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Abstract The mechanisms hypothesized to drive spatial heterogeneity in reported9

influenza activity include: environmental factors, contact patterns, population age structure,10

and socioeconomic factors linked to healthcare access and quality of life. Harnessing the11

large volume and high specificity of diagnosis codes in medical claims data for influenza12

seasons from 2002-2009, we estimate the importance of socio-environmental determinants13

and measurement-related factors on observed variation in influenza-like illness (ILI) across14

United States counties. We found that South Atlantic states tended to have higher ILI15

seasonal intensity, and a combination of transmission, environmental, influenza subtype,16

socioeconomic and measurement factors explained the variation in seasonal intensity17

across our study period. Moreover, our models suggest that sentinel surveillance systems18

should have fixed report locations across years for the most robust inference and prediction,19

and high volumes of data can offset measurement biases in opportunistic data samples.20

21

Introduction22

Seasonal influenza represents an important public health burdenworldwide, and evenwithin23

a single year, there is substantial variation in disease burden across populations (Moorthy et al.,24

2012; Lee et al., 2015). Many studies have examined the drivers and patterns influenza season-25

ality (Lofgren et al., 2007; Tamerius et al., 2011), while others have focused on the large-scale26

spatial patterns in influenza epidemic timing, suggesting for instance, spread from West to27

East across North America due to a combination of local contact patterns and global travel28

patterns (Wenger and Naumova, 2010; Schanzer et al., 2011b; Grais et al., 2003; Brownstein29

et al., 2006). While there are numerous studies explaining spatial variation in seasonal in-30

fluenza transmission and disease burden, most studies focus on very aggregated or very local31

study areas (e.g., country-level or one school district, respectively) compare only one or two32

hypotheses in isolation.33

Among these, humidity and temperature have each been associated with seasonal flu34

onset, seasonal fluctuations, and heightened morbidity and mortality in epidemiological con-35

texts (Shaman et al., 2010; Yu et al., 2013; Barreca and Shimshack, 2012; Deyle et al., 2016),36

and lower humidity and colder temperatures may increase influenza virus transmission and37

survival (Lowen et al., 2007; Shaman and Kohn, 2009). Chronic illnesses such as asthma, ex-38

acerbated by air pollution, elevated the risk for severe symptoms of pandemic H1N1 (Van39

Kerkhove et al., 2011). Empirical evidence supports the occurrence of both aerosol and droplet40
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transmission of influenza virus (Killingley and Nguyen-Van-Tam, 2013), and these transmission41

modes suggest that influenza seasons may follow both density-dependent and frequency-42

dependent disease dynamics (per capita contact rates between susceptible and infectious43

individuals do and do not change with population density, respectively). The high connectiv-44

ity of school-aged children in contact surveys (Mossong et al., 2008; Kucharski et al., 2014) has45

led to hypotheses that children drive local transmission and adults seed new infections across46

longer distances (Viboud et al., 2006; Apolloni et al., 2013), which may manifest in shifted epi-47

demic timings across age groups (Lemaitre and Carrat, 2010; Peters et al., 2014; Schanzer et al.,48

2010; Wallinga et al., 2006; Timpka et al., 2012). Immune landscapes vary across locations; epi-49

demic outcomes in one season may trickle down to subsequent years through differences50

in cross-protective immunity, and high flu vaccination coverage may reduce morbidity and51

incidence of severe clinical outcomes (Kostova et al., 2013). Finally, flu type and subtype cir-52

culation may also drive spatial heterogeneity; A/H3-dominant flu seasons are associated with53

greater morbidity and mortality and an older patient age distribution than A/H1 season (Frank54

et al., 1985; Simonsen et al., 1997; Khiabanian et al., 2009; Peters et al., 2014), while influenza B55

is thought to circulate predominantly and earlier among children (Peters et al., 2014;Hayward56

et al., 2014; Beauté et al., 2015).57

Beyond socio-environmental mechanisms, we must consider the possibility that the mea-58

surement of influenza disease burden plays a significant role in driving the observed spatial59

heterogeneity. While poverty and other social determinants are thought to increase risk for60

influenza morbidity, hospitalization, and mortality (Lowcock et al., 2012; Kumar et al., 2015;61

