nuisance
parameters and we focused on inferring from them the trajectory of the scaled effective population size
along time, θ(t), as in Drummond et al. (2005). In order to approximate θ(t) we select m times of interest,
t j. Given a simulation k with parameters {(θk,i,τk,i); i ∈ [0,nk]}, derived parameters {θk(t j); j ∈ [1,m]}
are obtained as follows: θk(t j) = θk,i for i satisfying the condition τk,i ≤ t j < τk,i+1 (see Supplementary
Figure S1 for some examples). For each t j, inference of the derived parameters θ(t j) were obtained
following standard ABC procedures as described elsewhere (e.g. Beaumont et al., 2002). Median and
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95% highest posterior density (HPD) intervals of derived parameters θ(t j) were be used to draw ABC
skyline plots.

Simulations with different number of population size changes can be used for inference because
of the use of derived parameters θ(t j), which are common to all models. We set a the prior on the
number of constant size periods to be Poisson distributed with λ = ln(2) as in Heled and Drummond
(2008). This gives equal prior probability to stable populations (a single period of constant size) and
changing populations (two or more periods). Thus, posterior probability on the number of periods may
be used to discriminate between stable and changing demographies by estimating the Bayes factor of
one period (constant population size) versus several demographic periods (variable population size).
Posterior probabilities of contrasting models can be obtained by logistic regression as described elsewhere
(Beaumont, 2008).

We implemented this approach in a suite of R scripts (R Core Team, 2017) that we named DIYABCsky-
lineplot (Navascués, 2017). For each simulation the number of population size changes is sampled using
the prior probabilities. Via command line version of DIYABC (v2.0, Cornuet et al., 2014), parameter val-
ues, {(θk,i,τk,i); i ∈ [0,nk]}, are sampled from the prior distribution, coalescent simulations are performed
and summary statistics are calculated [mean across loci of the number of alleles, Na; heterozygosity, He;
variance of allele size, Va, and Garza and Williamson (2001) statistic, M. In addition, the Bottleneck
statistic (∆H; Cornuet and Luikart, 1996), which compares the expected heterozygosity given the allele
frequencies with the expected heterozygosity given the observed number of alleles, is calculated in R
from the summary statistics provided by DIYABC. Derived parameter values, {θk(t j); j ∈ [1,m]}, are
calculated from the reference table (i.e. table of original parameters and summary statistics values for all
simulations) produced by DIYABC and their posterior probability distributions are estimated in R using
the abc package (Csilléry et al., 2012).

Simulations
The method described above was evaluated on simulated data (pseudo observed data-set, POD) of
contracting and expanding populations. Declining populations had a present effective size of N0 = 100
diploid individuals that changed exponentially until time T , which had a value of 10, 50, 100 or 500
generations in the past, reaching an ancestral population sizes of NA, which had a value of 1000, 10
000 or 100 000 individuals. Expanding populations had a present population size of N0 with a value of
1000, 10 000 or 100 000 diploid individuals, which changed exponentially until reaching the size of the
ancestral population NA = 100 at time T , which had a value of 10, 50, 100 or 500 generations in the past.
For times older than T , the population size is constant at NA for all scenarios. In addition, we simulated
three constant population size scenarios with N taking a value of 1000, 10 000 or 100 000. Equivalent
scenarios were also evaluated in Girod et al. (2011) and Leblois et al. (2014). PODs were generated for
50 individuals genotyped at 30 microsatellite loci evolving under a generalised stepwise mutation model
(GSM, Slatkin, 1995). Mutation rate was set to µ = 10−3 and PGSM to 0.00, 0.22 or 0.74 (PGSM is the
parameter of a geometric distribution determining the mutation size in number of repeats). One hundred
replicates (i.e. PODs) were run for each scenario. Therefore, the mutation scaled parameter values are
for θ = 4Nµ: 0.4, 4, 40 or 400 and for τ = T µ: 0.01, 0.05, 0.1 or 0.5. PODs were obtained using the
coalescent simulator fastsimcoal (Excoffier and Foll, 2011).

Every POD was analysed with the same set of prior probability distributions that largely includes
all parameter values of simulations. Scaled effective size parameters, θi, were taken from a log-uniform
distribution in the range (10−3,104) and scaled times, τi, from a log-uniform distribution in the range
(2.5× 10−4,4). A uniform prior in the range (0,1) was used for mutational parameter PGSM . For each
replicate of each scenario, we obtained the skyline plot (median and 95%HPD intervals of the θ(t j)
posterior distributions) and estimated the Bayes factor between constant size and variable demography
by using logistic regression. Estimates of the mutational parameter PGSM were also obtained for each
POD. For each scenario, mean absolute error, bias and proportion of times the true value falls outside the
credibility interval were estimated.

