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Abstract 

The reanalysis of publicly available GWAS data represents a powerful and cost-

effective opportunity to gain insights into the genetics and pathophysiology of complex 

diseases. We demonstrate this by gathering and reanalyzing public type 2 diabetes 

(T2D) GWAS data for 70,127 subjects, using an innovative imputation and association 

strategy based on multiple reference panels (1000G and UK10K). This approach led us 

replicate and fine map 50 known T2D loci, and identify seven novel associated regions: 

five driven by common variants in or near LYPLAL1, NEUROG3, CAMKK2, ABO and 

GIP genes; one by a low frequency variant near EHMT2; and one driven by a rare 

variant in chromosome Xq23, associated with a 2.7-fold increased risk for T2D in males, 

and located within an active enhancer associated with the expression of Angiotensin II 

Receptor type 2 gene (AGTR2), a known modulator of insulin sensitivity. We further 

show that the risk T allele reduces binding of a nuclear protein, resulting in increased 

enhancer activity in muscle cells. Beyond providing novel insights into the genetics and 

pathophysiology of T2D, these results also underscore the value of reanalyzing publicly 

available data using novel analytical approaches.  

 

Keywords: dbGaP, publicly available GWAS data, data sharing, genotype imputation, type 2 

diabetes, rare variants, 1000 Genomes, UK10K, data sharing, enhancer, AGTR2, angiotensin 

receptor 2. 
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During the last decade, hundreds of genome-wide association studies (GWAS) have been 

performed with the aim of providing a better understanding of the biology of complex 

diseases, improving their risk prediction, and ultimately discovering novel therapeutic 

targets1. However, the majority of the published GWAS just report the primary findings, 

which generally explain a small fraction of the estimated heritability. In order to better 

uncover the missing heritability, most strategies usually involve the generation of new 

genetic and clinical data. Very rarely, new studies are based on the revision and reanalysis of 

existing genetic data by applying more powerful analytic techniques and resources generated 

after the primary GWAS findings are published. These cost-effective reanalysis strategies are 

now possible, given the existence of (1) different data-sharing initiatives that gather large 

amounts of primary genotype and sequencing data for multiple human genetic diseases, as 

well as (2) new and improved GWAS methodologies and resources. Notably, genotype 

imputation with novel and denser sequence-based reference panels can now substantially 

increase the genetic resolution of GWASs from previously genotyped datasets2, reaching 

good quality imputation of low-frequency (minor allele frequency [MAF]: 0.01≤MAF<0.05) 

and rare variants (MAF<0.01). This increases the power to identify novel associations, as 

well as to refine known associated loci through fine-mapping. Moreover, the availability of 

public primary genetic data further allows the homogeneous integration of multiple datasets 

with different origins providing more accurate meta-analysis results, particularly at the low 

ranges of allele frequency. In contrast, common meta-analytic strategies usually involve the 

aggregation of summary statistics generated independently by different centers, each 

applying their own internal quality-control, data cleaning, genotype imputation, and 

association testing methodologies. Each of these steps represents a potential source of 

additional heterogeneity, which may ultimately result in loss of statistical power. Finally, the 

vast majority of reported GWAS analyses omits the X chromosome, even though it 
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represents 5% of the genome and encodes for more than 1,500 genes3,4. The reanalysis of 

publicly available data also enables interrogation of this chromosome. 

We hypothesized that a unified reanalysis of multiple publicly available datasets, applying 

homogeneous standardized QC, genotype imputation and association methods, as well as 

novel and denser sequence-based reference panels for imputation would provide new insights 

into the genetics and the pathophysiology of complex diseases. To test this we focused on 

type 2 diabetes (T2D), one of the most prevalent complex diseases for which many GWAS 

have been performed during the past decade5,6,7,8,9,10,11. These studies have allowed the 

identification of more than 100 independent loci, most of them driven by common variants, 

with a few exceptions11,12,13. Despite all these efforts, only a small fraction of the genetic 

heritability can be explained by established T2D loci, and the role of low-frequency variants, 

although recently proposed to be minor14, has still not been fully explored.  The availability 

of large T2D genetic datasets in combination with larger and more comprehensive genetic 

variation reference panels15,16,17,18, gives us the opportunity to impute a significant increased 

fraction of low-frequency and rare variants, and to study their contribution to the risk of 

developing this disease. At the same time, this strategy also allows to fine map known 

associated loci, increasing the chances of finding causal variants and understanding their 

functional impact. We therefore gathered publicly available T2D GWAS cohorts with 

European ancestry, comprising a total of 13,857 T2D cases and 62,126 controls, to which we 

first applied harmonization and quality control protocols across the whole genome (including 

the X chromosome) and across samples, to later carry out imputation using 1,000 Genomes 

Project (1000G)15 and UK10K16,17,18 reference panels, as well as association testing. By using 

this strategy, we identified novel associated regions driven by common, low-frequency, and 

rare variants, fine-mapped and functionally annotated the existing and novel ones, and 
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confirmed experimentally a regulatory mechanism disrupted by a novel rare and large effect 

variant identified at the X-chromosome. 

