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 A primary goal of The Consortium on Asthma among African-ancestry Populations in the 

Americas (CAAPA) is to develop an ‘African Diaspora Power Chip’ (ADPC), a genotyping 

array consisting of tagging SNPs, useful in comprehensively identifying African specific genetic 

variation. This array is designed based on the novel variation identified in 642 CAAPA samples 

of African ancestry with high coverage whole genome sequence data (~30x depth). This novel 

variation extends the pattern of variation catalogued in the 1000 Genomes and Exome 

Sequencing Projects to a spectrum of populations representing the wide range of West African 

genomic diversity. These individuals from CAAPA also comprise a large swath of the African 

Diaspora population and incorporate historical genetic diversity covering nearly the entire 

Atlantic coast of the Americas. Here we show the results of designing and producing such a 

microchip array. This novel array covers African specific variation far better than other 

commercially available arrays, and will enable better GWAS analyses for researchers with 

individuals of African descent in their study populations. A recent study1 cataloging variation in 

continental African populations suggests this type of African-specific genotyping array is both 

necessary and valuable for facilitating large-scale GWAS in populations of African ancestry.  
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Introduction: 

 The design of the African Diaspora Power Chip (ADPC) was a primary goal as part of the 

NIH-supported Consortium on Asthma among African-ancestry Populations in the Americas 

(CAAPA). Because of the overall poor coverage for African specific-variants on commercially 

available GWAS arrays, amongst other difficulties, relatively few GWAS have been performed 

in populations of African descent2, in part because they were underpowered to identify 

association with genes controlling risk for complex disease3. Previous GWAS studies in 

populations of African descent may have missed critical association signals because the single 

nucleotide polymorphisms (SNPs) genotyped on existing commercial arrays were selected for 

being informative among individuals of European ancestry, and generally do a poor job of 

tagging haplotypes and variants in individuals of non-European ancestry. This stems from the 

fact that the frequency of SNPs on currently available arrays is not well matched to the frequency 

of untagged variants in non-European populations. Essentially, the variant spectrum on current 

SNP arrays is flat, ensuring common genetic variants are well tagged, but making it difficult to 

tag low frequency SNPs (even though they may be highly polymorphic in non-European 

populations). This missing genetic variation in non-Europeans, however, consists largely of low 

frequency and rare variants, which will always be poorly covered by tagging SNPs with higher 

minor allele frequency (MAF). By building a large catalog of novel African-specific genetic 

variants, and then designing an array to tag as many of these as possible, we provide researchers 

with a significantly improved tool for hunting genes associated with diseases in populations of 

African ancestry, including admixed populations. 

 Ongoing work in the CAAPA consortium has included coverage analysis of the novel 

variation identified by CAAPA sequencing. This analysis has shown that only 69% of common 
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SNP variants and 41% of low-frequency SNP variants identified by CAAPA can be tagged by 

traditional GWAS arrays (at r2 >= 0.8), such as the Illumina HumanOmni5 (which contains 

about five million SNPs), [Mathias et al. 2016]. Ha, et al.4 suggested much lower coverage 

levels, with the OmniExpress chip (containing about 770,000 SNPs) effectively covering only 

8% of known variation within the YRI genome, while the much larger Omni 2.5 (containing 

about 2.5 million SNPs) still only covers 20% of known YRI SNPs based on their analysis. In 

contrast, variants of European (CEU) ancestry are 21% covered by the OmniExpress and 44% 

covered by the Omni 2.5. These are large differences in genomic coverage, and are supported by 

other studies with similarly pessimistic estimates of effective coverage among non-European 

populations5-7. Even the primary manufacturer of the Omni series genotyping chips, Illumina, 

refers to low coverage levels for their currently available commercial GWAS arrays in non-

European populations. [Table 1] It is important to note that there is no standardized definition for 

efficient ‘coverage,’ as each method uses a different set of SNPs to assess coverage levels. 

Regardless of the method used, however, contemporary commercially available arrays do a poor 

job of tagging common haplotypes or ‘covering’ all genetic variation in non-European or 

admixed populations.  