Data sets
In addition to PODs, four real data-sets from the literature were re-analysed with the ABC skyline plot
described above: data from the whale shark (Rhincodon typus; Vignaud et al., 2014b), the leatherback
turtle (Dermochelys coriacea; Molfetti et al., 2013) and two species of colobus monkeys (the Western
black-and-white colobus, Colobus polykomos, and the Temminck’s red colobus, Procolobus badius
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temminckii; Minhós et al., 2016). Data were analysed with the same prior distributions as PODs except
for the colobus monkeys datasets, which consist of tetranucleotide markers. Previous evidence suggests
that tetranucleotide microsatellite mutations are mainly of only one repeat unit (e.g. Leopoldino and Pena,
2003; Sun et al., 2012). In order to incorporate this prior knowledge, half of the simulations had PGSM = 0
(i.e. a strict stepwise mutation model, SMM) and the other half had the parameter sampled from a uniform
distribution in the range (0,1).

For comparison, demographic history of the four real data sets was also explored using the MIGRAINE
software (http://kimura.univ-montp2.fr/˜rousset/ Migraine.htm) under the model of a single panmictic
population with an exponential change in population size. To infer model parameters, MIGRAINE uses
coalescence-based importance sampling algorithms under a maximum likelihood framework Leblois
et al. (2014) using OnePopVarSize model. In this model, MIGRAINE estimates present and ancestral
scaled population sizes (θ0 = 4N0µ and θA = 4NAµ) and the scaled time of occurrence of the past change
in population size (D = T/4N, going backward from sampling time, when the population size change
began). The past change in population size is deterministic and modelled using an exponential growth or
decline that starts at time D. Before time D, scaled population size is stable and equal to θA. MIGRAINE
allows departure from the strict SMM by using a GSM with parameter PGSM for the geometric distribution
of mutation sizes. Finally, detection of significant past change in population size is based on the ratio
of population size (θratio = θ0/θA). θratio > 1 corresponds to a population expansion and θratio < 1
to a bottleneck. If no significant demographic change is obtained, MIGRAINE is run again under a
model of stable demography (a single value of θ ) for parameter estimation. For the whale shark data set,
MIGRAINE analysis was already done in Vignaud et al. (2014b). For the leatherback turtle, MIGRAINE
was run using 20 000 trees, 200 points at each iteration and a total of 16 iterations. For the colobus
monkeys, we considered 2 000 trees, 400 points at each iteration and a total of 8 iterations.

RESULTS
Simulations
The general behavior of the method can be described from three example scenarios (contraction with
θ0 = 0.4, θ1 = 40, τ = 0.1, expansion with θ0 = 40, θ1 = 0.4, τ = 0.1 and constant size with θ = 40;
mutational model with PGSM = 0.22) and their results will be presented in the main text. These examples
correspond to intermediate parameter values; results for all simulations are available in the supplementary
material.

The main output of the analysis is the graphical representation (i.e. the skyline plot) of the inferred
demographic trajectory. It consists in a plot with three curves, representing the point estimate (median)
and 95%HPD interval of θ through time. Skyline plots obtained from PODs are congruent with the true
underlying demography simulated (Figure 1), except in the less favorable scenarios with very recent or
very small changes in population size (Supplementary Figures S2–S8). Although the trajectory of the
posterior median of θ and the true trajectory share the same trend (declining, increasing or constant), they
sometimes differ in magnitude or time-scale. This disparity is more prominent for bottleneck scenarios.

For a quantitative criterion to assert demographic change we have explored the value of posterior
probabilities for constant and variable population size models, similar to the scheme proposed by Heled
and Drummond (2008). These probabilities (summarised as Bayes factors in Figure 2) proved to be useful
for distinguishing bottleneck and expansion scenarios from demographic stability, although with lower
performance for less favorable scenarios (Supplementary Figures S9–S15). Constant size scenarios show
no evidence for size change.

Changes in population size were co-estimated with the mutational model parameter PGSM . Mean
absolute error, bias and proportion of replicates for which the true value was outside the 95%HPD interval
are reported in Table 1 for the three example scenarios and in Table S1 for all simulations. Estimates
from expanding and stable populations show a relatively low error and bias and a good coverage of the
credibility interval (except in the strict SMM case). However, estimates from declining populations show
higher error and bias.

Real Data
The ABC analyses show evidence of population expansion for the whale shark (BF=59.62) and the
leatherback turtle (BF=16.65); no evidence for population size changes in the black-and-white colobus
(BF=0.58) and some evidence for a bottleneck in the red colobus (BF=2.63), with their respective skyline
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plots reflecting such trends (Figure 3). Results from MIGRAINE support the same trends, with θratio
significantly higher than one for the whale shark and the leatherback turtle, significantly lower than one
for the red colobus and no significantly different than one for the black-and-white colobus (Supplementary
Table S3). Scaled population size estimates through time are also in accord, except for the leatherback
turtle, where MIGRAINE result suggest a more ancestral expansion of much greater magnitude.

