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Summary 
 
Modular structures in biological networks are ubiquitous and well-described, yet this organization does 
not capture the complexity of genes individually influencing many modules.  Pleiotropy, the 
phenomenon of a single genetic locus with multiple phenotypic effects, has previously been measured 
according to many definitions, which typically count phenotypes associated with genes.  We take the 
perspective that, because genes work in complex and interconnected modules, pleiotropy can be 
treated as a network-derived characteristic.  Here, we use the complete network of yeast genetic 
interactions (GI) to measure pleiotropy of nearly 2700 essential and nonessential genes.  Our method 
uses frequent item set mining to discover GI modules, annotates them with high-level processes, and 
uses entropy to measure the functional spread of each gene’s set of containing modules.  We classify 
genes whose modules indicate broad functional influence as having high pleiotropy, while genes with 
focused functional influence have low pleiotropy.  These pleiotropy classes differed in a number of 
ways: high-pleiotropy genes have comparatively higher expression variance, higher protein abundance, 
more domains, and higher copy number, while low pleiotropy genes are more likely to be in protein 
complexes and have many curated phenotypes.  We discuss the implications of these results regarding 
the nature and evolution of pleiotropy. 
 
 
Introduction 
 
Organization of functions in biological systems 
 
Modularity of cellular functions has become a central tenet of systems biology, supported by evidence 
from diverse types of genomic data.  Segal et al. (2003) designed a method that, from yeast gene 
expression data, inferred functionally coherent sets of genes that were regulated as a group according 
to different conditions.  Gavin et al. (2006) described protein complexes in terms of core components 
and attached modules, using various data as evidence that grouped proteins act as single functional 
units.  Costanzo et al. (2010) noted that the yeast genetic interaction (GI) network is well suited to 
define clustering of genes at various levels, from broad high-level biological processes down to specific 
pathways.  With an eye to evolution, Ryan et al. (2013) found that most S. cerevisiae protein complexes 
are composed of genes that are either all essential or all nonessential.  Further, this study noted that 
complexes conserved in S. pombe had the same property, but notably, proteins in some complexes 
switched essentiality as a group, indicating that this organization is favorable even in the context of 
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evolutionary changes.   Finally, Roguev et al. (2008) compared genetic interactions between the same 
yeast species and found evidence that while GIs are highly conserved within modules, a lower 
conservation of GI between modules allows “rewiring” to occur as the species diverge. 
 
Despite the seemingly tidy nature of modules with these properties, considerable complexity 
characterizes modular organization due to substantial reuse and diverse effects of cellular components. 
Pleiotropy, when considered at the molecular level of genes, is the case in which perturbation of one 
gene influences multiple phenotypic traits (Paaby and Rockman, 2013; Stearns, 2010).  For example, 
specific subcomplexes of nucleopores play important roles in gene silencing and DNA damage repair in 
addition to controlling nuclear import and export (Strambio-De-Castillia et al., 2010).  As another 
example, multiple proteins responsible for mRNA decay in the cytoplasm, such as XRN1p, have a 
complementary chromatin-binding function that promotes genome-wide transcription initiation and 
elongation, mechanistically maintaining steady state mRNA levels (Haimovich et al., 2013).  Famously, 
mammalian apoptosis pathways are triggered by components of the electron transport chain, such as 
cytochrome C  (Ow et al., 2008).  Other genes have a single molecular function but are fundamentally 
upstream of diverse cellular pathways, such as the HSP90 family of chaperones, which aid the folding of 
functionally diverse proteins (Taipale et al., 2010), and class V myosins, which use the actin cytoskeleton 
to localize mRNA and various organelles with help from cargo-specific receptor proteins (Hammer and 
Sellers, 2011).  Because of the diverse physical interactors of the protein products, varied phenotypic 
effects appear when these genes are mutated. 
 
In exploring the general notion of pleiotropy, researchers have used distinct definitions and datasets, 
showing that pleiotropy exists as many types of one-to-many genotype-to-phenotype relationships 
(Paaby and Rockman, 2013).  All levels of biological organization have been considered: pleiotropy can 
connect DNA mutations or genes to phenotypic traits of molecular networks, cellular structures, 
organisms, populations, etc.  Further, a phenotype may be described in the context of an environment, 
such as a genetic background, a population, a chemical, or nutrient availability.  In humans, pleiotropy 
was recently explored by Pickrell et al. (2016), who used GWAS results to identify 341 loci in humans 
that are associated with multiple traits, including diseases.  In yeast, phenotypic effects that stem from 
one gene have previously been measured by reverse genetics methods that screened the yeast deletion 
collection for phenotypes, such as measuring over 250 morphological phenotypes (Ohya et al., 2005) or 
measuring sensitivities to different stresses (Dudley et al., 2005; Ericson et al., 2006; Hillenmeyer et al., 
2008, respectively assessing 21, 6, and 180 evironments).  These studies variously estimate that 
between 5% and 30% of yeast genes could be considered pleiotropic according to counted numbers of 
traits or environmental sensitivities.  Although different environmental challenges can require different 
functional roles, these studies do not link conditions to specific functions, leaving the possibility that 
genes sensitive to many environments may belong in a generalized stress response category.   
 
Given the extensive sets of gene annotations assembled by The Gene Ontology (Ashburner et al., 2000) 
for human and model organisms, counting annotations is a natural way to identify pleiotropic genes and 
has been employed in a number of studies.  Khan et al. (2014) used semantic similarity of GO terms that 
clustered into non-overlapping functions to identify moonlighting proteins, a strict but particularly 
interesting type of pleiotropy in which functions are physically separable but not as a result of physical 
partitioning in the protein.  The authors found that moonlighting proteins often (48% of the time) 
contain disordered regions.  Pritykin et al. (2015) carefully considered the structure of the GO tree in 
order to identify genes with distinct functions.  The multifunctional genes were tested for associations 
with a number of gene properties, revealing that multifunctional genes are more likely to be large and 
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multi-domain, essential, broadly expressed, central in PPI networks, have many regulators, and contain 
disordered regions. 
 
A genome-wide and modular basis for pleiotropy 
 
Biological networks, as structures, can naturally represent modularity, redundancy, and pleiotropy, 
providing detailed context that allows more comprehensive understanding of cell function (Kim and 
Przytycka, 2012; Vidal et al., 2011; Yu et al., 2016).  In fact, gene functions are not limited to associations 
with visible phenotypes: genes can affect network properties, such as support robustness and flexibility 
(Burga et al., 2011; Levy and Siegal, 2008; Park and Lehner, 2013; Rutherford and Lindquist, 1998).  
Therefore, estimating pleiotropy at a molecular level as effects measured within a network is of 
particular importance.   
 
In protein interaction networks, a popular network-based characterization of hub proteins is 
classification as an intra-modular (“party”) node, which mainly functions as part of a module and has 
correlated expression with its neighbors, or an inter-modular (“date”) node, which coordinates between 
modules or has multiple functions (Agarwal et al., 2010; Han et al., 2004; Pritykin and Singh, 2013).  A 
strength of physical protein interactions is that they are mechanistically interpretable; however this type 
of relationship is limited by physical locality.  In contrast, genetic interactions identify a variety of 
functional relationships, including partial redundancy within the same module, pathway buffering, and 
dependency/similarity within a spatially or temporally directed pathway.  We believe that genetic 
interactions provide a novel and valuable view of pleiotropy because they (i) are known to appear both 
within and between pathways, (ii) capture functional relationships between genes that operate in 
different high-level processes, (iii) can recover functions that are buffered by other genes, and (iv) can 
reflect any biological process, not just those in a restricted set of measured phenotypes.  This last point 
is a solution to the problem of trait selection that many estimates of pleiotropy are bound by.  The GI 
network is therefore an informative place to assess the molecular pleiotropy of genes. 
 
In this work, using genetic interactions, we consider pleiotropy to be one gene affecting multiple sectors 
of cellular function such that there is a phenotypic consequence of fitness defect.  With this definition, 
we are able to characterize the properties and behavior of genes that impinge on diverse functional 
modules and affect multiple traits at the molecular level. 
 