Usage of the most recent imputation panels can significantly improve the coverage of 

African variants, but this practice is still hamstrung by the lack of low-frequency variants on 

genotyping arrays (MAF < 5%). Imputation of low-frequency variants is most efficient and 

accurate when the SNP to be imputed has a similar minor allele frequency as the genotyped SNP, 

so a relative lack of low frequency variants on an array can render imputation of similar 

frequency variants difficult [Marchini and Howie, 2010]. 
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To address this shortcoming, the ADPC was designed using the whole-genome 

sequencing results on 642 CAAPA samples, including 328 African Americans, 125 African 

Caribbean subjects, 164 African ancestry individuals with some Latino ancestry, and 25 

individuals from Nigeria. The whole genomes of these individuals were sequenced using the 

Illumina HiSeq 2000. A total of 47.9 million biallelic SNPs were identified in these CAAPA 

samples. Of those, 15.6 million variants have a MAF greater than or equal to 1%.  

To create an affordable array for large-scale chip-based studies, 700,000 variants was the 

maximum size of the array. A MAF of 1% was chosen as the preliminary cutoff to limit the 

initial pool of variants to be tagged. In addition, using 1% as the MAF cut-off eliminated 

concerns about potential false positive variant calls for rare variants derived from the sequence 

data8. Additionally, the ADPC is designed to be used in conjunction with the OmniExpress array, 

a low-cost GWAS array popular among researchers, leveraging the high MAF coverage 

available from OmniExpress and freeing the ADPC to focus on low frequency variants.  

To narrow the pool further, SNPs with poor Illumina design scores were removed from 

consideration as potential tag SNPs. MaCH9 and minimac10 were used to determine which 

CAAPA variants were well-imputable based on the 1000 Genomes Phase I African Reference 

Panel and variants from the OmniExpress array. Those SNPs that could be imputed well (r2 > 

0.8) were removed from the pool of SNPs needing to be tagged. 

  Fugue11 was then used to determine the pairwise linkage disequilibrium (LD) between 

each pair of SNPs in the remaining set of SNPs. These LD estimates were used by FESTA12, a 

TagSNP selection program, to select SNPs using a rather strict r2 threshold of 0.8. A total of 

1,004,268 TagSNPs were selected. Among them, 4,000 were removed because they were too 

similar in their probe design to function well on the array. Limited by the capacity of the array, 
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only TagSNPs with an MAF >= 1.6% were retained for inclusion on the array. Additional 

content was then added. This includes SNPs previously found to be associated with African-

specific diseases but not previously selected as TagSNPs and approximately 600 additional SNPs 

in the human leukocyte antigen (HLA) region. HLA SNPs added to the array are relevant for 

HLA imputation and analyses of diseases or phenotypes related to immunity. These SNPs 

represent a pruned selection of SNPs with high tagging power, directly through LD, as well as 

SNPs preferentially selected by existing SNP-based HLA imputation algorithms13. Finally, a 

“GWAS fingerprint” that includes 274 markers, identical to that used on the Illumina 

HumanExome array, was added to enable researchers to ensure accurate sample labeling and 

analysis, while facilitating sample tracking across experiments. In final count, 627,998 variants 

were included on the ADPC array. [Figure 1] 

 

Results:  

 Based on the combination of OmniExpress and the ADPC, coverage is exceptionally good 

in both the 1000 Genomes African and admixed African populations. [Figure 2] The average r2 

for all variants is greater than 0.8 at ≥1% MAF. Coverage is slightly better amongst admixed 

African populations than continental African populations, which is useful for the study of 

African Americans in particular. It is also not surprising, given that we had only one continental 

African population, compared to 15 African-admixed populations. In all populations, this 

represents a much better coverage level than with previous commercially available arrays, and 

represents an important step forward for studies of individuals of African descent. 

 Additional analysis of SNP coverage at ≥ 1% MAF in the CAAPA population was 

conducted to ensure our array will enable researchers to have sufficient power to identify novel 
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associations between disease phenotypes and low frequency variants specific to African 

populations. Despite raising the MAF threshold for TagSNPs to 1.6%, we report coverage of all 

variants with MAF greater than or equal to 1% to give a full picture of the low frequency 

coverage the ADPC can provide. Genome-wide, the OmniExpress array is estimated to tag 20% 

of CAAPA variants at 𝑟" = 0.9, 26% at 𝑟" = 0.8 and 39% at 𝑟" = 0.5. All selected variants of 

the ADPC, alone, are estimated to tag 12% of known variants at 𝑟" = 0.9, 16% at 𝑟" = 0.8, and 