Regarding the mutational model, a large proportion of multi-step mutations seems to be present in
all datasets, with PGSM estimates: P̂GSM = 0.55 (95%HPD=0.46–0.62) for the whale shark; P̂GSM = 0.50
(95%HPD=0.38–0.60) for the leatherback turtle; P̂GSM = 0.43 (95%HPD=4.05×10−3–0.53) for the black-
and-white colobus; and P̂GSM = 0.18 (95%HPD=0.02–0.75) for the red colobus (see also Supplementary
Figure S16). Although very low values of PGSM are included in the credibility interval from the colobus
analyses, the GSM is favoured over the SMM when an ABC model choice analysis is performed (BF=57.50
for the black-and-white colobus and BF=10.01 for the red colobus). These results are congruent with
estimates of PGSM by MIGRAINE (Supplementary Table S3).

DISCUSSION
The ability of the ABC skyline plot to detect changes in population size varies largely across the different
scenarios evaluated. The evidence for demographic change was often strong (even very strong) in
declining and expanding populations. However, demographic changes of small magnitude and close to
the present were the hardest to detect. Recent or small magnitude events leave a weak signal in the genetic
data and are also hard to identify for alternative methods (see Girod et al., 2011; Leblois et al., 2014;
Nikolic and Chevalet, 2014). In any case, the method shows to be conservative, since most analysis of
stable populations yielded negative or little evidence for demographic change.

Skyline-plot main appeal is to depict demographic trajectories not bounded to a mathematical function;
thus, potentially reflecting more realistically the demography of natural populations. However, our results
show that plotted trajectories loosely reflect of the true demography, particularly those of contracting
populations. The match between the true and inferred demographic trajectory was good for constant size
populations and for some expanding populations. Ancestral and current population sizes (the extremes
of the skyline plot) were also retrieved accurately for favourable scenarios. Nevertheless, the shape of
the curve representing the transition between them was a poor representation of the true demographic
trajectory in many cases. While this conclusion is specific for the implementation presented in this
work, it calls to caution for the interpretation of results from other methods yielding smooth skyline
plots (e.g. Heled and Drummond, 2008; Nikolic and Chevalet, 2014). A superficial comparison with the
methods implemented in R package VarEff (Nikolic and Chevalet, 2014) and BEAST (v 1.8 Heled and
Drummond, 2008) seems to indicate that their output can suffer from a similar problem on accuracy (see
Supplemantary Figure S19).

It is worth to mention that bottlenecked populations, which show the greatest discrepancy between the
skyline plot and the true demographic curve, are also the scenarios for which the mutational parameter
PGSM was inferred with larger bias. Similar patterns of summary statistics are produced with large PGSM
values and with a bottleneck (e.g. large allele size variance, see Supplementary Table S2), which may
difficult an accurate joint inference of demography and mutational model. This difficulty to distinguish
between scenarios with frequent multi-step mutations and contracting populations also explains the
reduction in power to detect some bottleneck cases such as those with large PGSM value and strong
population size decline (see Supplementary Figures S11). A negative effect on demographic inference
due to mutational model misspecification has been reported also for alternative methods (see Girod et al.,
2011; Leblois et al., 2014; Nikolic and Chevalet, 2014).

These results highlight the interest of using complimentary inference methods and data. In the four
real-data populations, their demographies have been previously studied in the original publications. In
addition to the MIGRAINE analysis on microsatellite data, Vignaud et al. (2014b) inferred a population
expansion for the whale shark by using Bayesian skyline plot analysis on mitochondrial DNA sequence
data, corroborating the signal of expansion for this species. In the case of the leatherback turtle, the
previous analyses were less conclusive (Molfetti et al., 2013). An extended Bayesian skyline plot on
microsatellite data suggested a recent expansion, but it was found not significant, and the skyline plot on
mitochondrial DNA data did not show any demographic change. On contrast, analysis of microsatellite
data with MSVAR (a coalescent sampler approach, Beaumont, 1999; Storz and Beaumont, 2002) suggested
a strong population decline. However, it must be noted that MSVAR assumes a strict SMM, which can
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lead to biases in the demographic estimates when microsatellite mutations include a substantial proportion
of multi-step changes (Faurby and Pertoldi, 2012). Our estimates of the PGSM parameter and the two-phase
model used in BEAST suggest a strong departure from the SMM and lead us to favour the hypothesis of
population expansion. Finally, the original analysis of the two colobus species found significant evidence
of population decline for both of them (Minhós et al., 2016). Again, this evidence was obtained from
MSVAR and the extended Bayesian skyline plot implemented in BEAST assuming a SMM. Despite the
prior results suggesting that tertranucleotide microsatellite mutations add or remove a single repeat, our
analyses (ABC skyline plot and MIGRAINE) rejected the SMM for the black-and-white colobus. This
explains the difference between their results and our demographic inference, which supports a constant
population size for this population.