Results 

Overall analysis strategy 

As shown in Figure 1, we first gathered all T2D case-control GWAS individual-level data 

that was available through the EGA and dbGaP databases (i.e. Gene Environment 

Association Studies [GENEVA], Welcome Trust Case Control Consortium [WTCCC], 

Finland-United States Investigation of NIDDM Genetics, Resource for Genetic 

Epidemiology Research on Aging [GERA] and Northwester NuGENE project [NuGENE]). 

We harmonized these cohorts, standardized quality control and the filtering of low-quality 

variants and samples (see Online Methods). After this process, a total of 70,127 subjects 

(70KforT2D; 12,931 cases and 57,196 controls; Supplementary Table 1) were retained for 

downstream analysis. Each of these cohorts was then imputed to the 1000G and UK10K 

reference panels using an integrative method, that selects for each variant the results from the 

reference panel that provides the highest accuracy, according to IMPUTE2 info score (see 

Online Methods). Finally, the results from each of these cohorts were meta-analyzed (Figure 

1), obtaining a total of 15,115,281 variants with good imputation quality (IMPUTE2 info 

score ≥ 0.7, MAF ≥ 0.001, and I2 heterogeneity score < 0.75), across 12,931 T2D cases and 

57,196 controls. Of these, 6,845,408 variants were common (MAF ≥ 0.05), 3,100,848 were 

low-frequency (0.01 ≤ MAF < 0.05) and 5,169,025 were rare (0.001 ≤ MAF < 0.01). 

Interestingly, the strategy of merging the imputation results derived from the UK10K and 

1000G reference panels substantially improved the number of good quality imputed single 

nucleotide variants (SNVs) and insertion/deletions (indels), particularly within the low-

frequency and rare spectrum, when compared with the imputation results obtained with each 

of the reference panels separately. For example, a set of 5,169,025 rare variants with good 
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quality was obtained after integrating 1000G and UK10K results, while only 2,878,263 rare 

variants were imputed with 1000G and 4,066,210 with UK10K (Supplementary Figure 1 A). 

This strategy also allowed us to impute of 1,357,753 indels with good quality (Supplementary 

Figure 1 B). 

In order to take full advantage of publicly available genetic data, we used three main meta-

analytic approaches to adapt to three of the most common strategies for genetic data sharing: 

individual-level genotypes, summary statistics, as well as single-case queries through web 

services, like the Type 2 Diabetes Knowledge Portal 

(http://www.type2diabetesgenetics.org/). These three approaches allowed us to maximize the 

power of detection, by prioritizing largest sample sizes and best imputation quality, in 

particular for low-frequency, rare variants, and coding variants. We first meta-analyzed all 

summary statistics results from the DIAGRAM trans-ancestry meta-analysis6 (26,488 cases 

and 83,964 controls), selecting 1,918,233 common variants (MAF � 0.05), mostly imputed 

from HapMap, with the corresponding fraction of non-overlapping samples in our 

70KforT2D set, i.e. the GERA and the NuGENE cohorts, comprising a total of 7,522 cases 

and 50,446 controls (Figure 1, Supplementary Table 1). Second, the rest of variants 

(13,197,048), consisting of non-HapMap variants (mostly with MAF < 0.05) or not tested 

above, were meta-analyzed using all five cohorts that constitute the 70KforT2D resource 

(Supplementary Table 1). Finally, low-frequency variants located in coding regions and with 

p ≤ 1×10-4 were meta-analyzed using the non-overlapping fraction of samples with the data 

from the Type 2 Diabetes Knowledge Portal (http://www.type2diabetesgenetics.org) through 

the interrogation of exome array and whole-exome sequence data from ~80,000 and ~17,000 

individuals, respectively19,20,21.  
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T2D associated variants show enrichment of pathways involved in insulin response and 

pancreatic islet enhancers. 

As a first exploration of how our association results recapitulate the pathophysiology of T2D, 

we performed gene-set enrichment analysis with all the variants with p-value ≤ 1×10-5 using 

DEPICT22 (see Online Methods). This analysis showed enrichment of genes expressed in 

pancreas (ranked 1st in tissue enrichment analysis, p=7.8×10-4, FDR<0.05, Supplementary 

Table 2) and cellular response to insulin stimulus (ranked 2nd in gene set enrichment analysis, 

p=3.9×10-8, FDR=0.05, Supplementary Table 3, Supplementary Figure 2, Supplementary 

Figure 3), in concordance with the current knowledge of the molecular basis of T2D.  