For measuring pleiotropy in this study, we extract modules from the GI network using a data mining 
method originally described by Bellay et al. (2011), who used frequent item set mining to exhaustively 
discover modules of genetic interactions, termed biclusters, that covered the majority of the yeast 
genetic interaction network (Costanzo et al., 2010).  A bicluster is composed of two sets of genes and 
each gene in one set interacts with every gene in the other set—put another way, it is a complete 
bipartite subgraph of the GI network.  Biclusters represent genes with similar behavior, because all 
genes on one side of a bicluster share a set of interaction partners; in this way, they are similar to 
clustered gene profiles, a popular framework for identifying functionally related genes.  However, 
biclusters are built from subsets of a gene’s interaction partners, meaning they can identify multiple 
functions per gene and thus represent reuse in addition to modularity.  Bellay et al. (2011) found that 
the bicluster coverage of interactions in a hub gene’s profile may relate to pleiotropy, since this 
correlated with the number of GO terms annotated to the gene as well at the number of drug 
sensitivities (Hillenmeyer et al., 2008).  In the following analysis, we describe a novel definition of 
pleiotropy derived from GI biclusters in a new, nearly complete yeast GI network (Costanzo et al., 2016).  
We measure pleiotropy using an entropy measure computed on the set of gene’s genetic interaction 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2017. ; https://doi.org/10.1101/112326doi: bioRxiv preprint 

https://doi.org/10.1101/112326
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

biclusters to describe the functional spread of a gene’s effects on phenotype.  We evaluate 
characteristics of the high- and low-pleiotropy genes identified by our approach and report several 
physical, functional, and evolutionary properties that differ between the two pleiotropy classes. 
 
 
Results 
 
Measuring pleiotropy from participation in GI modules  
 
Genetic interactions capture relationships between genes involved in different processes, and biclusters, 
which are groups of genes densely connected by genetic interactions, are able to characterize the 
functional context of these relationships.  We define a measure of pleiotropy that expresses a gene’s 
functional distribution within these bicluster modules (Figure 1).  Our first step was to apply XMOD to an 
input GI network to obtain its set of biclusters.  For each gene, we collected all biclusters that contain it 
and removed clusters that were redundant (see Methods).  A bicluster consists of two sets of genes, 
densely connected by a set of genetic interactions bridging them.  In the context of calculating 
pleiotropy for a specific gene G, we refer to the set containing G as the “associate side” and the set of 
genes interacting with G as the “adjacent side.”  We use simple criteria to annotate biclusters with high 
level biological processes: if the associate-side genes are statistically enriched for or are at least 40% 
composed of genes annotated by a term, then the bicluster is labeled with that term.   Having identified 
and annotated a gene’s biclusters, we then count the process annotations, resulting in a functional 
profile of the gene’s modules (Figure 1, 2A).  The final pleiotropy score is the entropy of the process 
annotations counted in the profile (Figure 1, 2A).  Entropy is a non-negative value that is 0 in the case 
that all annotations are the same and reaches a maximum when all possible annotations occur an equal 
number of times.  The number of terms used for annotations, not the number of annotations a gene’s 
biclusters receive, determines the maximum value entropy can reach.  We used a set of 20 manually 
annotated (MA) biological processes and the entropy scores range between 1 and 4 (Figure 2B).  See 
Methods for more details on our measurement of pleiotropy. 
 
In implementing this pleiotropy measure, we used negative genetic interactions of the latest, near-
complete yeast GI network (Costanzo et al., 2016).  This network comprises two distinct datasets 
reflecting the experimental organization used in its construction.  The separation of the two GI networks 
persists throughout our work here: we derived pleiotropy scores from each.  The first GI network, called 
the TSA (temperature sensitive array) network, contains 2112 query genes screened for interactions 
with 560 essential array genes and 173 nonessential array genes.  The second, called the DMA (deletion 
mutant array) network, contains 4004 query genes screened for interactions with 3827 nonessential 
array genes.  The query genes of both networks include nonessential genes, experimentally represented 
by gene deletions, and essential genes, which were represented by temperature sensitive and DAmP 
alleles.  Accordingly, the biclusters from both networks can have a mixture of essential and nonessential 
genes on one side, the query side.  We focused primarily on measuring pleiotropy for query genes (more 
precisely strains, see Methods), so in this case the associate-side module enrichment step of our 
pleiotropy method analyzed mixed-essentiality groups of genes.  We also implemented our pleiotropy 
measure with a different data orientation, computing pleiotropy scores for array instead of query genes, 
and with a second annotation scheme, the experimentally derived SAFE annotations instead of the 
manual set.  We use the term “scoring configuration” to refer to a data setup used in generating 
pleiotropy scores, which specifies the GI network, annotations, and type of strains analyzed; in total, 
there are six configurations, which are described in the Methods. 
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When using the genetic interaction network, a straightforward pleiotropy metric could be the number of 
interactions observed for a given gene.  A gene’s genetic interaction degree is very informative about 
the magnitude of a mutation’s effect.  For example, degree is strongly correlated with fitness defect 
(Pearson’s r = 0.78, p < 10e-300; (Costanzo et al., 2016, nonessential strains)), and is also correlated with 
the number of GO terms (r = 0.23, p < 10e-42) and the number of curated phenotypes (r = 0.65, p < 10e-
300), two gene features that can indicate multiple functions.  The pleiotropy score we developed, 
however, is more specific than GI degree—it is designed to distinguish different functions of a gene, first 
by organizing GIs into modules, and second, by assessing annotation profiles with fractions instead of 
counts in the entropy calculation.  This decoupling of degree and pleiotropy is evident by the variation 
depicted in Figure 2B, which illustrates how a high degree alone is not sufficient for a gene to have high 
pleiotropy.  Nevertheless, the Spearman correlation of 0.45 (p < 10e-53) between entropy and degree 
suggests that attempts to characterize pleiotropic genes may simply recover trends already associated 
with degree.  To focus specifically on the functional breadth of genes independent of their interaction 
degree, we controlled for GI degree when defining pleiotropy classes.  Specifically, we first take 
pleiotropy as the residual of the regression of entropy against degree.  We then limit genes to those that 
have a negative GI degree at or above the 60th percentile.  Finally, we classify these high-degree genes as 
high, medium, or low pleiotropy by binning scores into the highest 30%, middle 40%, and lowest 30%.  
These three classes are used for all statistical analyses discussed in the following sections.  As previously 
mentioned, we used the TS-derived and DMA-derived GI networks separately in measuring pleiotropy, 
therefore we have a set of three pleiotropy classes for each network.  We specify source GI data in the 
text when discussing specific results. 
 
 
Many primary functions are represented in high-pleiotropy genes 
 
Many of the genes that displayed high pleiotropy have known associations with particular functional 
pathways.  The chaperone HSP90, whose pleiotropy score is in the highest 30%, is a classic example of 
how participation in a central maintenance pathway allows the gene to suppress phenotypic variation in 
many aspects of cellular biology.  We found that this is not unique; genes involved in many other cellular 
functions also exhibited high pleiotropy.  The following are brief examples of some of the many 
functional annotations already associated with genes in our high pleiotropy class: cell cycle regulation 
(CDC28, CKS1, cyclin CLN3, whole genome duplicates SWI5 and ACE2, RAM pathway component TAO3); 
the ubiquitin system (UBI4, UBP1, DOA1, CDC53, RAD6, RSP5, TOM1, UBP6, UBR2, HRT1, UFD1, UBP14); 
stress response and protein folding (chaperones HSP82, CDC37, and CNS1, HSP82 regulator HSP1); 
membership in the CCR4-NOT complex, a global transcription regulator (CDC36, CDC39, NOT3, CAF120); 
ribosome biogenesis (MAK11, NEW1, DBP7); nuclear-envelope membrane functions (BRL1, BRR6, and 
APQ12); and vacuole functions (VPS62, VAC7, VAC14, VPS66, ZRT3, IML1). 
 