31% at 𝑟" = 0.5. The combination of these two arrays is estimated to tag 29% of all CAAPA 

variants at 𝑟" = 0.9, 37% at 𝑟" = 0.8, and 56% at 𝑟" = 0.5, an improvement of about 50% more 

variants tagged over the OmniExpress array across the three thresholds. [Table 2]  

 While we consider these coverage statistics strong, they only refer to the coverage for 

variants identified through whole-genome sequencing in CAAPA. This is the most difficult 

possible test set, since coverage of more common variants in the 1000 Genomes data is not 

included here. We use this information to give researchers an accurate view of the coverage 

available for the wealth of novel, low frequency genetic variation identified by CAAPA’s whole-

genome sequencing.  

 Using ~12,000 samples from the CAAPA consortium for the initial run of the ADPC array, 

~495,000 out of 700,000 variants passed Illumina’s QC thresholds. This relatively high marker 

failure rate is not unexpected, however, because the array is comprised of nearly 100% novel 

markers, never before manufactured. The 494,094 markers successfully manufactured performed 

excellently, with missing genotype rate averaging only 0.3%. 

 An important and unique feature of the ADPC is the significantly skewed MAF spectrum of 

variants on the array [Figure 3]. Compared to OmniExpress, the ADPC contains vastly more low 

frequency variants. This was not a conscious decision in the design process. Instead, it is the 
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result of trying to tag a set of variants not previously tagged by commercially available genome-

wide marker arrays. As a result, the combination of the ADPC and OmniExpress is an efficient 

pairing that increases coverage of the full MAF spectrum for novel variants and dramatically 

improves the imputation power for low frequency variants. 

 Through the use of this array, researchers will have greater statistical power to find 

associations with complex diseases in populations of African ancestry, which has several 

practical benefits. First, researchers who have already studied populations of African ancestry 

can inexpensively improve the statistical power of their original studies by adding ADPC 

genotyping data to their existing GWAS chip data. This chip will provide additional value from 

its tremendous improvement in the quality of imputed genotypes across the genome as well. At 

the same time, new researchers will be able to determine power before starting a study in 

populations of African ancestry, using a combination of the ADPC and OmniExpress, leading to 

smaller sample sizes needed, and more studies being possible.  

  

Discussion: 

 In this paper, we present the African Diaspora Power Chip, an affordable genotyping array 

that dramatically increases the coverage of genetic variants specific to African populations (and 

their descendants). Through the use of this array, researchers can now be better powered to 

detect disease associations in populations of African ancestry. We argue that the use of this chip 

will have a 2-fold benefit: 1) researchers who have already genotyped individuals from 

populations of African ancestry can inexpensively improve their power of their data by 

genotyping their subjects on the ADPC, and 2) new studies of African ancestry subjects can now 

achieve greater power in a study of individuals of African ancestry. For the CAAPA consortium, 
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this means using the ADPC to genotype >13,000 Asthma cases and controls from 9 populations 

across the Americas.  

 Although this array was designed to meet the specific needs and timeline of the CAAPA 

consortium, and may not represent the ideal for a strictly African-based SNP array, it is available 

to researchers now and has demonstrably increased coverage in variants of West African 

ancestry. This is, of course, the most common African admixed population in African Americans 

or other members of the African diaspora, so it is especially well positioned to be useful in 

studies of admixed African Americans . Furthermore, the CAAPA consortium has released an 

imputation reference panel, based on the results of our whole-genome sequencing experiment, 

and it is available through the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/index.html), and maximizes coverage provided by the 

ADPC. 

 Our immediate plans are to assess the coverage provided by the ADPC in populations of 

African descent not originating in West Africa. Of specific interest to geneticists are populations 

in East and North Africa. In the future, through the use of this array, the number of meaningful 

results from GWAS studies conducted in populations of African descent should increase 

significantly, providing a more accurate picture of causal disease variants in this group. This will 

enable personalized medicine techniques to be applied to a much larger subset of Americans than 

is currently feasible.   