In addition, variant set enrichment analysis of the T2D-associated credible sets across 

regulatory elements defined in isolated human pancreatic islets showed a significant 

enrichment for active regulatory enhancers (Supplementary Figure 4), suggesting that causal 

SNPs within associated region have a regulatory function, as previously reported23. 

Identification, fine-mapping and functional characterization of novel and previously known 

loci 

The three association strategies allowed us to finally identify 57 genome-wide significant 

associated loci (p≤5×10-8), of which seven were not previously reported as associated with 

T2D (Table 1). The remaining 50 loci were already known, and included, for example, two 

low-frequency variants recently discovered in Europeans, one located within one of the 

CCND2 introns (rs76895963) and a missense variant within the PAM13 gene. Furthermore, as 

a quality control of these results, we confirmed that the magnitude and direction of the effect 

of all the associated variants (p≤0.001) were highly consistent with those reported previously 

(Rho=0.92, p=1×10-248, Supplementary Figure 5). In fact, the direction of effect was 

consistent with all 139 previously reported variants except three that were discovered in east 

and south Asian populations (Supplementary Table 4). 
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The high coverage of genetic variation achieved in this study allowed us to fine-map known 

and novel loci, providing more candidate causal variants for downstream functional 

interpretations. For this, we constructed 99% credible variant sets24, -i. e. the subset of 

variants that have, in aggregate, 99% probability of containing the true causal variant- for all 

57 loci (Supplementary Table 5). As an important improvement over previous T2D genetic 

studies, we identified small structural variants within the credible sets, consisting mostly of 

insertions and deletions between 1 and 1,975 nucleotides. In fact, out of the 8,348 variants 

included within the credible sets for these loci, 927 (11,1%) were indels, of which 105 were 

genome-wide significant (Supplementary Table 6). Interestingly, by integrating imputed 

results from 1000G and UK10K reference panels we gain up to 41% of indels, which were 

only identified by one of the two reference panels, confirming the advantage of integrating 

the results from both reference panels. Interestingly, 15 of the 71 previously reported loci we 

replicated (p≤ 5.3×10-4 after correcting for multiple testing), have an indel as the top variant, 

highlighting the potential role of this type of variation in the susceptibility for T2D. For 

example, within the IGF2BP2 intron, a well-established and functionally validated locus for 

T2D25,26, we found that 12 of the 57 variants within its 99% credible set correspond to indels 

with genome-wide significance (5.6×10-16 < p < 2.4×10-15), which collectively represent 

18.4% posterior probability of being causal.  

To prioritize causal variants within all the identified associated loci, we annotated their 

corresponding credible sets using the variant effector predictor (VEP) for coding variants27 

(Supplementary Table 7), and the Combined Annotation Dependent Depletion (CADD) tool 

for non-coding variation (Supplementary Table 8)28. Additionally, we tested the effect of all 

variants on expression across multiple tissues by interrogating GTEx29 and RNA-sequencing 

gene expression data from pancreatic islets30.  
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Identification of new signals driven by common variants 

Beyond the detailed characterization of the known T2D associated regions, we also identified 

novel loci, among which, five were driven by common variants linked to modest effect sizes 

(1.06 < OR <1.12; Table 1, Figure 2, Supplementary Figure 6 and 7).  

Within the first novel T2D-associated locus in chromosome 1q41 (LYPLAL1-ZC3H11B, 

rs2820443, OR=1.07 [1.04-1.09], p=2.6×10-8), several variants have been previously 

associated with waist-to-hip ratio in females, height, visceral adipose fat in females, 

adiponectin levels, fasting insulin, and non-alcoholic fatty liver disease31,32,33,34,35,36. Among 

the genes of this locus, LYPLAL1, which encodes for lysophospholypase-like 1, appears as 

the most likely effector gene, as it has been found to be downregulated in mouse models of 

diet-induced obesity and upregulated during adipogenesis37. 

Second, a novel locus at chromosome 9q34.2 region (ABO, rs505922, OR=1.06 [1.04-1.09], 

p=4.9×10-8) includes several variants that have been previously associated with other 

metabolic traits. For example, the variant rs651007, in linkage disequilibrium (LD) with 

rs505922 (r2=0.507), has been recently associated with fasting glucose38; and rs514659 (r2 

with top=1) is associated with an increased risk for cardio-metabolic disorders39. Interestingly 

one of the variants within the credible set is the one base-pair frame-shift deletion defining 

the blood group O40. In concordance with previous results that linked O blood type with a 

lower risk of developing T2D41, the frameshift deletion determining the blood group type O 

was associated with a protective effect for T2D in our study (rs8176719, p=3.4×10-4, 

OR=0.95 [0.91-0.98]). In addition, several variants within this credible set are associated with 

the expression of the ABO gene in multiple tissues including skeletal muscle and adipose 

tissue, and pancreatic islets (Supplementary Table 9, Supplementary Table 10). 