 
Calmodulin’s biclusters illustrate broad functional influence 
 
As another example, we highlight the high-scoring pleiotropic gene CMD1 (Figure 3A, Figure 2A), which 
encodes the binding protein calmodulin and is conserved in all eukaryotes.  It is well known to regulate 
many processes, a functional ubiquity that likely is enabled mechanistically by the capacity to bind 
calcium ions in four different sites in most species as well as target proteins, many of which trigger 
function-specific conformations of calmodulin.  Evidence of binding site functional specificity comes 
from Ohya and Botstein (1994), who found four groups of mutations that resulted in distinct 
phenotypes.  Using its namesake ability to detect Ca+ ions, CMD1 activates calcineurin and two protein 
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kinases when Ca2+ concentration is high, which control a number of downstream processes (Cyert, 
2001).  Within the GI network, CMD1 appears in dozens of biclusters.  Nine of them are shown in Figure 
3A to illustrate both how GI-derived pleiotropy is apparent from structured modules and the functional 
coherency that characterizes these modules.  One of Calmodulin’s known localizations is the bud tip and 
neck due to its physical interaction with MYO2p, a myosin protein that is required for polarized growth 
(Stevens and Davis, 1998).  This relationship is reflected in the bicluster labeled “Cell 
polarity/morphogenesis”, which contains cell wall integrity genes SLT2 and BCK1, bud neck and wall 
localized proteins SKT5, CHS3 (recruited by SKT5 and MYO2), and ROM2, ARP2/3 activator PAN1, and 
polarity-establishing BEM1 (Duncan et al., 2001; Levin, 2005; Madden and Snyder, 1998).  Another 
established localization behavior of calmodulin is association with the spindle pole body throughout the 
cell cycle.  During mitosis, it is involved in attachment of microtubules to the SPB and is required for 
correct spindle function (Sundberg et al., 1996).   This explains its membership in the bicluster labeled 
“Chrom. seg/kinetoch./etc” along with spindle organizers CIK1 and STU2 (a SPB-interactor), as well as a 
number of kinetochore genes, AME1, OKP1, and NSL1, and kinetochore recruitment gene CTF13 (De 
Wulf et al., 2003; Kosco et al., 2001; Page et al., 1994).  The shared negative interactors of these genes, 
adjacent in the bicluster, are genes from the spindle assembly checkpoint (SAC), which can buffer a 
dysfunctional spindle by prolonging prometaphase.  Lastly, Cmd1p is thought to regulate the final stages 
of vacuolar fusion (Peters and Mayer, 1998).  The bicluster labeled “Golgi/endosome/vacuole” reflects 
this role, containing two components of the cytoplasm-to-vacuole targeting pathway complex TRAPPIII 
and GYP1, which respectively activate and deactivate the vesicle docking regulator YPT1, as well as 
SEC17, which is required before vacuole membrane fusion events, and three members of the COG 
complex (Du and Novick, 2001; Lynch-Day et al., 2010; Ungermann et al., 1998).  A short discussion of 
some of the remaining modules in Figure 3A is in the supplement.  Though GI modules do not explain 
specific functions of a gene, the example of CMD1 shows how genetic interactions can recover evidence 
for functions established in the literature.  
 
In contrast to the highly varied functions of CMD1, we also make an example of RAD27 (Figure 3B).  This 
gene has a focused functional influence on cellular processes, and therefore low pleiotropy, with nearly 
all of its containing biclusters representing DNA replication and repair functions.  Despite the clear 
theme of RAD27’s modules, we do see individual pathways clustering together.  For example, the 
associate side of one bicluster contains genes in complexes that initiate and drive the replication fork 
during DNA replication (Medagli et al., 2016).   The genes PSF1 and SLD5, as half of the GINs complex, 
and SLD3 help to assemble the pre-inititation complex, which includes MCM2, ORC2, and CDC42, at 
replication origin sites.  Many of these genes go on to form the CMG complex, the helicase that unwinds 
duplex DNA and progresses in the core of the replication fork.  This set of genes negatively interacts with 
genes involved mitotic checkpoints for DNA damage and DNA replication, MRC1, RAD9, RAD24, DDC1, 
RAD17, and CSM3, which appear in the bicluster’s adjacent side.  Another of RAD27’s biclusters contains 
histone-related genes in both sides (e.g. SWC3, SWR1, ARP6, VPS71, HTZ1, YTA7, and EAF6), and others 
contain a number of genes related to RAD27’s known functions, Okazaki fragment processing and 
double-strand break repair (e.g. POL31, RNH203, RNH201, XRS2, MRE11, and RAD50). 
  
 
GO term enrichment within pleiotropy classes 
 
In order to discover any particular cellular processes or components that are significantly biased in their 
composition of pleiotropic genes, we performed hypergeometric tests for enrichment of GO terms in 
our high and low pleiotropy classes.  We found that high pleiotropy genes were not enriched for any GO 
terms.  Although this result is somewhat surprising, it is consistent with the observation that pleiotropic 
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genes work in diverse primary functions.  Low-pleiotropy gene classes from both GI networks were 
enriched for a number of terms.  Low-pleiotropy genes derived from the DMA network were enriched 
for golgi vesicle-mediated transport, as well as more general transport and localization terms, and 
mitochondrial respiration.  For example, 43 of all 55 background genes annotated by the GO component 
“mitochondrial inner membrane” have low pleiotropy (enrichment, p < 10e-11).  The low-pleiotropy 
class derived from the TSA network was enriched for vesicle transport also, and DNA replication and 
proteolysis terms.  For example, 15 of the 16 genes in the cytosolic proteasome complex have low 
pleiotropy (enrichment, p < 10e-4). 
  
 
Characterizing high- and low-pleiotropy genes 
 
Next, we searched for evolutionary and functional characteristics of high- and low-pleiotropy genes by 
testing for associations with 37 gene and protein properties.  A number of gene properties differed 
significantly between the two pleiotropy classes in Wilcoxon ranksum tests (Figure 4, Table 1).  High-
pleiotropy genes were positively associated with expression variation, high gene copy-number-based 
features, high protein abundance, and many domains, while the low-pleiotropy genes tended to 
participate in protein complexes and, surprisingly, had more curated phenotypes.  Specific statistics 
presented in the text below are based on pleiotropy scores of query strains, our default analysis set, 
derived from both the TS and DMA GI networks.  Our reporting of results is conservative: we tested 22 
variations of our method and report results that are robust across many (Methods and Table 1).  For 
example, SGA interrogates essential genes with mutant strains that are temperature-sensitive point 
mutations or DAmP (low expression) alleles.  Because it is easy to imagine a point mutation that affects 
only the subset of a gene’s functions that is dependent on a single part of the protein, one variation of 
our ranksum tests excludes TS strains, leaving just DAmP alleles to represent the behavior of essential 
genes.  An extended description of all testing variations performed and the set of results for each 
scoring configuration are presented in the supplement.   
 
 
Expression variance and protein abundance are higher among genes with broad influence  
 
Two different measurements of gene expression level variance were robustly associated with high-
pleiotropy genes.  Environmental expression variance is determined by subjecting yeast cells to many 
environments and measuring gene expression levels, then calculating variance for each gene (Gasch et 
al., 2000).  A Wilcoxon ranksum test showed that genes in the high pleiotropy class had higher 
environmental expression variance than genes in the low-pleiotropy class, using both the DMA (p < 7e-
3) and TSA (p < 6e-3) pleiotropy scores (Expression variance, environ., Figure 4A,B).  Among the 50 genes 
with the highest environmental expression variance, 22 have high DMA-derived pleiotropy compared to 
only 5 with low pleiotropy (Figure 5A; 23 have a medium pleiotropy).  We found that, regardless of 
pleiotropy level, most genes with high variance reached their extreme expression levels during heat 
shock and cold shock conditions and during stationary phase.  Regulatory response to environmental 
stresses consists of induced expression of some genes and suppression of others, a program that is 
similar in all stress environments, not condition-specific (Gasch et al., 2000).  We find that there is no 
bias in the high pleiotropy genes towards having increased or decreased expression during stress 
conditions (Figure 5B). 
 
Genetic expression variance, calculated from the genome-wide expression profiles of many crosses 
between the diverged S. cerevisiae strains BY and RM (Expression variance, genetic-A, Figure 4B), was 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2017. ; https://doi.org/10.1101/112326doi: bioRxiv preprint 

https://doi.org/10.1101/112326
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

also associated with high pleiotropy genes identified from both GI networks (DMA-derived pleiotropy, 
SAFE annotations: p < 7e-3; TSA-derived pleiotropy: p < 7e-3), although this result depended on the 
configuration used for the DMA-derived pleiotropy classes (Table 1, Supplement).  Among the 50 genes 
with the highest variance, 22 had high pleiotropy and 7 had low pleiotropy (21 have medium 
pleiotropy).  Similarly, a second measure of genetic expression variance (Expression variance, genetic-B, 
Table 1), which is measured from the gene expression of many diverged and geographically varied S. 
cerevisiae strains, was associated with high pleiotropy genes for a number of scoring configurations.  For 
one scoring configuration, in which pleiotropy of DMA queries was measured using adjacent-side 
bicluster enrichments, this expression variance feature was associated with low-pleiotropy genes.   
 
The two expression variance measures strongly associated with high-pleiotropy genes, environmental 
and genetic-A, had a Pearson’s correlation of 0.21 (p < 2.6e-13), suggesting that highly variable genes 
defined by the two measures overlap.   However, environmental variance remained robustly associated 
with pleiotropy after controlling for the genetic-based feature (TSA-derived pleiotropy, ranksum p < 
0.017).  Genetic expression variance was not correlated after controlling for the environmental feature, 
suggesting that environment-induced expression variation is more strongly linked with high pleiotropy. 
 