Hadler et al., 2016; Charland et al., 2011; Grantz et al., 2016), these observations are often con-62

foundedby care-seekingbehavior, the likelihood that sick individualswill seek treatment from63

a health care provider. Roughly 43% of adults and 60% of elderly seek care for influenza-like64

illness (ILI) in the United States, as many cases are too mild to warrant a visit to the doctor (Big-65

gerstaff et al., 2014b). In addition to differences in personal choice, limited access to health66

care and health insurance also delay or reduce care-seeking behavior, further generating bi-67

ases in reported case severity or patient numbers among physician-based surveillance sys-68

tems (Biggerstaff et al., 2014b).69

In this study, we examine the transmission, environmental, influenza-specific, and socioe-70

conomicmechanisms andmeasurement processes underlying the spatial variation in reported71

influenza-like illness across counties in the United States. Leveraging highly resolved medical72

claims data, we identified important drivers of spatial heterogeneity in the magnitude and73

duration of flu seasons from 2002 to 2009 in a large-scale ecological analysis. We then used74

our Bayesian modeling framework in new applications to probe the robustness of this ecolog-75

ical inference with limited data availability and to assess the predictive ability of our model in76

a more recent flu season. Our results highlight the relative contributions of surveillance data77

collection and socio-environmental processes to disease reporting, and highlight the impor-78

tance of considering measurement biases when using surveillance data for epidemiological79

inference and prediction.80

Results81

We examined the socio-environmental and measurement-related drivers of spatial hetero-82

geneity in influenzadiseaseburden acrossU.S. counties for flu seasons from2002-2003 through83

2008-2009 using a hierarchical Bayesian modeling approach. Using medical claims data rep-84

resenting 2.5 billion visits from upwards of 120,000 health care providers each year, our study85

considered six disease burden response variables: two measures of influenza disease burden86

(relative risk of seasonal intensity, which is a proxy for attack rate, and epidemic duration in87

number of weeks) in three populations (total population, children 5-19 years old, and adults88

20-69 years old) with multi-season and single season model structures. There were 13 county-89

level, 2 state-level and 4 HHS region-level predictors in the final model Table 1; all predictors90
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Figure 1. Continental U.S. county map for fitted and observed relative risk of seasonal intensity for an example flu season (2006-2007).

Figure 1–Figure supplement 1. Continental U.S. county maps for fitted (left) and observed (right) relative

risk of seasonal intensity for remaining influenza seasons.

were the same across response variables except care-seeking behavior, which was specific to91

the age group in the response. The seasonal intensity model fit the data well and the Pear-92

son’s cross-correlation coefficient between the log seasonal intensity and log prediction was93

𝑅 = 0.87 (Figure 1). Results reported in the following sections are from the multi-season total94

population seasonal intensity model unless otherwise noted.95

Temporal and spatial patterns of influenza-like illness96

Group (random) effects were used to identify consistent spatial or temporal patterns across97

locations and study years. We found that the 2004-2005 flu season had greater seasonal inten-98

sity, while 2008-2009 had relatively low seasonal intensity (Figure 2). For the seasonal intensity99

model, no single region had a significant group effect, although several South Atlantic states100

like Georgia, Maryland, North Carolina, South Carolina, and Virginia had relatively greater risk101

than other states across the study period, while several Plains and Rocky Mountain states like102

Kansas, Minnesota, Missouri, Montana, and Utah had relatively lower risk.103

Drivers of seasonal intensity104

Several socio-environmental drivers of seasonal intensity risk were identified in the multi-105

season model (Figure 3). Total seasonal intensity had positive associations with the adult-flu106

H3 and child-flu B interaction terms, estimated average household size, and a proxy for prior107

immunity. Therewere negative associationswith adult and child population proportions, aver-108

age flu season specific humidity, proportion of the population in poverty, proportion of single109

person households, and infant vaccination coverage.110

We found that careseeking behavior and claims database coverage had strong positive as-111

sociations with seasonal intensity (Figure 3). In considering the single-season models, the pos-112

itive effect of claims database coverage on seasonal intensity appeared to decline in magni-113
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A)           B)

Figure 2. Temporal and spatial group effects for total population seasonal intensity. A) 95% credible intervals for group (random) effects
by influenza season. B) Continental U.S. maps highlighting states with significantly greater or lower seasonal intensity across the study
period.

tude over time (Figure 3 supplement). This corresponded with an increase in claims database114

coverage over time (Appendix 5).115

Drivers of age-specific seasonal intensity116

Children and adults comprise the largest components of the U.S. population, and many stud-117

ies have considered shifts in epidemic timing and immunity due to differences in contact118

patterns, shifting risk between children and adults over time, interactions between influenza119

types/subtypes by age, and differences in vaccine effectiveness by age group (Bansal et al.,120