 

Methods: 

The 642 individuals in the data freeze were sequenced using Illumina’s Hi-Seq 2000 

equipment and the reads were 100bp, paired-end runs. Assembly was performed by the 
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Consensus Assessment of Sequence and Variation (CASAVA) package, which is the Illumina 

in-house assembly and variant calling technology. The SNP-caller implemented in CASAVA 

uses a probabilistic model to ultimately generate probability distributions over all diploid 

genotypes for each site in each genome. A set of MAXGT quality scores is thus generated for 

each genomic site, corresponding to the ‘consensus quality’ in the SamTools SNP calling 

method.14 These quality scores are then parsed based on a set of consortium-wide rules in order 

to determine the likely set of variants. 

 Data processing to generate a 691-sample VCF file for each chromosome from the Illumina 

MAXGT single-sample SNP VCF files provided in Illumina’s standard deliverable package was 

performed at Knome, Inc. (Cambridge, MA, USA). The individual VCF files only contained 

calls for variants, not ref/ref homozygotes. To generate a multi-sample VCF file, these individual 

VCF files were merged using VCFTools15 (v0.1.11), then using custom scripts, a multi-sample 

VCF file was backfilled to include homozygous reference genotypes and depth of coverage from 

the sites.txt files. Custom QC scripts confirmed the multi-sample VCFs and the single-sample 

VCFs had the same number of heterozygous and homozygous alternate genotypes. VCFtools 

was used to confirm all subjects were included in each multi-sample VCF. The multi-sample 

VCF was generated including the 48 samples from the SCAALA (Salvador, Brazil) group, but 

these samples were subsequently dropped from all analyses, leaving 642 individuals, and 

variants unique to SCAALA were removed from the variant pool. [Mathias et al. 2016] 

 To pare down the list of variants needing to be tagged, several exclusion sets were created, 

starting with design score analysis. The segment extending 60 base pairs up and down stream 

from each variant position were surveyed to determine which side of the variant would create a 

better probe and a design score was calculated, on a 0-1 scale, representing the estimated success 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2017. ; https://doi.org/10.1101/112235doi: bioRxiv preprint 

https://doi.org/10.1101/112235
http://creativecommons.org/licenses/by-nc-nd/4.0/


rate for the variant. Any variant scoring below 0.5 was removed. Variants already on the 

OmniExpress array were also excluded.  

 To determine which CAAPA variants could be well imputed, the software packages MaCH9 

and minimac10 were employed. All CAAPA samples were first pre-phased by MaCH; 

subsequently variants still remaining in the tagging pool were imputed in minimac, a low-

memory, computationally efficient variant of MaCH, specifically designed for haplotype-to-

haplotype imputation. Variants were imputed using the 1000 Genomes Phase I African 

Reference Panel as the reference.  
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Figure 1.  The ADPC design pipeline, describing the steps taken to whittle ~15 million novel 

African SNPs into a 627k African-targeted GWAS array 
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Figure 2.  Estimated imputation coverage of variants tagged by the combination of the ADPC 

and OmniExpress.  

2a. Coverage in 1000 Genomes African populations is >= .8 r2 down to 1% MAF 
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2b. Coverage in 1000 Genomes admixed African populations is >= .8 r2 down to 1% MAF 
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Figure 3.  Projected minor allele frequency histograms for the ADPC and OmniExpress arrays 

overlayed with one another. The disparity between the arrays is significant, and represents very 

different tagging approaches. This makes them well suited to complement each other. 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2017. ; https://doi.org/10.1101/112235doi: bioRxiv preprint 

https://doi.org/10.1101/112235
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1.  Illumina projected coverage of African variants on several commercially available 

GWAS arrays 

 

Table 1 MAF Category 

 <0.010 

(non-singletons) 

>0.010 >0.025 >0.050 

HumanExomev1-2 0.031 0.032 0.034 0.035 

HumanCore-12v1-0 0.127 0.152 0.203 0.256 

HumanCoreExome-12v1-0 0.148 0.172 0.221 0.271 

OmniExpress-12v1-1 0.21 0.249 0.326 0.395 

OmniExpressExome-8v1-1 0.226 0.263 0.337 0.403 
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Table 2.  Projected coverage for the ADPC among CAAPA variants >= 1% MAF, with and 

without OmniExpress pairing, for the whole genome 

 

Coverage of CAAPA variants >= 1% MAF 

r2 OmniExpress 
Alone 

ADPC Alone Combined 

0.9 20% 12% 29% 

0.8 26% 16% 37% 

0.5 39% 31% 56% 
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