Protein abundance levels offer further observation of cellular usage of a gene, since translation and 
protein degradation are regulated.  Protein abundance, including protein abundance under stress 
conditions, tended to be higher in high-pleiotropy genes than in low-pleiotropy genes (nonstress, SAFE p 
< 7e-3; stress, SAFE p < 5e-3; Figure 4). 
 
 
Copy number is higher in high pleiotropy genes 
 
High-pleiotropy genes tended to have higher copy number, which is the number of genes that evolved 
from a single ancestral gene (paralogs) of the focal gene, compared to low-pleiotropy genes (DMA, SAFE 
p < 2e-3; Figure 4A, B).  High pleiotropy genes with a copy number greater than two are in protein 
families that function in environmental responses as transmembrane proteins or components of 
signaling pathways, consistent with previous characterization of genes that have frequently duplicated 
(Wapinski et al., 2007).  The most extreme copy number is that of high-pleiotropy gene RGT2, which, 
with its paralogs, is in a family of transmembrane sugar-transport channels, including some that trigger 
response to intracellular sugar concentrations.  A more well-known example is the hub IRA2, which is a 
negative regulator of RAS2 and has two paralogs. 
 
Duplicate gene pairs that arose from an ancient S. cerevisiae whole-genome duplication (WGD) event 
are distinguished from all other duplicate pairs, which resulted from small-scale duplication (SSD) events 
(Guan et al., 2007; Hakes et al., 2007; Kellis et al., 2004; Wapinski et al., 2007; Wong et al., 2002).  We 
found that this difference is important with respect to pleiotropy.  WGD genes were strongly associated 
with high pleiotropy genes, while SSD genes had only slight evidence of an association (Table 1, full table 
in supplement).  This difference is difficult to explain, since there is no consensus on how evolutionary 
models apply differently to these scenarios.  However, it is possible the genome state after a whole-
genome duplication helps genes diversify by providing broader redundancy, like entirely duplicated 
complexes and pathways.  
 
The DMA-derived group of high pleiotropy genes contained 38 WGD genes, significantly more than the 
18 classified as low pleiotropy (p <  4.8e-3; Figure6).  TS-derived groups, from an overall smaller dataset, 
showed the same trend with 18 and 4 WGD duplicates in the high and low groups, respectively. 
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WGD gene pairs have been shown to sometimes have unequal allocation of importance, though they 
typically retain similar function (Kellis et al., 2004; VanderSluis et al., 2010), and pleiotropy roles reflect 
both these scenarios.  We investigated the behavior of the duplicate partners of the DMA-derived high 
pleiotropy genes (most partners of genes in the TSA-derived pleiotropy groups have not been screened 
in SGA).  First, considering only the handful of WGD pairs whose members both meet our degree criteria 
and therefore both have assigned pleiotropy classes, we find similarity in pleiotropy (Figure 6).  Two 
WGD pairs were composed of two high-pleiotropy genes each (the pair ACE2 and SWI5, and the pair 
RPL40A and RPL40B) and, similarly, one pair had two low-pleiotropy members.  However, no pairs of 
genes that both had high degree contained a low- and high-pleiotropy gene—a hint that duplicate 
partners of high pleiotropy genes tend to have higher pleiotropy than partners of low-pleiotropy genes 
(ranksum p < 0.016).   Most partners of the genes with classified pleiotropy had lower degree.  Of the 38 
high-pleiotropy WGD genes, 28 duplicate partners have been screened as SGA queries and they show 
variation in both GI degree and pleiotropy scores (Figure 6).   
 
A third copy-number based feature, copy number volatility (Wapinski et al., 2007), was also higher in 
high pleiotropy genes (p < 8.4e-4, Figure 4A,B).  This property measures the number of times a gene is 
lost or duplicated within extant or ancestral yeast species.  We note that although copy number and 
copy number volatility are correlated with the binary WGD duplicate feature, these features each 
remain significantly associated with high pleiotropy genes after controlling for WGD duplication (p < 
0.032 and < 0.011, respectively). 
 
 
Domains are more common in high-pleiotropy genes 
 
The proteins of high pleiotropy genes tended to have more domains than those of low pleiotropy genes, 
a relationship supported by a recent GO-based measure of multifunctionality (Pritykin et al., 2015). 
Speculating that the association between the number of domains and pleiotropy is driven by functions 
of individual domains, we tested for enrichment of specific domains and combinations of domains, but 
did not find significant results for either medium- or high-pleiotropy genes. 
 
 
Characteristics of low pleiotropy genes 
 
Genes that have low pleiotropy are characterized as highly prominent genes that are well-studied, 
conserved, and important.  We found that low-pleiotropy genes are involved in more complexes than 
high pleiotropy genes (DMA p < 1.1e-5, TSA 7.5e-7), a characteristic derived from a literature-curated 
protein complex standard (Costanzo et al., 2016).  For TSA-derived pleiotropy, this result, is also 
supported by a tendency to have a higher number of protein interactions in Tap-MS experiments (p < 
6e-5) (Table 1).  Participation of low-pleiotropy genes in protein complexes likely has the result of 
constraining the evolution of these genes (Lovell and Robertson, 2010). 
 
A second characteristic of low-pleiotropy genes is that, compared to the high-pleiotropy genes, they 
have higher phenotypic capacitance, which is a measure of average morphological variance upon 
deletion of a nonessential gene and therefore also an indication of ability to buffer variability in 
phenotypes (Levy and Siegal, 2008).  The authors who investigated phenotypic capacitors described a 
subset of capacitors that function in protein interaction clusters containing multiple capacitors and have 
a number of specific GO enrichments.  This suggests that some capacitors promote phenotypic 
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robustness by working in specific pathways.  The abundance of these capacitors in our low-pleiotropy 
shows that our process of measuring a gene’s functional behavior through GI modules has distinguished 
between genes with specific roles in varied pathways (high pleiotropy) and genes whose deletion 
effects, but not necessarily wild-type behavior, has a variety of phenotypes. 
 
Low pleiotropy genes have a higher number of annotations in the form of curated phenotypes (DMA p < 
2.8e-4, TSA p < 2.1e-3) and GO annotations (TSA p < 8.6e-4).  While at first this seems to contradict their 
status as focused functional influence, the annotation results likely belie investigation bias in our 
understanding of yeast.  Indeed, for the TSA-derived pleiotropy groups, we find a tendency of the low-
pleiotropy gene class to be old and conserved and to have a strong phenotype (Table 1, “Yeast 
conservation”,  “Broad conservation”,  “Age”, “Single mutant fitness defect)—exactly the type of genes 
that has attracted the most attention over the decades.  The low-pleiotropy genes from the DMA-
derived scoring configuration “query, adjacent” may also trend in the conserved direction, but it is not 
robust, with only two variations displaying it.  Therefore, these more traditional measures of importance 
are not associated with high-pleiotropy genes.  This suggests that our unbiased measure of pleiotropy 
captures an as-yet unappreciated amount of functional influence that flourishes in many newly evolved 
genes. 
 
 
Characteristics significantly associated with both high- and low-pleiotropy genes 
 
All results discussed in previous sections were robustly associated with only one of the high and low 
pleiotropy classes, indicating agreement across the different scoring configurations we explored.  
However, we find that the features SMF and essentiality are significantly associated with both high- and 
low-pleiotropy genes, depending on the scoring configuration used (Table 1). 
 
 
Discussion 
 
Genetic interactions provide a valuable view of pleiotropy by revealing gene functions at a molecular 
level.  Clusters of within-pathway interactions highlight modules of genes related to specific cellular 
processes, like pathways or protein complexes, while between-pathway interactions occur when two 
pathways buffer each other.  With this sensitivity to such a variety of gene-gene relationships, genetic 
interactions are well-suited for identifying diverse functions.   Importantly, genetic interactions are 
calculated solely from phenotypic measurements, namely growth rates, in our case.  Therefore, all 
genetic interactions represent functions that are evolutionarily relevant.  Despite the fact that only one 
phenotype is measured, the functions represented by genetic interactions span most aspects of cellular 
biology (Costanzo et al., 2010; Costanzo et al., 2016). 
 