2010; Lee et al., 2015; Ewing et al., 2016; Schanzer et al., 2011a; Gostic et al., 2016; Khiabanian121

et al., 2009). Considering the potential to elucidate age-specific transmission mechanisms122

and improve targeting of public health interventions, we used the multi-season model to123

examine drivers of seasonal intensity in the child and adult populations. Full model results124

are reported in Appendix 2, and for both age groups, predicted value means appeared to be125

systematically over-estimated relative to the observed relative risk of seasonal intensity. The126

Pearson’s cross-correlation coefficient between the log observation and log predicted mean127

was 𝑅 = 0.89 and 𝑅 = 0.90 for the child and adult seasonal intensity models, respectively.128

Children had greater intensity in the 2003-2004 flu season and lower intensity in the 2002-129

2003 and 2008-2009 flu seasons. Adults had greater intensity in the 2004-2005 flu season130

and lower intensity in the 2008-2009 flu seasons. Similar to results for the total population,131

several South Atlantic states had greater risk while Plains states had lower risk of seasonal132

intensity for both children and adults.133

Across the three age group responses (i.e., total, children, adults), child seasonal intensity134

had a unique positive association with influenza B circulation and adult seasonal intensity135

had a unique positive association with H3 circulation among influenza A and proportion of136

the population in poverty. Also notable, both child and adult seasonal intensity had a negative137

association with estimated average household size, while the total seasonal intensity model138

had a positive effect.139

Drivers of epidemic duration140

We also considered the mechanisms associated with epidemic duration, a measure of in-141

fluenza disease burden that captures the number of weekswith heightened ILI activity. Better142

understanding of factors associated with longer epidemics might improve hospital prepared-143

ness in surge capacity and staffing needs and aid local public health departments in planning144
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  A)   B)

Figure 3. For the total population multi-season seasonal intensity models, these are the 95% credible intervals for the posterior
distributions of the A) socio-environmental coefficients and B) measurement-related coefficients. Distributions indicated in green were
statistically significant.

Figure 3–Figure supplement 1. For the total population single-season seasonal intensity models, these are the 95% credible intervals for

the posterior distributions of the socio-environmental coefficients.

Figure 3–Figure supplement 2. For the total population single-season seasonal intensity models, these are the 95% credible intervals for

the posterior distributions of the measurement coefficients.

their influenza information or vaccination campaigns. Full results for a multi-season model of145

epidemic duration for the total population are reported in Appendix 3, but predicted value146

means appeared to be systematically under-estimated relative to the observed epidemic du-147

rations and the Pearson’s cross-correlation coefficient between the observed and predicted148

mean number of epidemic weeks was 𝑅 = 0.71.149

The 2004-2005 and 2007-2008 flu seasons had longer epidemics while the 2002-2003150

and 2008-2009 seasons tended to have shorter epidemics. The Southeastern U.S. region (HHS151

region 4) had longer epidemics than other regions, while only five states with no geographic152

identity had significant group effects for the epidemic duration model. Epidemic duration153

had positive associations with the interaction between adult population and influenza H3154

circulation, influenza B circulation, estimated average household size, population density, a155

proxy for prior immunity, and elderly vaccination coverage. There were negative associations156

with H3 circulation among influenza A, average flu season specific humidity, and proportion157

of the population in poverty. With regard to measurement factors, careseeking behavior and158

claims database coverage had strong positive associations with epidemic duration.159

Applications to surveillance160

Considering the large volume and spatial resolution of our data, we sought to explore the161

robustness of our inference and model predictions under more realistic circumstances. Two162

sequences of models were designed to mimic different types of real-world sentinel flu surveil-163

lance systems —fixed-location sentinels, where the same sentinel locations reported data ev-164

ery year, and moving-location sentinels, where new sentinel locations are recruited each year.165

A third model sequence considered the specificity of inference and model predictions to cer-166

tain inclusion of historical data, thus providing insight into the generalizability of our model167

to epidemic forecasting. We examine these applications for the total population seasonal in-168

tensity model, and these may also serve as a sensitivity analysis to missing observations. Ten169

replicates were performed for each model with missingness to generalize findings beyond170
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that of random chance.171

Sentinels in fixed locations172

In this sequence of four models, 20, 40, 60, and 80% of randomly chosen county observations173

were removed across all years. The effect sizes of drivers were pulled towards zero as fewer174

sentinel counties reported ILI seasonal intensity, but the primary conclusions remained robust.175

We noted that the positive effect of care-seeking increased across most model replicates and176

insurance coverage shifted from no effect to a slightly positive effect as sentinel reporting177

declined (Figure 4A). Model predictions (county-season fitted values) remained quite robust178

relative to the complete model, even when 80% of counties were excluded (Figure 4B).179