Third, a novel locus at chromosome 10q22.1 locus (NEUROG3/COL13A1/RPL5P26, 

rs2642587, OR=1.12 [1.08-1.16], p=8.4×10-9), includes NEUROG3 (Neurogenin3), which is 
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an essential regulator of pancreatic endocrine cell differentiation42,43. Mutations in this gene 

have thus been reported to cause permanent neonatal diabetes44, but a role of this gene in 

T2D has not been previously reported45. 

The lead common variant of the fourth novel locus at chromosome 12q24.31 (rs3794205, 

OR=1.07 [1.04-1.10], p=4.1×10-8), lies within an intron of the CAMKK2 gene, previously 

implicated in cytokine-induced beta cell death46. However other variants within the 

corresponding credible set could be, in fact, responsible for the molecular action behind this 

association, like a missense variant within the P2RX7, a gene previously associated with 

glucose homeostasis in humans and mice47; or other variant (rs11065504, r2 with lead 

variant=0.81) that is associated with the regulation of the P2RX4 gene in tibial artery and in 

whole blood according to GTEx (Supplementary Table 9). 

The fifth novel locus driven by common variants is located within 17q21.32 (rs12453394, 

OR=1.07 [1.05-1.10], p=3.23×10-8). It involves three missense variants located within the 

CALCOCO2, SNF8 and GIP genes. GIP encodes for glucose-dependent insulinotropic 

peptide, a hormonal mediator of enteral regulation of insulin secretion48. Variants in the GIP 

receptor (GIPR) have previously been associated with insulin response to oral glucose 

challenge and beta-cell function49. GIP is thus a plausible candidate effector gene of this 

locus50. 

Identification of a new signal driven by a low-frequency variant 

We selected all low-frequency (0.01≤MAF<0.05) variants with p≤1×10-4 in the 70KforT2D 

meta-analysis that were annotated as altering protein-coding variants according to VEP. This 

resulted in 15 coding variants that were meta-analyzed with exome array and whole-exome 

sequencing data from a total of ~97,000 individuals19,20,21 after excluding the overlapping 

cohorts between the different datasets. This analysis highlighted a novel genome-wide 

association driven by a low-frequency missense variant (Ser58Phe) within the EHMT2 gene 
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at chromosome 6p21.33 (rs115884658, OR=1.21 [1.14-1.29], p=3.00×10-10; Figure 2, 

Supplementary Figures 6 and 7). EHMT2 is involved in the mediation of FOXO1 

translocation induced by insulin51. Since this variant was less than 1 Mb away from HLA-

DQA1, which was recently reported to be associated with T2D52, we performed a series of 

reciprocal conditional analyses and excluded the possibility that our analysis was capturing 

previously reported T2D52 or T1D10,53,54 signals (Supplementary Table 11). Beyond this 

missense EHMT2 variant, other low-frequency variants within the corresponding credible set 

may also be causal. For example, rs115333512 (r2 with lead variant=0.28) is associated with 

the expression of CLIC1 in several tissues according to GTEx (multi-tissue Meta-Analysis 

p=8.9×10-16, Supplementary Table 9). In addition, this same variant is also associated with 

the expression of the first and second exon of the CLIC1 mRNA in pancreatic islet donors30 

(p(exon 1)=1.4x10-19; p(exon 2)=1.9×10-13; Supplementary Table 10). Interestingly, CLIC1 

has been reported as a direct target of metformin by mediating the anti-proliferative effect of 

this drug in human glioblastoma55. All these findings support CLIC1, as an additional 

possible effector transcript, likely driven by rs115333512.  

Identification of a novel rare variant in the X chromosome associated with 2.7-fold increased 

risk for T2D 

As for many other complex diseases, the majority of published large-scale T2D GWAS 

studies have omitted the analysis of the X chromosome, with the notable exception of the 

identification of a T2D associated region near the DUSP9 gene in 201056. To fill this gap, we 

tested the X chromosome genetic variation for association with T2D. To account for 

heterogeneity of the effects and for the differences in imputation performance between males 

and females, the association was stratified by sex and tested separately, as well as together by 

meta-analyzing the results from males and females. This analysis was able to replicate the 

DUSP9 locus, not only through the known rs5945326 variant (OR=1.15, p=0.049), but also 
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through a three-nucleotide deletion located within a region with several promoter marks in 

the liver (rs61503151 [G/GCCA], OR=1.25, p=3.5×10-4), and in high LD with the first 

reported variant (R2=0.62). Conditional analyses showed that the originally reported variant 

was no longer significant (OR=1.01, p=0.94) when conditioning by the newly identified 

variant, rs61503151. On the other hand, when conditioning on the previously reported 

variant, rs5945326, the effect of the newly identified indel remained significant and with 

higher effect size (OR=1.33, p=0.003), placing this deletion, as a more likely candidate 

causal variant for this locus. 