Another strength of genetic interactions is their ability to reveal functions that may be undetectable in 
single mutants.   A negative genetic interaction between two genes indicates a shared function that 
either one can perform individually, i.e. a buffering relationship.  By assessing a gene’s pleiotropy within 
the GI network, we leverage the context of many (individual) background mutations, effectively 
removing layers of buffering and exposing the gene’s formerly hidden phenotypes.  Some pleiotropy 
studies suggest that most genes affect few traits (refs for L-shaped distributions & “modular pleiotropy” 
model), but none of the considered datasets measure gene roles that are normally buffered in single 
mutants, leaving both theoretical and empirical discussions (Wang et al., 2010) to possibly 
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underestimate pleiotropy.  Still the importance of recognizing buffered functions depends on the extent 
to which individuals in natural populations harbor genetic variations that have genetic interactions.   
 
A key element or our pleiotropy measure is the organization of the GI network into biclusters, which has 
multiple benefits.  First, we have higher confidence in structures of genetic interactions than in 
individual interactions because dense clusters are very unlikely to occur by chance.  Second, the 
functional level of a module removes redundancy by treating a set of genes as a unit.  Because our 
method uses the associate-side of biclusters to determine annotations, genes that share a function are 
treated as a single unit.  These functional units are summarized by an entropy measurement, the final 
pleiotropy score, which describes the shape of the distribution of modules among functions and 
differentiates broad from focused functional influence of a gene. 
 
Through characterization of genes classified as having high and low pleiotropy, we found that evolution-
related properties distinguished the groups.  High-pleiotropy genes were more likely to be duplicated 
and to change in copy number throughout 30 yeast species.  Contrasts in functional behaviors of the 
pleiotropy classes showed that high-pleiotropy genes have greater variability in expression, while low-
pleiotropy genes are likely to be part of protein complexes.  These interesting characterizations may 
shed light on the evolutionary processes through which genes may acquire multiple functions. 
 
We propose that functional freedom is an important property enabling pleiotropy.  Gene duplication 
and divergence is considered to be the primary source of raw material through which adaptions appear.  
The fact that duplicated genes tend to have high pleiotropy suggests that this process of new 
adaptations allows the accumulation of diverse functions in single genes, as opposed to only yielding 
two specialized (i.e. low-pleiotropy) genes.   Partial functional buffering, relatively common between 
duplicates (Musso et al., 2008; VanderSluis et al., 2010), likely plays a role in this process.  One model 
consistent with these ideas is subfunctionalization, in which the functions of the original/ancestral gene 
are partitioned between the paired duplicates.  In this case, the two genes can complement each other 
such that each gene has functional regions maintained by selective constraint and regions that may 
mutate in a way that compromises the original function, but possibly acquire new functions.  Even 
duplicates that are asymmetric in GI degree have been shown to maintain buffering relationships 
(VanderSluis et al., 2010).  A second mechanism by which duplicates may diverge and become 
pleiotropic is suggested by the tendency of high-pleiotropy genes to have high variance in expression.  
Changes in regulatory patterns occurring soon after duplication may provide a route for acquiring 
environment-specific roles.  Functions unneeded in particular conditions may be altered to respond to 
new challenges, thus diversifying the gene’s functions.   Acquisition of new functions through variable 
expression is not limited to duplicates, but is proposed as a general mechanism promoting adaptation to 
stress environments.  Finally, the significantly low number of pleiotropic genes that have membership in 
protein complexes suggests an avoidance of evolutionary constraint of sequence changes and 
consequent barrier to gaining novel functions.   
 
While the characterization of pleiotropic genes as being sheltered from functional constraints provided 
by duplicates buffering each other and as lacking physical interactions in protein complexes offers 
insight into the kind of genes that are able to acquire new functions, it remains to be shown how 
pleiotropic genes have risen to such prominence that they are genetic interaction hubs.  Indeed, the 
functional freedom suggested by our characterization of pleiotropic genes is a contrast to Fisher’s classic 
geometric model of pleiotropy, which predicts that pleiotropic genes will be evolutionarily constrained 
and has been advanced by the “cost of complexity” model (Orr, 2000; Welch et al., 2003).  However 
these characterizations can coexist at different time periods in a gene’s life cycle: pleiotropy may 
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originate over a relatively short period of time following de novo birth of a gene, a gene duplication, or a 
regulatory change buffered by a non-duplicate alternative pathway, and subsequent loss of buffering.  
Intriguingly, the TSA-derived high-pleiotropy genes contained a significantly higher number of 
Saccharomyces-specific genes as compared to the low-pleiotropy genes, which is evidence that 
participation in many processes can occur near the beginning of the lifecycle of a gene.  Additionally, 
there may be mechanisms in place that stabilize the effects of evolving genes.  Post-transcriptional 
regulation may be strong enough to counteract expression-level patterns, therefore stabilizing protein 
levels when needed (Artieri and Fraser, 2014), and explaining the association between high-pleiotropy 
genes and high protein abundance.  Similarly, genetic hubs have been shown to typically have steady 
expression levels, likely as a consequence of their importance (Park and Lehner, 2013), but the hubs that 
have variable expression levels are enriched for duplicates that may be able to buffer the effects of low 
expression (Park and Lehner, 2013), meaning duplication is not only a source of novel adaptations, but 
may also be a mechanism by which networks are robust. 
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Figure 1.  Measuring pleiotropy from GI modules.  Bicluster modules are obtained by applying XMOD to 
the genetic interaction network (Left box).  The input SGA-derived network is binarized by thresholding 
negative genetic interactions between query and array single mutant strains, reflecting the SGA 
experimental setup.  Interactions are added between query and array strains representing the same 
gene to allow modules containing these.  Discovered complete bipartite modules have one set of query 
strains and one set of array strains.  The pleiotropy of a focal strain, depicted as an outlined circle, is 
calculated from the functional distribution of its containing bicluster modules (Right box).  Bicluster 
annotations are determined by the associate side of the module, the set of genes that contains the focal 
gene and is drawn as the left side of each bicluster (the right strain set is the adjacent side).  Colors 
represent gene annotations.  The vector n contains counts of annotation occurrences. 
 
Figure 2.  Pleiotropy scores. (A) Functional profiles of example genes with a range of pleiotropy scores 
are sorted with the most pleiotropic at the top.  The distribution of annotation occurrences from each 
gene’s containing modules was normalized (equal to vector p in Figure 1) and displayed such that circle 
area represents the fraction of module annotations in each bioprocess.  Data for each are from a single 
query strain.  (B) Gene pleiotropy scores are correlated with genetic interaction degree, but still show 
substantial variation not explained by degree.  High, low, and medium pleiotropy groups are only 
assigned to genes with degree of at least the 60th percentile (vertical boundary between gray and 
colored markers, left plot) and are determined from residuals of the regression of pleiotropy scores 
against degree (cause for sloped divisions between the high-medium and medium-low boundaries, left 
plot).  Histogram bars in the right-hand plot are stacked and count the genes assigned to pleiotropy 
groups.  Both plots show DMA-derived pleiotropy scores. 
 
Figure 3.  Selected biclusters of the pleiotropic gene CMD1 (A) and the non-pleiotropic gene RAD27 (B).  
Nodes represent genes and edges represent negative genetic interactions extracted from the DMA-
derived GI network.  Only genetic interactions that define each bicluster are displayed, although there 
are often interactions between genes on the same side of a bicluster.  The biclusters’ adjacent-side sets 
of genes are connected to the focal genes CMD1 or RAD27.  The genes arranged on the outside of the 
each diagram, with the addition of the focal gene, are the associate sides.  Gene names list the members 
of some biclusters; the first group of names in each bracketed pair lists the associate-side genes and the 
second group lists the adjacent-side genes.  Text labels are bicluster annotations determined from the 
associate-side genes.  Colors of nodes indicate the functional annotations of genes, which can be 
inferred from the bicluster annotations (e.g. sea green represents “Cell polarity/morphogenesis”).  Any 
colors that cannot be interpreted with bicluster labels are listed in the legend.  Any genes that have 
multiple process annotations are colored preferentially to match the annotation given to the bicluster.  
Both panels use the same color scheme. 
 
Figure 4.  Gene properties significantly associated with high (yellow) or low (blue) pleiotropy derived 
from the DMA (A) and TSA (B) GI networks.  Cumulative plots are displayed for properties that take on 
many values.  For a pleiotropy group and property, the plotted line shows the percent of the genes that 
have a property value greater than or equal to any point on the x-axis.  Percentage calculations only take 
into account genes that have measured values for the property (all properties shown had sufficient data 
coverage, see Methods).  The area between the blue and yellow lines is filled with color indicating which 
pleiotropy group has a higher percent of genes with high property values.  Black hash marks plotted 
above the x-axis mark all values found in the genes’ property values.  Bar plots are displayed for 
properties that take on few values.  There is a total of 268 genes in both the high and low DMA-derived 
groups (A) and a total of 163 genes in both TSA-derived groups (B).  P-values from ranksum tests for 
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each property from left to right are (A, top row) 7e-3, 8.4e-4, 7.4e-4; (A, second row) 3.4e-2, 4.3e-4, 
1.1e-4; (A, third row) 1.1e-5, 2.7e-4, 1.6e-3 (B, top row) 5.4e-3, 6.4e-3, 2.4e-6; (B, second row) 3.4e-2; 
8.7e-6, 7.5e-7; (B, third row) 5.8e-3, 2.1e-3, 5.9e-5.   
 