Sentinels in moving locations180

In this sequence of four models, 20, 40, 60, and 80% of randomly chosen seasonally-stratified181

observations were removed. Similar to the fixed-location sequence, drivers were pulled to-182

wards zero as fewer sentinel counties reported ILI, the drivers with the smallest means were183

pulled towards zero and predictors with no effect in the complete model were found to be184

significant (Figure 4 supplement). Model predictions had good agreement with the complete185

model up to a threshold between 60 and 80% missingness, where many county-season fits186

suddenly became poor.187

Inclusion of historical data188

In this sequence of models, one, three, and five out of seven flu seasons in the study period189

were completely removed. As hinted by the inconsistency of inference across seasons in the190

single season model results (Figure 3), important drivers changed substantially when more191

than one season was removed, particularly when they had small effect sizes in the complete192

model (Figure 4 supplement). Notably, medical claims coverage and care-seekingwere two of193

three predictors that remained consistent in the magnitude and direction of inference across194

allmodel replicates. Model predictionswere robust relative to the completemodel onlywhen195

one season was removed. Beyond that, many seasonal fitted values were poor, particularly for196

some seasons where data had been removed.197

Discussion198

Using hierarchicalmodeling approaches, we explored the contributions of 19 potential predic-199

tors towards county-level variation in influenza disease burden across theUnited States during200

flu seasons from 2002-2003 to 2008-2009. To our knowledge, this is the first large-scale study201

to compare the relative importance of environmental, demographic, and socioeconomic hy-202

potheses about influenza disease burden in addition to data reporting biases. The fine spatial203

resolution and high coverage of our medical claims data (estimated to represent 20% of all204

health care visits across the United States in our study period) enabled the comparison of205

multiple hypotheses, and the inclusion of several flu seasons and sensitivity analyses enhance206

confidence in the robustness of our findings.207

Our model results suggest that South Atlantic states may experience flu seasons most208

acutely because they have higher seasonal intensities relative to their baselines, and greater209

examination of flu season surveillance and surge capacity in these areas may be warranted.210

We also found that a mixture of factors explained the variation in our model and that these211

factors changedacross different cross-sections of time, thus highlighting thenecessity of cross-212

disciplinary approaches (e.g., from sociology to epidemiology to immunology) in future pur-213

suits of this question. Moreover, the declining importance of claims database coverage (i.e.,214

population representativeness of the data) as coverage increased underscores the relevance215

of collecting and usingmetadatawhenmaking epidemiological inference fromopportunistic216

sources or undesigned observational samples. The ability for our model to project relatively217
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A)

B)

Figure 4. A) Diagram indicating changes to model inference as fewer fixed-location sentinels reported
data. Color indicates directionality of the significant effect (blue is positive, red is negative) while greater
transparency indicates a lower percentage of replicates with a significant effect (for models with
missingness); dot size represents the magnitude of the posterior mean (or average of the posterior
mean across replicates). Predictors with no significant effect across the sequence of models were
removed for viewing ease, and absence of a dot means the effect was not significant across any
replicates. B) Map of model prediction match between the complete model and the 40% and 20%
reporting levels for fixed-location sentinels. Match between the complete and sentinel models were
aggregated across 70 season-replicate combinations (7 seasons * 10 replicates). Color indicates match
between posterior predictions in the missing and complete models (purple represents a failure to
match in at least half of season-replicate combinations).

Figure4–Figure supplement 1. Diagram indicating changes tomodel inference as fewermoving-location

sentinels reported data.

Figure 4–Figure supplement 2. Map of model prediction match between the complete model and the

60% and 80% missing levels for moving-location sentinels.

Figure 4–Figure supplement 3. Diagram indicating changes to model inference as historical seasons

were randomly removed from the model.

Figure 4–Figure supplement 4. Map of model prediction match between the complete model and mod-

els missing one, three, or five historical flu seasons.
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accurate fitted values across increasingly missing data suggests that routine sentinel surveil-218

lance in fixed locations may be more accurate for interpolating ILI disease burden among219

uncovered areas than surveillance across changing locations, even when fewer locations may220

be surveyed.221

Prior studies have reported relationships between low absolute humidity and greater in-222

fluenza transmission and survival in experimental settings, and that fluctuations in absolute223

humidity may explain the seasonality of influenza across large geographic scales (Tamerius224

et al., 2011; Lowen and Steel, 2014). Our study adds to this literature in finding strong nega-225

tive associations between absolute humidity and both seasonal intensity and epidemic dura-226