In addition, we identified a novel genome-wide significant signal in males at the Xq23 locus 

driven by a rare variant (rs146662075, MAF=0.008, OR=2.94 [2.00-4.31], p=3.5×10-8; 

Figure 3A). We tested the accuracy of the imputation of this variant by comparing the 

imputed results from the same individuals genotyped by two different platforms (see Online 

Methods) and found that the imputation for this variant was highly accurate in males, and 

when using UK10K, but not in females, or when using 1000G (R2
[UK10K,males]=0.94, R2

 

[UK10K,females]=0.66, R2
[1000G,males]=0.62, R2

[1000G,females]=0.43, Supplementary Figure 8).  

Whether this association is specific to men or whether it also affects female carriers remains 

to be clarified, since the imputation for this variant in females was not accurate enough. 

To further validate this association and to discard potential imputation artifacts, we next 

analyzed two independent cohorts by performing imputation with the UK10K reference panel 

(SIGMA57, INTERACT58), and a third cohort by de-novo genotyping the rs146662075 

variant in several Danish sample sets. The initial meta-analysis, including the three 

replication datasets did not reach genome-wide significance (OR=1.72, p=1.6×10-4) (Figure 

3B), and revealed a strong degree of heterogeneity (heterogeneity phet=0.002), which 

appeared to be driven by the replication cohorts. Within one of the case-control studies there 

was a nested cohort study; this study, the Inter99 prospective cohort, consisted of 1,652 non-
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diabetic male subjects, of whom 158 developed T2D after eleven years of follow-up. 

Analysis of incident diabetes in this cohort, confirmed the association with the same allele as 

previously seen in the case-control studies, with carriers of the rare T allele having increased 

risk of developing incident diabetes, compared to the C carriers (Cox-proportional Hazards 

Ratio (HR)=3.17 [1.3-7.7], p=0.011, Figure 3C): in fact, nearly 30% carriers of the T risk 

allele developed incident T2D during 11 years of follow-up, compared to only ~10% of non-

carriers. 

In order to gain further support for this association, we thoroughly compared the clinical and 

demographic characteristics of the discovery and replication datasets in an attempt to 

understand the strong degree of heterogeneity observed when adding the replication datasets. 

We found that some of the replication datasets contained control subjects that were 

significantly younger than the average age at onset of T2D reported in this study and in 

Caucasian populations in general59. This was particularly clear for the Danish cohort (age 

controls [95%CI] = 46.9 [46.6-47.2] vs age cases [95%CI] = 60.7 [60.4-61.0]) and for 

Interact (age controls [95%CI] = 51.7 [51.4-52.1] vs age cases [95%CI] = 54.8 [54.6-55.1]) 

(Supplementary Figure 9). Since in the Inter99 prospective cohort we observed that 30% of 

subjects developed incident T2D over 11 years of follow-up, we performed an additional 

analysis using a stricter definition of controls, in order to avoid the presence of pre-diabetes 

or individuals that may further develop diabetes after reaching the average age at onset. We 

therefore applied two additional exclusion criteria in order to obtain a stricter set of controls: 

(i) excluding subjects younger than 55 years old, and (ii) restricting the analysis, when 

possible, to individuals with measured 2 hours plasma glucose values during oral glucose 

tolerance test (OGTT) below 7.8 mmol/l, which is employed to diagnose impaired glucose 

tolerance (pre-diabetes), a strong risk factor for developing T2D60. We repeated the meta-

analysis using the first filtering criterion for controls for both the discovery and replication 
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datasets, including only controls older than 55. While the application of the first filter did not 

yet provide genome-wide significant results (Supplementary Figure 10), when we added the 

second filter (only possible in the Danish cohort), we obtained replication results consistent 

with the initial discovery results. Moreover, we also integrated the Cox-proportional hazards 

results into the meta-analysis by using a method that accounts for overlapping subjects 

(MAOS)61 allowing us to integrate the longitudinal (follow-up) and the case-control study. 

This final meta-analysis confirmed the association at rs146662075 resulting in genome-wide 

significance and without significant heterogeneity (OR=2.7 (1.91, 3.81), p=1.7×10-08, 

phet=0.51, Figure 3D). These results therefore support the existence of a genetic association 

with T2D is driven by a rare variant at X chromosome.  