Figure 5.  High-pleiotropy genes have higher environmental expression variance than low-pleiotropy 
genes.  (A) Histograms show the distribution of expression variance, shown on the y-axis, for all high- 
and low-entropy genes.  The number of genes in each pleiotropy class that fall into each bin is given next 
to each bar.  (B) Expression of all high- and low-pleiotropy genes that are among the 60 genes 
(regardless of pleiotropy) with the highest expression variance was plotted for each environment.  
Values plotted are medians of multiple time points measured for individual environments.  Separate 
axes are for visual clarity only: genes that tend to increase in expression during stress are plotted on the 
top, while genes with the opposite trend are on the bottom. 
  
Figure 6.  High-entropy genes are more likely to be whole-genome duplicates than are low-entropy 
genes.  Bar heights show the number of whole-genome duplicate genes that are in the classes of high-, 
medium-, and low-pleiotropy, as labeled on the x-axis.  GI degree and pleiotropy data shown as bar 
coloring describes the WGD partners of the high-degree classified genes.  Bars on the left side show 
partner GI degree, where genes are considered “high” if their degree is at least the 60 percentile “hub” 
threshold used to define pleiotropy classes (near 100); “medium” if degree is at least 50 but lower than 
high cutoff; and “low” if degree is lower than 50.  Bars on the right side show partner pleiotropy scores, 
which use the same thresholds as the standard pleiotropy classes defined for high-degree genes.  
Stacked sections of pleiotropy scores correspond to the matching sections of degree, as shown by 
horizontal white lines.  For example, of all the WGD partners of classified low-pleiotropy genes, there 
are six with low GI degree (light blue, left bar) and, of these, one participated in enough biclusters that it 
could be given and pleiotropy score, which was low (one unit of dark blue, right bar).  As another 
example, there are six high-pleiotropy genes whose WGD partners have high degree and, of these, four 
also have high pleiotropy.  High-degree genes will be counted as both a classified gene and a partner of 
a classified gene. 
 
Table 1.  Summary of gene characteristics associated with high- and low-pleiotropy genes.  Tests were 
performed for pleiotropy scores derived from different pleiotropy scoring configurations (columns).  
Values shown are the number of ranksum tests that yielded a significant p-value, out of a total of 22 
variations performed for each query-strain scoring configuration and 12 variations performed for each 
array-strain scoring configuration (see Methods).  Blank cells indicate zero tests with significant results.  
Values in parentheses indicate significant results that contradict the result column by associating the 
gene property with the opposite pleiotropy class.  Asterisks indicate features that were associated 
strongly enough with both pleiotropy classes that the property is listed in two rows.  The significance of 
p-values from ranksum tests was determined using the FDR-control procedure described in Benjamini et 
al. (2006), counting tests for 37 gene properties as a family.  
 
 
Methods 
XMOD overview 
 
Biclusters were generated from each network according to the procedure described by Bellay et al. 
(2011).  In this method, frequent itemset mining is used to find groups of array genes that frequently 
(with high support) occur together as subsets of query genes’ interactors.    To determine statistical 
significance, the biclusters are compared to biclusters mined from ten randomized versions of the 
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network.  All biclusters are assigned a score that represents the likelihood of all their contained 
interactions occurring if genes interacted randomly, conditioned on the genes’ interaction degrees.  The 
scores of the random biclusters are used as a null distribution to assign p-values to the real biclusters, 
which are expected to have lower scores due to non-random gene associations.  Biclusters with p-values 
higher than a chosen significance level are discarded.   
 
The nature of our new SGA data motivated a number of modifications and additions to this bicluster-
discovery framework, which are detailed in the following paragraphs. 
 
 
Binary networks input to mining 
 
The TSA (temperature sensitive array) and DMA (deletion mutant array) SGA GI networks from Costanzo 
et al. (2016) were binarized by defining interacting strains as pairs with epsilon scores less than or equal 
to -0.08, according to the established intermediate cutoff.  We additionally added self interactions to 
the network, to allow the discovery of cliques. 
 
The set of queries in each SGA network includes mutant strains with DaMP and TS alleles of essential 
genes, often with multiple alleles of a single gene.  Due to the biased multiplicity of many essential 
genes within the set of query strains, bicluster datasets generated from the complete data set may be 
uninteresting or difficult to interpret because bicluster significance would be driven by the highly 
correlated behavior of alleles of the same gene.  To overcome this problem, we produced 15 replicates 
of each network, each containing one randomly selected allele for each gene.  Using many replicate 
networks yields good representation of different alleles and allows different combinations of alleles to 
be chosen.  In all, 15 replicates of each of the DMA and TSA GI network were input to separate runs of 
XMOD. 
 
 
Bicluster discovery 
 
All frequent item set mining, done within the XMOD framework, was performed using an 
implementation of the Eclat algorithm (Zaki et al., 1997) by Christian Borgelt, which is available at 
http://www.borgelt.net/eclat.html, using the “-tc” option to report only closed item sets.  A single test 
run on the DMA network yielded over 37 million biclusters with a size of at least four query strains and 
four array strains.  Based on the observation that only ∼2.7% of all 4x4, 4x5, and 5x4 biclusters are 
significant at a p-value threshold of 10e-4, we used the Eclat option to remove from the results all 
biclusters of these three mentioned sizes and those with either dimension smaller than four in order to 
reduce memory usage in XMOD; the Eclat options to accomplish this are “-s-4 –m-4 -F-6-5-4”.   After 
eliminating these small biclusters, the DMA network replicates contained between an average of ∼24.5 
million biclusters and the TSA network replicates contained an average of ∼20 million biclusters. 
 
As described in Bellay et al. (2011) and briefly above, XMOD determines empirical p-values of biclusters 
through comparison to biclusters discovered in ten randomized networks.  Combining biclusters from 
ten random networks supplies a better sampling of biclusters of larger dimensions than one random 
network could, however, there was an overabundance of random-network biclusters with small 
dimensions (e.g. 4x6, 6x4, 5x5).  So for better speed and memory use, we randomly discarded biclusters 
to keep a maximum of two million for each size. 
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All biclusters with p-values >= 1e-4 we discarded, leaving ∼14m (57%) DMA and ∼10m (50%) TSA 
biclusters per network replicate.  The vast majority of biclusters containing 30 or more interactions (e.g. 
6x6, 7x5, and larger) were significant, since very few large biclusters were found in the randomized 
networks.  
 
 
Preference of bicluster sizes during condensing 
 
Bicluster discovery through frequent item set mining typically produces modules that overlap, i.e. a 
bicluster usually shares some of its interactions with other biclusters.  While this certainly reflects reuse 
of genes in different cellular functions, it is also caused by our inability to discover larger modules that 
are fractured by false negatives (biological or technical).  We therefore used a method described in 
Bellay et al. (2011) that condenses a set of biclusters by identifying pairs of overlapping biclusters and 
removing one, leaving a non-redundant set of modules.  The procedure is greedy and proceeds as 
follows: First, order all biclusters from best to worst.  Then, select the biclusters in order and upon the 
selection of a bicluster, remove overlapping biclusters from any future consideration.  We defined 
“overlapping” as the smaller bicluster having 10% or more genetic interactions in common with the 
larger. 
 
To define the best-to-worst ordering, we determined preferences for different bicluster sizes, and built a 
size-lookup table to pick between differently sized biclusters.  For our use, the quality of a bicluster can 
be measured by how well it reiterates a set of genes annotated by a GO term.  We selected Jaccard 
similarity between the bicluster gene set and an enriched GO term as a simple statistic to measure this.  
Since calculating GO term enrichments on all bicluster gene sets would take too long, we used a sample 
of biclusters to rank bicluster sizes (expressed in two dimensions) according to results from Jaccard 
similarity analysis.  First, for each bicluster size, we collected all biclusters up to a maximum of 10,000 
and removed redundancy from this set by consecutively selecting biclusters in random order and 
removing any other bicluster from future selection if more than 10% of its interactions overlapped with 
the selected one.  Next, statistically enriched GO terms were determined for every bicluster (using genes 
from one side) and the maximum Jaccard similarity obtained from each bicluster was recorded, yielding 
a distribution of maximum Jaccard similarities for each bicluster size.  Finally, as a summary statistic 
representing likelihood of reflecting a known module, we kept the median Jaccard score for each 
bicluster size, organized as a lookup table to consult.  This analysis was done separately for the DMA- 
and TSA-derived biclusters. 
 