tion. In addition, our results elucidate the debate about whether influenza transmits primarily227

through frequency- or density-dependent contact. Greater seasonal intensity was associated228

with populationswith larger household sizes (a proxy for infection risk from frequent contacts),229

while longer epidemics were associated with larger household sizes and greater population230

density. We suspect that density-dependent transmission explained differences in epidemic231

duration but not seasonal intensity because the calculation for seasonal intensity accounted232

for population size; population density did not explain variation in the risk of seasonal intensity233

after adjusting for greater transmission among larger populations.234

Household studies of influenza transmission often examine age-specific risks of household235

influenza introduction (Cauchemez et al., 2004; Lau et al., 2015), and differences in contact236

and travel patterns between children and adults have led to the hypothesis that children237

drive local transmissionwhile adults drive global influenza spread (Apolloni et al., 2013; Viboud238

et al., 2006). Contrary to these hypotheses, larger child and adult population proportions were239

both associated with lower seasonal intensity. Rather than serving as proxies for local and240

global transmission, the complement of these predictors together may in fact capture the241

“high-risk” population proportion in a given location —infants, toddlers, and the elderly —which242

typically experience greater clinical severity (Thompson et al., 2006) and have higher rates of243

care-seeking (Biggerstaff et al., 2012). In examining seasonal intensity models for the child and244

adult populations specifically, wewere surprised to find negative associationswith population245

density and average household size, when there was no effect or a positive effect in the total246

population model (Appendix 2). While it may be that children and adults in less connected247

areas have greater seasonal intensity relative to their ILI baselines, these patterns may also be248

an artifact of smaller volumes of data among age groups.249

The positive association between influenza A/H3 and adult intensity and influenza B and250

child intensity corroborate the results of previous epidemiological studies (Hayward et al., 2014;251

Beauté et al., 2015), and agree with the positive effect of the interaction terms between chil-252

dren and influenza B and adults and influenza A/H3 from our total seasonal intensity mod-253

els (Appendix 2). Despite a positive linear correlation between the seasonal intensity and254

epidemic duration measures (Appendix 4), influenza B circulation uniquely indicated longer255

epidemics, in line with hypotheses that flu seasons are elongated when influenza B resurges256

among children after a first wave of influenza A (Hayward et al., 2014; Beauté et al., 2015). We257

acknowledge that our findings may be specific to our study period; recent research highlights258

the importance of childhood hemagglutinin imprinting on immune responses to subsequent259

influenza infections (Gostic et al., 2016).260

We were surprised to observe that higher estimated prior immunity was associated with261

greater seasonal intensity and longer epidemic durations for the multi-season models and262

most seasons in the single-season models (some years experienced no effect). One possible263

interpretation is that some locations always tend to have high disease burden relative to their264

epidemic baselines. Prior work suggests that larger epidemics induce more antigenic drift265

in subsequent seasons (Boni et al., 2004); building off this finding, we suggest that influenza266

drift renews population susceptibility every flu season, even on small spatial scales. We also267

acknowledge limitations underlying the calculation of this predictor; in using the seasonal268
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intensity measure to represent the previous flu season’s attack rate, we ignore asymptomatic269

infection, vaccination rates, and the reporting biases found to be an important component to270

data observation. Additionally, membership in the same antigenic cluster is a simplification271

of the immunity conferred by infection with a given strain. Beyond “pre-existing immunity”,272

we report mixed findings on the effect of flu vaccination. While higher vaccination coverage273

among toddlers was associated with lower seasonal intensity, we note that higher vaccina-274

tion coverage among elderly was associated with longer epidemics. We posit that vaccina-275

tion campaigns among elderly populations may increase in anticipation of large or severe276

flu seasons, due to their risk of severe complications from flu and clustered living in nursing277

homes.278

Our study found that locations with greater poverty had lower influenza disease burden, in279

contrast with ample evidence that there are heightened rates of influenza-related hospitaliza-280

tions, influenza-like illness, respiratory illness, neglected chronic diseases, and other measures281

of poor health amongpopulationswith greatermaterial deprivation (Hadler et al., 2016;Monto282

and Ullman, 1974; Tam et al., 2014; Biggerstaff et al., 2014b,a; Charland et al., 2011; Hotez, 2008;283