The rs146662075 T risk allele is associated with 5-fold greater enhancer activity and 

disruption of allele specific nuclear protein binding.  

We next explored the possible molecular mechanism behind this association by using 

different genomic resources and experimental approaches. The credible set of this region 

contained three variants, with the leading SNP alone (rs146662075), showing 78% posterior 

probability of being causal (Supplementary Figure 7, Supplementary Table 5), as well as the 

highest CADD score (scaled C-score=15.68, Supplementary Table 8). rs146662075 lies 

within a chromosomal region enriched in regulatory (DNAse I) and active enhancer 

(H3K27ac) marks, between the AGTR2 (at 103 kb) and the SLC6A14 (at 150Kb) genes. 

Interestingly, the closest gene, AGTR2, which encodes for the angiotensin II receptor type 2, 

has been previously associated with insulin secretion and resistance62,63,64. Analysis of 

publicly available epigenomic datasets65 showed that this region lacks H3K27ac enrichment 

in human islet chromatin, whereas there is a positive correlation between the H3K27ac 

enhancer marks and the expression of AGTR2 across multiple tissues, showing the highest 
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signal of both H3K27ac and AGTR2 RNA-seq (but not SLC6A14) expression in fetal muscle 

(Figure 4A).  

We next studied whether the region encompassing the rs146662075 variant could act as a 

transcriptional enhancer and whether its activity was allele-specific. For this, we linked the 

DNA region, with either the T (risk) or the C (common) allele, to a minimal promoter and 

performed luciferase assays in a mouse myoblast cell line. The luciferase analysis showed an 

average 4.4 fold increased activity for the disease-associated T allele, compared to the 

expression measured with the common C allele, suggesting an activating function of the T 

allele, or a repressive function of the C allele (Figure 4B). Consistent with these findings, 

electrophoretic mobility shift assays using nuclear protein extracts from mouse myoblast cell 

lines, differentiated myotubes, and human fetal muscle cell line, revealed sequence-specific 

binding activity of the C allele, but not of the rare T allele (Figure 4C). Overall, these data 

indicate that the risk T allele prevents binding by a nuclear protein that is associated with 

decreased activity of an AGTR2-linked enhancer. 

Discussion 

To date, a large fraction of GWAS datasets have been made publicly available through 

repositories such as dbGaP and EGA. However, how these resources are useful to increase 

the knowledge of the genetic factors contributing to disease susceptibility has not been fully 

explored. In this study, we demonstrate the utility of these publicly available resources. By 

harmonizing and reanalyzing existing and publicly available T2D GWAS data, and by 

performing genotype imputation with two whole-genome sequence-based reference panels, 

we have been able to explore deeply the genetic architecture of T2D. This strategy allowed us 

to impute and test for association with T2D more than 15 million of high quality imputed 

variants, including low-frequency, rare, and small insertions and deletions across 

chromosomes 1 to 22 and X. 
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The reanalysis of these data confirmed a large fraction of already known T2D loci, for which 

we identify and propose novel potential causal variants by fine-mapping and functionally 

annotating each locus. Our in-depth characterization of each of these loci reached an 

improved accuracy over prior efforts, providing for the first time a comprehensive coverage 

of structural variants, which point to previously unobserved candidate causal variants in 

known and novel loci. 

This reanalysis also allowed us to identify seven novel associations driven by common 

variants in or near LYPLAL1, NEUROG3, CAMKK2, ABO and GIP; a low-frequency variant 

in EHMT2, and one rare variant in the X chromosome. This rare variant identified in Xq23 

chromosome, was located near the AGTR2 gene, and showed a nearly three-fold increased 

risk for T2D in males, which represents, to our knowledge, the largest effect size identified so 

far in Europeans, and complements other large effect size variants identified in other specific 

populations11,12. 

This study also highlights the importance of a strict classification of both cases and controls 

in order to identify rare variants associated with disease, as our initial discovery for the Xq23 

locus was not replicated when using the standard classification of cases and controls (based 

on fasting plasma glucose or glycated hemoglobin, HbA1c), but only when reclassifying the 

control group by restricting it to non-diabetic individuals older than 55 years (average age at 

onset of T2D), and with confirmed normal glucose tolerance using the stricter OGTT 

measure. This is in line with previous results obtained for a T2D population specific variant 

found in Inuit within the TBC1D4 gene, which was only significant when using OGTT as 

criteria for classifying cases and controls, but not when using HbA1c11. The use of this strict 

criterion for T2D diagnosis was in fact very clinically relevant, as 32% carriers of the 

TB1CD4 variant would remain undiagnosed T2D or prediabetes patients when OGTT was 

not assessed66. Despite the need for a stricter definition of controls in our replication case-
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control study, our results were further confirmed by the observation that 30% of the 

rs146662075 risk allele carriers developed T2D over 11 years of follow-up, compared to 10% 

of non-carriers, and suggest that early identification of these subjects by genotyping this 

variant may be useful to tailor pharmacological or lifestyle intervention in order to prevent or 

delay their onset of T2D.  