A size preference table is specific to the bicluster dataset (either TSA or DMA) and the side of the 
bicluster (query-strain or array-strain) that is intended to be used in further analyses.  Therefore, a total 
of four tables were created (supplemental file). 
 
 
Bicluster functional profiles 
 
For both the TSA and DMA network, every strain has 15 sets of biclusters that it appeared in, one set 
from each of the network replicates.  All of these were condensed individually (i.e. there were 15 
different sets of biclusters per strain, per network) twice: first for the purpose of annotating the query-
strain sides of biclusters, and second for the purpose of annotating the array-strain sides, using the 
appropriate size preference table in each case.  The condensed set of biclusters intended for query-side 
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annotations was used, for example, in the “Query, associate” scoring configuration, while the array-side 
set was used for the “Query, adjacent” scoring configuration.  
  
To create functional profiles from the sets of condensed biclusters, we annotated one side of each 
bicluster with biological process terms that have been manually annotated (MA, (Costanzo et al., 2010), 
supplementary file) or systematically annotated (SAFE, (Baryshnikova, 2016; Costanzo et al., 2016), 
supplementary file) to yeast genes.  Every bicluster was annotated by any term for which its gene set 
had significant enrichment or to which at least 40% of queries were annotated.  The numbers of 
annotations to each term were counted and normalized within each of the 15 sets of biclusters 
associated with each query or array strain, creating functional profiles.  These replicate profiles were 
averaged, yielding one bicluster-based functional profile per strain. 
 
 
Pleiotropy (entropy) scores 
 

Entropy of a strain was calculated from its functional profile as −∑ 𝑝𝑖 log2 𝑝𝑖
𝑘
𝑖=1 , where 𝑝𝑖  is the fraction 

of biclusters annotated with the 𝑖-th process and 𝑘 is the total number of terms in the annotation 
scheme.  Pleiotropy scores were not assigned to genes that had fewer than 10 biclusters. 
 
 
Validation of profiles 
 
To compare each gene’s bicluster-derived annotation profile to its gold standard annotations, either MA 
or SAFE, we used a simple one-dimensional version of the clustering algorithm DBScan (Ester et al., 
1996) to find the most striking highly annotated process or processes for each functional profile.   Before 
clustering, we normalize each profile by dividing by its maximum value.  Our implementation of DBScan 
visits values from highest to lowest and labels a value as an outlier if it has no neighbors (minPts 
parameter is 1) at a distance of less than 0.2 (Eps parameter), otherwise it defines a cluster and expands 
the cluster following the standard algorithm.  We defined profile-predicted annotation as (1) all outliers 
that are higher than the first cluster, if there are any, or (2) the highest cluster, if there are no outliers. 
 
 
Testing for associations between pleiotropy and gene characteristics 
 
We used Wilcoxon ranksum tests to compare the values of gene characteristics of high-pleiotropy genes 
to those of low pleiotropy genes.  The 37 physical, functional, and evolutionary gene properties are 
listed in the section “Gene properties.”  We performed tests using pleiotropy scores obtained from the 
six different pleiotropy scoring configurations and testing variants, which are described below.  The 
significance of p-values from ranksum tests was determined using the FDR-control procedure described 
in Benjamini et al. (2006), treating the sets of 37 tests with identical set-ups, but different gene 
properties, as families. 
 
The scoring configurations comprise the following: network orientations described in the “Network 
inputs to mining” (query vs array), the bicluster side used for functional enrichment described in the 
section “Pleiotropy (entropy) scores” (associate vs adjacent), and the gene annotations used (MA vs 
SAFE).  The six combinations of these methods choices that are used are “Query, associate, manual”, 
“Query, associate, SAFE”, “Query, adjacent, manual”, “Array, associate, manual”, “Array, associate, 
SAFE”, and “Array, adjacent, manual”. 
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For each of scoring configurations, we performed multiple ranksum tests, called “testing variants,” that 
explore different ways to define the high- and low-pleiotropy classes and control for possible biases that 
different types of mutant alleles may cause.  The methods choices we considered that affect any type of 
gene are: controlling for the GI degree of genes (DC vs noDC); removing strains that show weak signs of 
batch effects (rmBadBatch); and altering the percent of genes that are added to the high and low 
pleiotropy classes, which is set to 30% by default (tail20, tail40).  Variants related to genes represented 
by TS and DAmP alleles are the following:  determining the gene’s pleiotropy score by taking the mean 
score or maximum score of the alleles (average vs max); removing one type of mutant allele (noDamp, 
noTs); applying a minimum GI degree threshold of 50 before averaging the degree of alleles to 
determine the high-degree genes that may be classified (damp50, ts50).  The combinations of these 
methods choices that are used are described in Table SXX (“ranksumTestVariantsTable.xlsx”). 
 
The pleiotropy classes of high, medium, and low, are determined for each pairing of scoring 
configurations and testing variants because these methods choices affect which genes are considered.  
First, high-degree genes are identified as those with degree in the top 40% out of all genes that have 
been screened, have a pleiotropy score, and have not been removed by one of the test-variant 
modifications.  For test variants that include degree control, we regress pleiotropy scores against degree 
and keep the pleiotropy residuals in place of pleiotropy scores.  Then the pleiotropy scores (or score 
residuals) are divided into classes with the genes whose pleiotropy is in the top 30% of the high-degree 
genes labeled high-pleiotropy, genes in the bottom 30% labeled as low-pleiotropy, and the remaining 
40% of genes labeled as medium pleiotropy.   
 
 
Gene properties 
 
Age 1-20 indicates the phylogenetic distance of the most distantly related species with an identified 
ortholog to a given yeast gene.  Genes only found in S. cerevisiae are assigned the age of 0 and genes 
with orthologs appearing in more distant species are assigned higher ages.  Two phylogenetic trees were 
used in this analysis: one obtained from Ostlund et al. (2010) contains 100 animal, plant, and fungi 
species and one obtained from Wapinski et al. (2007) contains 23 yeast species. 
 
Broad conservation is a count of how many non-yeast species, out of a set of 86, have an ortholog of a 
given gene. To count this, we obtained orthogroup designations from InParanoid (Ostlund et al., 2010). 
For each gene, we considered it to have an ortholog in another species only if it appeared in a cluster 
with the other species and was given a score of 1.0 by the InParanoid clustering method; that is, we 
considered a yeast gene to have an ortholog in species x if it was a seed gene for a gene cluster that had 
an orthologous cluster in species x. Note that this measure is similar, though complementary, to the 
“yeast conservation” measure described below, which focuses on conservation within the yeast clade. 
 
CAI, codon adaptation index, is a sequence-based measure of bias in usage of synonymous codons as 
compared to usage in highly expressed genes. It was calculated using the cai tool and the default codon 
usage table in the EMBOSS suite (Rice et al., 2000). 
 
Chemical-genetic degree is a count of drug and environmental conditions to which a homozygous 
diploid gene-deletion mutant strain is significantly sensitive (Hillenmeyer et al., 2008). 
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Coexpression degree is a measure derived from a co-expression network based on integration of a large 
collection of expression datasets (Huttenhower et al., 2006). The network was sparsified by considering 
only edges between gene pairs whose co-expression levels were above the 95th percentile. The co-
expression degree of a gene is the number of genes with which its co-expression value is retained in this 
restricted network. 
 
Complex member is a binary feature that indicates whether the corresponding protein is a component 
of at least one complex based on the complex standard provided in Costanzo et al. (2016). 
 
Copy number is a count of the number of paralogs each gene has. This was determined from clusters 
identified by the InParanoid algorithm (Ostlund et al., 2010). All genes that appeared in the same cluster 
were considered paralogs. 
 
Copy number volatility is the number of times that a gene is lost or gained among 23 Ascomycete fungi 
species, as defined by Wapinski et al. (2007). 
 
Curated phenotypes Mutant phenotypes were downloaded from the Saccharomyces Genome Database 
(SGD) on January 31, 2013. The list of phenotypes was filtered to include only those related to deletion 
mutants of verified or uncharacterized open reading frames (mutant type = 'null', feature type = 'ORF'). 
Phenotypes were further filtered to only include increased or decreased phenotype expression 
compared to a wild-type strain. Finally, the number of non-wild-type phenotypes was counted for each 
gene. Unclear descriptions of phenotypes, such as "abnormal", were ignored. 
 