Adler and Newman, 2002; Steptoe and Feldman, 2001). Several possible non-exclusive ex-284

planations for this discrepancy exist. Differences in socio-economic background may change285

recognition and therefore reporting of disease symptoms (Monto and Ullman, 1974). Material286

deprivation and lack of social cohesion have also been implicated in lower rates of health287

care utilization for ILI, which would reduce the observation of influenza disease burden in288

our medical claims data among the poorest populations (Charland et al., 2011; Biggerstaff289

et al., 2014a). Indeed, higher rates of health care-seeking were associated with greater disease290

burden, while hospitals per capita had no effect among our results, which further suggests291

that patient-side needs and concerns captured ILI variation better than deficits in health re-292

source availability. Future studies focused on estimation and surveillance of influenza disease293

burden should consider collecting and incorporating data on health care utilization in their294

populations of interest in order to account for reporting biases and limited forecasting ability295

in poorer neighborhoods (Scarpino et al., 2016).296

Building off mechanistic explanations for measurement biases, we noted that the positive297

explanatory effect of claims database coverage declined as coverage itself increased through-298

out our study period (Appendix 5). Conversely, when we artificially removed counties from299

our model (fixed-location sentinels) or subset our data into age groups, health care-seeking300

behavior more strongly explained the variation in seasonal intensity among the remaining301

observations. These two results together suggest that statistical inference from opportunis-302

tic data samples may avoid some types of reporting biases when the coverage or volume of303

data achieves a minimum threshold, in response to concerns posed in Lee et al. (2016). In our304

specific case, increases to claims database coverage or care-seeking behaviormight reduce re-305

porting biases by increasing the representativeness of a given location’s sample. Additionally,306

we present the concept of a network of sentinel locations, in contrast to sentinel physicians or307

hospitals, whichmay be composed of administrative units (e.g., counties) that were chosen for308

either their representativeness of the larger population or their status as an outlier (e.g., match309

or failure to match locations in Figure 4, respectively). Given the growing availability of health-310

associated big data in infectious disease surveillance (Bansal et al., 2016; Simonsen et al., 2016),311

we project the possibility that sentinel locations may report high volume digital health data312

from disparate sources to a central public health organization and that the informed choice313

of sentinels may improve the robustness of sentinel surveillance systems.314

We urge caution in the interpretation of our results because they are correlative and prone315

to invoking the ecological fallacy, where statistical inference about a group (in our case, county316

populations) is falsely assumed to apply at the individual level (Morgenstern, 1982; Robinson,317

2009). Future research should build off our study to design experiments that may provide318

causal or individual-level evidence that supports or rejects these hypotheses. We also ac-319
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knowledge the limitations of the spatial and temporal resolutions of the data used in our320

analysis. Previous work suggests that statistically-identified drivers of disease distributions de-321

pend on the spatial scale of analysis (Cohen et al., 2016), and our results may be biased by the322

county unit observations of our disease data. In addition, we incorporated multiple scales of323

predictors (county, state, and HHS region) according to the best available data, thus poten-324

tially altering our statistical inference, although we did attempt to account for differences in325

variation across these different predictors with the inclusion of group effects. In addition, we326

note that the nature of our disease burden estimation procedure means that a given county’s327

seasonal intensity is relative to its own baseline across years. It may not be appropriate to use328

our model predictions to inform national-level decision makers about absolute intensity of329

the flu season in a given location, although local public health departments could use our330

procedure to assess intensity in a given year relative to that of previous flu seasons.331

Methods332

Medical claims data333

Weekly visits for influenza-like illness (ILI) and any diagnosis from October 2002 to May 2009334

were obtained from a records-level database of CMS-1500 US medical claims managed by335

IMS Health and aggregated to three-digit patient US zipcode prefixes (zip3s), where ILI was336

defined with International Classification of Diseases, Ninth Revision (ICD-9) codes for: direct337

mention of influenza, fever combined with respiratory symptoms or febrile viral illness, or pre-338

scription of oseltamivir. Medical claims have been demonstrated to capture respiratory in-339

fections accurately and in near real-time (Cadieux and Tamblyn, 2008; Santillana et al., 2016),340

and our specific dataset was validated to independent ILI surveillance data at multiple spa-341

tial scales and age groups and captures spatial dynamics of influenza spread in seasonal and342

pandemic scenarios (Viboud et al., 2014; Gog et al., 2014; Charu et al., 2017).343

We also obtained database metadata from IMS Health on the percentage of reporting344

physicians and the estimated effective physician coverage by visit volume; these data were345

used to generate “measurement” predictors (Table 1). ILI reports and measurement factors346

at the zip3-level were redistributed to the county-level according to population weights de-347

rived from the 2010 US Census ZIP Code Tabulation Area (ZCTA) to county relationship file,348

assuming that ZCTAs that shared the first three digits belonged to the same zip3.349