Using binding and gene-reporter analyses we demonstrate a functional role of this variant and 

propose a possible mechanism behind the pathophysiology of T2D in T risk allele carriers, 

where this rare variant could favor a gain of function of AGTR2, which has been previously 

associated with insulin resistance62. AGTR2 appears, therefore, as a potential therapeutic 

target for this disease, which would be in line with previous studies that showed that the 

blockade of the renin-angiotensin system in mice67 and in humans68 prevents the onset of 

type 2 diabetes and restores normoglycemia69,70.  

Overall, beyond our significant contribution to the understanding of the molecular basis of 

T2D, our study also highlights the potential of the reanalysis of public data, as a complement 

to large studies using newly-generated data. This study will inform the open debate in favor 

of pushing data-sharing and democratization initiatives71,72, highlighting their importance for 

the study of the genetics and pathophysiology of complex diseases, which may lead to new 

preventive and therapeutic applications. 

Methods 

Online Content Methods, along with any additional Extended Data display items, are 

available in the online version of the paper; references unique to these sections appear only in 

the online paper. 

Data availability: The complete summary statistics are deposited at the Type 2 Diabetes 

Knowledge portal (www.type2diabetesgenetics.org/). 
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Table 1. Novel T2D associated loci.  

 
Abbreviations are as follows: Chr, Chromosome; OR, odds ratio; MAF, minor allele frequency. 
 
† Imputed based public GWAS discovery meta-analysis (NuGENE + GERA cohort, 7,522 cases and 50,446 controls) 
¢ Full imputed based public GWAS meta-analysis (NuGENE + GERA cohort + GENEVA+FUSION+WTCCC, 12,931 cases and 57,196 controls) 
∆ 70KforT2D Men Cohort (GERA cohort + GENEVA + FUSION, 5,277 cases and 15,702 controls older than 55 years old) 
‡ T2D Diabetes Genetic Portal (Exome-Chip+Exome Sequencing, 35,789 cases and 56,738 controls) 
§ Transancestry DIAGRAM Consortium (26,488 cases and 83,964 controls) 
Ø Replication Men Cohort SIGMA UK10K imputation + InterAct + Danish Cohort (case-control and follow-up) (9,259 cases and 4,664 controls older than 55 years old and OGTT>7.8 mmol/l, 
when available). 

*Meta P-value Estimated using a weighted Z-score method due to unavailable SE information from the Stage 2 replication cohorts
  
 

 
 

   OR (95% CI)   P-value  

Novel Locus Chr rsID – Risk Allele Stage1 Discovery 
meta-analysis 

Stage2 Replication 
meta-analysis 

Stage1 + Stage2 Combined 
meta-analysis MAF 

LYPLAL1/ZC3H11B 
(1q41) 

1 rs2820443-T 1.08 (1.04-1.13) 2.94×10-4 † 1.06 (1.03-1.09) 2.10×10-5 § 1.07 (1.04-1.09) 2.56×10-8* 0.28 

EHMT2 
(6p21.33-p21.32) 

6 rs115884658-A 1.34 (1.18-1.53) 1.00×10-5 † 1.17 (1.09-1.26) 2.90×10-6 ‡*  1.21 (1.14-1.29) 3.00×10-10* 0.02 

ABO 
(9q34.2) 

9 rs505922-C 1.07 (1.03-1.11) 6.93×10-4 † 1.06 (1.03-1.09) 1.90×10-5 § 1.06 (1.04-1.09) 4.94×10-8* 0.34 

NEUROG3 
(10q22.1) 10 rs2642587-G 1.12 (1.08-1.16) 8.45×10 -9 ¢ - - 0.22 

CAMKK2 
(12q24.31) 

12 rs3794205-G 1.09 (1.05-1.14) 4.18×10-5 † 1.06 (1.03-1.09) 1.60×10-4 § 1.07 (1.04-1.10) 4.11×10-8*
 0.32 

CALCOCO2/ATP5G1/ 
UBE2Z/SNF8/GIP 

(17q21.32) 
17 rs12453394-A 1.08 (1.04-1.12) 7.86×10-5 † 1.07 (1.03-1.11) 9.60×10-5 § 1.07 (1.05-1.10) 3.23×10-8* 0.47 

AGTR2 
(Xq23) 