A common problem for the inference of population size changes is the presence of population structure
or gene flow. Most methods aiming the detection of population size change often assume the analysis of
a single, independent population, but violating of these assumptions usually conduce to false detection
of bottlenecks (e.g. Heller et al., 2013; Nikolic and Chevalet, 2014, for skyline plot approaches). We
expect the same effect on the skyline plot analysis in the implementation we present here. However,
distinguishing between population structure and population decline in the ABC framework is possible
with the appropriate summary statistics (Peter et al., 2010) that can be included in future implementations
of the ABC skyline plot.

Indeed, the ease to incorporate new summary statistics and models is the prime interest for imple-
menting the skyline plot in the ABC framework. Models with multiple populations can be simulated
and skyline plots for each of the populations estimated. Extensions to other molecular markers can also
be developed and already exist for genomic data (e.g. Boitard et al., 2016). Finally, other demographic
parameters could be subject to variations with time, such as the migration rate (Pool and Nielsen, 2009),
and could be inferred with a similar scheme. To sum up, there is potential to develop such approach in
different directions, to address new questions in future research.

In this work we presented a detailed description on how to compute an approximate-Bayesian-
computation skyline plot and assessed its performance on stable and changing simulated populations
characterized with microsatellite markers. Its power to detect the signal of demographic change is similar
to alternative methods. However, its potential ability to depict more realistically the demography of
natural populations must not be overrated. Still it offers a complementary analysis to other methods and
there is great potential to develop it to cover other models and genetic data.
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Csilléry, K., François, O., and Blum, M. G. B. (2012). abc: an R package for approximate Bayesian
computation (ABC). Methods in Ecology and Evolution, 3(3):475–479.

Drummond, A. J., Rambaut, A., Shapiro, B., and Pybus, O. G. (2005). Bayesian coalescent inference of
past population dynamics from molecular sequences. Molecular Biology and Evolution, 22(5):1185–
1192.

Excoffier, L. and Foll, M. (2011). fastsimcoal: a continuous-time coalescent simulator of genomic
diversity under arbitrarily complex evolutionary scenarios. Bioinformatics, 27(9):1332–1334.

Faurby, S. and Pertoldi, C. (2012). The consequences of the unlikely but critical assumption of stepwise
mutation in the population genetic software, MSVAR. Evolutionary Ecology Research, 14(7):859–879.

Garza, J. C. and Williamson, E. G. (2001). Detection of reduction in population size using data from
microsatellite loci. Molecular Ecology, 10(2):305–318.
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Table 1. Estimation of mutational parameter PGSM

model θ0 θ1 τ PGSM MAE bias out of CI
contraction 0.4 40 0.1 0.22 0.14 0.13 0.01
expansion 40 0.4 0.1 0.22 0.05 -0.04 0.05
constant size 40 0.22 0.06 -0.03 0.00

MAE: mean absolute error; out of CI: proportion outside credibility interval (95%HPD). Estimates from
100 replicates.

Figure 1. ABC Skyline plots: simulations. Superimposed skyline plots (median in black, and
95%HPD interval in dark (upper limit) and pale (lower limit) grey of the posterior probability distribution
for θ(t)) from 100 replicates for example contraction (θ0 = 0.4, θ1 = 40, τ = 0.1), expansion (θ0 = 40,
θ1 = 0.4, τ = 0.1) and constant size (θ = 40) scenarios with mutational model PGSM = 0.22. True
demography is shown in orange. Note that present is at τ = 0 (left).
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Figure 2. Evidence for variable population size. Bayes factor distribution (boxplot) from 100
replicates for example contraction (θ0 = 0.4, θ1 = 40, τ = 0.1), expansion (θ0 = 40, θ1 = 0.4, τ = 0.1)
and constant size (θ = 40) scenarios with mutational model PGSM = 0.22. For reference, Jeffreys (1961)
scale is given for the evidence against constant size.
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Figure 3. ABC Skyline plots: real data. Skyline plots (median in black, and 95%HPD interval in grey
of the posterior probability distribution for θ(t)) for whale shark, leatherback turtle, Western
black-and-white colobus and Temminck’s red colobus. Bayes Factors (BF) are reported for the variable
versus constant size model. Demographic trajectories based on parameters point estimates from
MIGRAINE analysis are shown with a dashed green line for reference. Note that present is τ = 0 (left).
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