Defining influenza disease burden.350

We performed the following data processing steps for each county-level time series of ILI per351

population: i) Fit a LOESS curve to non-flu period weeks (flu period defined as November352

through March each year) to capture moderate-scale time trends (span = 0.4,degree = 2); ii)353

Subtract LOESS predictions from original data to detrend the entire time series; iii) Fit a linear354

regression model with annual harmonic terms and a time trend to non-flu period weeks (Yu355

et al., 2013); iv) Counties “had epidemics” in a given flu season if at least two consecutive weeks356

of detrended ILI observations exceeded the ILI epidemic threshold during the flu period (i.e.,357

epidemic period) (Denoeud et al., 2007). The epidemic threshold was the upper bound of358

the 95% confidence interval for the linear model prediction. Counties with a greater number359

of consecutive weeks above the epidemic threshold during the non-flu period than during360

the flu period were removed from the analysis.; v) Disease burden metrics were calculated for361

counties with epidemics.362

Multiple measures of influenza disease burden were defined for each county. For a given363

season: seasonal intensity was the one plus the sum of detrended ILI observations during364

the epidemic period (shifted by one to accomodate the likelihood distribution); epidemic365

duration was the number of weeks in the epidemic period and counties without epidemics366

were assigned the value zero.367
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Predictor data collection and variable selection368

Quantifiable proxies were identified for each hypothesis found in the literature, and these369

mechanistic predictors were collected from probability-sampled or gridded, publicly avail-370

able sources and collected or aggregated to the smallest available spatial unit among US371

counties, states, and Department of Health and Human Services (HHS) regions for each year372

or flu season in the study period, as appropriate (Table 1, Appendix 5).373

We selected one predictor to represent each hypothesis according to the following criteria,374

in order: i) Select for the finest spatial resolution; ii) Select for the greatest temporal coverage375

for years in the study period; iii) Select for limited multicollinearity with predictors represent-376

ing the other hypotheses, as indicated by the magnitude of Spearman rank cross-correlation377

coefficients between predictor pairs. We also compared the results of single predictor models378

and our final multivariate models as another check of multicollinearity (Appendix 5). For the379

modeling analysis, if a predictor had missing data at all locations for an entire year, data from380

the subsequent or closest other survey year were replicated to fill in that year. If a predictor381

data source was available only at the state or region-level, all inclusive counties were assigned382

the corresponding state or region-level predictor value (e.g., assign estimated percentage of383

flu vaccination coverage for state of California to all counties in California). Predictors were384

centered and standardized prior to all exploratory analyses and modeling, as appropriate. In-385

teraction terms comprised the product of their component centered and standardized pre-386

dictors. Data cleaning and exploratory data analysis were conducted primarily in R (R Core387

Team, 2015). Final model predictors are described below, and our hypotheses for each predic-388

tor are described in Table 1.389

Environmental data390

Daily specific humidity data on a 2mgridwere collected from theNational Oceanic andAtmo-391

spheric Administration (NOAA) North American Regional Reanalysis (NARR), provided by the392

NOAA/OAR/ESRLPSD, Boulder, Colorado, USA, from theirwebsite at http://www.esrl.noaa.gov/psd/.393

Values were assigned to the grid point nearest to the county centroid.394

Readings of fine particulate matter, defined as pollutants with aerodynamic diameter less395

than 2.5 micrometers, were collected from the CDC WONDER database at the county and396

daily scales from their website at https://wonder.cdc.gov/.397

Social contact and population data398

Annual total and age-specific population data were taken from the intercensal population399

estimates and land area and number of housing units were reported during the 2000 and400

2010 Census; both datasets were available at the county scale from the U.S. Census Bureau.401

These data were used to calculate proportion of total population that are children (5-19 years402

old) and adults (20-69 years old), population density by land area, and estimated average403

household size.404

Flu-specific data405

Annual flu vaccination rates for toddlers (19-35 months old) and the elderly (≥ 65 years old)406

were estimated at the state-level from the Centers for Disease Control and Prevention (CDC)407

National Immunization Survey and Behavioral Risk Factor Surveillance System, respectively.408