X rs146662075-T 3.09 (2.06-4.60) 3.24×10-8 ∆ 1.82 (0.92-3.61) 0.09 Ø 2.70 (1.91-3.81) 1.73×10-8 0.008 
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Figure Legends: 
 
Figure 1: Discovery and replication strategy. Publicly available GWAS datasets representing 
a total of 12,931 cases and 57,196 controls (70KforT2D) were first quality controlled, phased 
and imputed using 1000G and UK10K separately. For those variants that were present in the 
DIAGRAM trans-ethnic meta-analysis we used the summary statistics to meta-analyze our 
results with the cohorts that had no overlap with any of the cohorts included in the 
DIAGRAM trans-ethnic meta-analysis. With this first meta-analysis we discovered four 
novel loci (within magenta panels). For the rest of the variants we meta-analyzed all the 
70KforT2D datasets, which resulted in two novel loci (in blue panels). All the variants that 
were coding and that showed a p-value ≤ 1x10-4 were tested for replication by interrogating 
the summary statistics in the Type 2 Diabetes Knowledge Portal (T2D Portal) 
(http://www.type2diabetesgenetics.org/). This resulted in a novel low-frequency variant in 
the EHMT2 gene (highlighted with a green panel). 
 
Figure 2: Manhattan and Quantile-Quantile plot (QQ-plot) of the discovery and replication 
genome-wide meta-analysis. The upper corner represents the QQ-plot. Expected –log10 p-
values under the null hypothesis are represented in the x-axis while observed –log10 p-values 
are represented in the y-axis. Observed p-values were obtained according to the suitable 
replication dataset used (as shown in Figure 1) and were depicted using different colors. 
HapMap variants were meta-analyzed using the Trans-Ethnic summary statistics from the 
DIAGRAM study and our meta-analysis based on the Genetic Epidemiology Research on 
Aging (GERA) cohort and the Northwestern NuGENE Project and that resulted in novel 
associations depicted in magenta. The rest of non-HapMap variants meta-analyzed using the 
full 70KforT2D cohort are represented in grey, highlighting in light blue the fraction of novel 
GWAS-significant variants. Coding low-frequency variants meta-analyzed using the 
70KforT2D and the T2D Portal data that resulted in novel GWAS-significant associations are 
depicted in green. The shaded area of the QQ-plot indicates the 95% confidence interval 
under the null and a density function of the distribution of the p-values was plotted using a 
dashed line. The λ is a measure of the genomic inflation and corresponds to the observed 
median χ2 test statistic divided by the median expected χ2 test statistic under the null 
hypothesis. The Manhattan plot, representing the –log10 p-values were colored as explained 
in the QQ-plot. All known GWAS-significant associated variants within known T2D genes 
are also depicted in red. X-chromosome results for females (F), males (M) and all individuals 
(A) are also included.  
 
Figure 3: Discovery and replication of rs14666075 association signal. Forest plot for the 
rs146662075 variant using (A) the discovery cohorts and when including also (B) the 
replication datasets. Cohort-specific odds ratios are denoted by boxes proportional to the size 
of the cohort and 95% CI error bars. The combined OR estimate for all the datasets is 
represented by a green diamond, where the diamond width corresponds to 95% CI bounds. 
The p-value for the meta-analysis (Meta P) and for the heterogeneity (Het P) of odds ratio is 
shown. C) Plot showing the cumulative incidence of type 2 diabetes for an 11 years follow-
up. The red line represents the T carriers and in light blue, C carriers are represented 
(n=1,652, cases=158.). D) Forest plot after excluding controls younger than 55 years old and 
OGTT>7.8 mmol/l in both the discovery and replication cohorts when available. 
 
Figure 4: Functional characterization of rs146662075 association signal. A) Signal plot for X 
chromosome region surrounding rs146662075. Each point represents a variant, with its p- 
value (on a –log10 scale, y-axis) derived from the meta-analysis results from association 
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testing in males. The x-axis represents the genomic position (Hg19). Below, representation of 
H3K27ac and RNA-seq in a subset of cell-types for which RNA-seq and H3K27ac was 
available is also shown. The association between RNA-seq signals and H3K27ac marks 
suggest that AGTR2 is the most likely regulated gene by the enhancer that harbors 
rs146662075. B) The presence of the common allelic variant rs146662075-C reduces 
enhancer activity in luciferase assays performed in a mouse myoblast cell line. C) 
Electrophoretic mobility shift assay in C2C12 myoblast cell lines, C2C12 differentiated 
myotubes and human fetal myoblasts showed allele-specific binding of a ubiquitous nuclear 
complex. The arrows indicate the allele-specific binding event. Competition was carried out 
using 50- and 100- fold excess of corresponding unlabeled probe. 
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