Deleterious SNP rate is the number of predicted deleterious SNPs observed for a given gene in the 
recently sequenced set of diverse S. cerevisiae strains (Liti et al., 2009) normalized by gene length.  
Deleterious SNP rate of strains is similar, but counts strains containing deleterious SNPs.  These SNP 
features were derived from identification and analysis of SNPs in 19 strains as described in (Jelier et al., 
2011).  Briefly, SNPs were identified from sequence alignments of all strains to the S288C reference 
sequence. The SIFT algorithm, with some modifications, was used to predict which nonsynonymous 
SNPs are likely to have functional consequences. We applied the recommended threshold to SIFT scores, 
calling any SNP with a score of <= 0.05 deleterious. 
 
dN/dS is the ratio of the number of nonsynonymous to synonymous mutations in a given gene.  We 
computed the average dN/dS ratio for S. cerevisiae in comparison to the sensu strictu yeast species 
(Saccharomyces paradoxus, Saccharomyces bayanus, and Saccharomyces mikatae).  Protein sequences 
were aligned using MUSCLE and dN/dS ratios were computed using PAML (Edgar, 2004; Yang, 2007). 
 
Effective number of codons is a measure of codon usage bias and is an alternative to CAI that does not 
require a pre-defined set of highly expressed genes. This measure was computed using PAML. 
 
Essential, a binary feature, is true for any gene that is required for viability under standard laboratory 
conditions. 
 
Expression level is a measurement of the mRNA expression level of a gene (Holstege et al., 1998). 
 
Expression variance, environ. is the variance in a gene’s expression across all measurements in the 
Gasch et al. (2000) dataset.  This study subjected yeast to many evironmental conditions and measured 
expression of nearly all yeast genes with microarrays.  Environments included heat shock, hydrogen 
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peroxide, superoxide generated by menadione, diamide, dithiothreitol, hyper-osmotic shock, amino acid 
starvation, nitrogen source depletion, and progression into stationary phase, as well as alternative 
carbon sources and variable temperatures.  The data contain multiple time points and temperatures for 
the environments listed. 
 
Expression variance, genetic-A 
The expression dataset produced by Brem and Kruglyak (2005) measures expression of 6162 genes in 
the strains BY4716, RM11-1a, and 112 segregants from crosses between BY4716 and RM11-1a.  This 
expression variance feature is simply the variance across these strains, measured for each gene, and 
represents the amount of variation that occurs throughout genetically diverse genomic backgrounds. 
 
Expression variance, genetic-B 
Skelly et al. (2013) obtained 22 yeast strains from geographically and environmentally diverse locations 
and performed RNA-seq to measure gene expression levels.  This expression variance feature is the 
variance across the strains, measured for each gene, and represents expression variation that occurs in 
genetically diverse genomic backgrounds.  
 
log2(Distance from telomere) is the distance, in nucleotides and log-transformed, between a gene and 
the start of a its closest telomere. 
 
Multifunctionality is a count of annotations to “biological process” terms of the Gene Ontology.  
Specifically, the total number of annotations across a set of functionally distinct GO terms described in 
Myers et al. (2006) was used as a multi-functionality index. 
 
Number of complexes  is a count of the number of complexes by which a given gene is annotated in the 
protein complex standard provided in Costanzo et al. (2016). 
 
Number of domains is the number of domains, counting repeated domains, present within a given 
protein, as identified by PFAM (downloaded July 2015).  Number of unique domains is the same but 
does not count repeated domains. 
 
Originated in Saccharomyces is a binary value that is true if a gene originated in the Saccharomyces 
clade of the phylogenetic tree, which is assumed if the most distant species with an ortholog is a 
Saccharomyces yeast species. Specifically, we consulted the species tree from Wapinski et al. (2007) and 
identified all genes that appear only in S. cerevisiae’s closest relatives: species up to and including 
Saccharomyces bayanus.  Note that although some more distant species (Naumovozyma castellii, 
Lachancea kluyveri) were originally placed in the genus Saccharomyces and may still be referred to with 
this name as described in Wapinski et al., these have subsequently been associated with different 
genera. 
 
Phenotypic capacitance was computed by Levy and Siegal (2008) and captures variability across a range 
of morphological phenotypes upon deletion of each of the nonessential genes. 
 
Pleiotropy sum 
 
PPI degree, Tap MS  
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Physical interaction degree from Tandem Affinity Purification coupled with Mass Spectrometry (TAP-MS) 
refers to the total number of interactions in the union of the Gavin et al. (2006) and Krogan et al. (2006) 
datasets. 
 
PPI degree, Y2H is the total number of binary, physical interactions detected using yeast two-hybrid 
analysis (Yu et al., 2008). 
 
Protein abundance was measured by fluorescence of GFP-tagged proteins grown in liquid rich media; 
protein abundance under stress was measured by fluorescence of GFP-tagged proteins grown in liquid 
minimal media (Newman et al., 2006). 
 
Protein disorder is the percent of unstructured residues as predicted by the Disopred2 software (Ward 
et al., 2004). 
 
Protein length is the number of amino acids in a gene’s associated protein. 
 
Single mutant fitness defect was calculated by Costanzo et al. (2016). 
 
SSD duplicate, a binary feature, is true for genes with one or more paralogs that resulted from small 
scale duplication (SSD) events. To identify pairs of genes that emerged from SSD events, we searched for 
gene pairs that meet the following criteria: the gene pair must have a sufficiently high sequence 
similarity score (FASTA Blast, E = 10), sufficient protein alignment length (> 80% of the longer protein), 
an amino acid level identity of at least 30% for proteins with aligned regions longer than 150 amino acids 
or greater than [0.01n + 4.8L^(-0.32(1 + exp(-L/1000)))] with L defined as the aligned length and n = 6 for 
shorter proteins (Gu et al., 2002; Rost, 1999). 
 
Transcription level 
 
WGD duplicate, a binary feature, is true for any gene that has a paralog that resulted from the whole 
genome duplication event. The WGD event designation was reconciled from several sources (Byrne and 
Wolfe, 2005). 
 
Yeast conservation counts how many of 23 different species of Ascomycota fungi possess an ortholog of 
a gene. This measure was described by Wapinski et al. (2007) and ortholog data were downloaded from 
the associated website http://www.broadinstitute.org/regev/orthogroups/. 
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Table 1

Associate,

MA

Associate,

SAFE

Adjacent,

MA

Associate,

MA

Associate,

SAFE

Adjacent,

MA

Associate,

MA

Associate,

SAFE

Adjacent,

MA

Associate,

MA

Associate,

SAFE

Adjacent,

MA

Expression variance, environ. High 9 16 10 3 5 6 17 22 22 2 3 2

Protein abundance in stress High 3 16 21 10 12 1 9 14 22 3

Protein abundance High 5 16 21 12 12 1 1 19 2

Expression variance, genetic-A High 15 1 4 17 22 18 6 1

CAI High 1 20 12 1 15 9 2

Copy number High 22 18 4 8 22 22 22

Copy number volatility High 22 18 12 8 22 22 15

WGD duplicate High 21 18 3 8 21 22 16

Expression variance, genetic-B High (L 15) 5 1 4 1 18 2

Single mutant fitness defect* High 11 5 6 2 12 8

Transcription level High 18 5 5 1 19 3

Expression level High 1 18 5 19 3

Number of domains High 21 22 15 2 5

Number of unique domains High 21 22 15 2 5

Originated in Saccharomyces High 22 16 9

Protein length High 22 19 5

Coexpression degree High 10 10

Essential* High 7 20

Complex member Low 22 21 1 12 8 22 22 21 3

Number of complexes Low 22 18 1 12 8 22 22 20 6

Curated phenotypes Low 22 22 (H 10) 3 5 (H 6) 19 21 11

Phenotypic capacitance Low 21 21 2 7 19 10

Chemical-genetic degree Low 12 2 20 22 1

Effective number of codons Low 5 9 10 21 1

Multifunctionality Low (H 2) 7 4 18 21 3

PPI degree, Tap MS Low (H 4) 3 21 4 5 7

Single mutant fitness defect* Low 22 22 3 8 1

Yeast conservation Low 3 (H 2) 1 11 20

dN/dS Low 1 13 10 6

Age 1-20 Low 19 6 5

Broad conservation Low (H 2) 17 1 2

Essential* Low 19 10 15

Gene/protein property
Pleiotropy class with 

positive association

DMA TSA

Query Array Query Array
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