Annual proportion of A-typed flu samples subtyped as H3 and annual proportion of confirmed409

flu samples typed as B across U.S. Department of Health and Human Services (HHS) regions410

were collected byWHO/NREVSS Collaborating Labs and available at the CDC FluViewwebsite411

at http://www.cdc.gov/flu/weekly/fluviewinteractive.htm.412

Prior immunity413

For a given county, a proxy for prior immunity was derived from the following data: 1) the414

previous flu season’s total population seasonal intensity; the proportion of positive flu strains415
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identified as A/H3, A/H1, and B in the broader HHS region during 2) the previous flu season416

and 3) the current flu season; 4) the most prominently circulating flu strain for each cate-417

gory (A/H3, A/H1, or B) for each flu season; 5) antigenic clusters for A/H3 and A/H1 strains as418

identified in Du et al. (2012); Liu et al. (2015); and 6) Victoria- or Yamagata-like lineages for B419

strains as noted in Bedford et al. (2014). Data for items 1-3 are described above in “Defining in-420

fluenza disease burden” and “Flu-specific data.” We obtained the antigenic characterizations421

for circulating strains (item 4) from CDC influenza season summaries, which are available at422

https://www.cdc.gov/flu/weekly/pastreports.htm.423

Using these data, we calculated a proxy of prior immunity that captures “the proportion424

of individuals infected in the previous flu season that would have protection during the cur-425

rent flu season, accounting for the distribution of circulating flu strains.” For each flu category426

among A/H3, A/H1, and B, we calculated the product of the previous and current year’s propor-427

tion of total circulation and a binary value to indicate if previous and current strains were from428

the same antigenic cluster or lineage (1 = same cluster/lineage, 0 = different cluster/lineage).429

For a given county, these products were summed across A/H3, A/H1, and B, and multiplied by430

the previous year’s seasonal intensity.431

Socioeconomic and access to care data432

Annual data on number of hospitals were obtained at the county-level from the Health Re-433

sources and Services Administration (HRSA) Area Health Resources Files (AHRF). County-level434

data on proportion of households with a single person were obtained from five-year averages435

of American Community Survey (ACS) estimates, which were available starting in 2005. An-436

nual estimates on proportion of the population in poverty was obtained at the county-level437

from the model-based Small Area Income and Poverty Estimates (SAIPE). Annual estimates438

on proportion of the population with health insurance was obtained at the county-level from439

the model-based Small Area Health Insurance Estimates (SAHIE). SAIPE and SAHIE are both440

products of the U.S. Census Bureau that were derived from the Current Population Survey or441

ACS.442

Medical claims measurement factors443

IMS Health provided us with weekly aggregated data on visits for any diagnosis by age group444

and location. Care-seeking behavior was defined as the total visits per population size from445

November through April of a given flu season. Claims database coverage was the estimated446

physician coverage among all physicians registered by the American Medical Association in447

the IMS Health medical claims database.448

Model structure449

We present the most common version of our model structure here. The generic model for450

county-year observations (for 𝑖 counties and 𝑡 years) of influenza disease burden 𝑦𝑖𝑡 is:451

𝑦𝑖𝑡|𝜇𝑖𝑡, 𝜏 ∼ 𝑓(y|𝜇, 𝜏) (1)

where y = (𝑦1, … , 𝑦𝑛)′ denotes the vector of all observations (Equation 1). We modeled the452

mean of the observed disease burden magnitude (𝜇𝑖), where 𝑓(y|𝜇, 𝜏) is the distribution of the453

likelihood of the disease burden data, parameterized with mean 𝜇 = (𝜇1, … , 𝜇𝑛)′ and precision454

𝜏 , as appropriate to the likelihood distribution (N.B., for the Poisson likelihood, 𝜇 = 1/𝜏).455

The mechanisms driving disease burden were modeled:456

𝑔(𝜇𝑖) = 𝑔(𝐸𝑖) + 𝛼 +
𝑚

∑
1

𝑋𝑖𝛽 + 𝛾𝑖 + 𝜁𝑗[𝑖] + 𝜂𝑘[𝑖] + 𝜈𝑡 + 𝜙𝑖 + 𝜖𝑖𝑡 (2)

where 𝑔(.) is the link function, 𝛼 is the intercept, there are 𝑚 socio-environmental and mea-457

surement predictors (𝑋𝑖’s), and 𝐸𝑖 is an offset of the expected disease burden, such that Equa-458
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tion 2 models the relative risk of disease (𝜇𝑖/𝐸𝑖) in county 𝑖, common in disease mapping (Law-459

son, 2013; Banerjee et al., 2015; Waller and Carlin, 2010). Group terms at the county, state,460

region, and season levels (𝛾𝑖, 𝜁𝑗[𝑖], 𝜂𝑘[𝑖], 𝜈𝑡, respectively) and the error term (𝜖𝑖𝑡) are independent461

and identically distributed (𝑖𝑖𝑑).462

Geographical proximity appears to increase the synchrony of flu epidemic timing (Schanzer463

et al., 2011b; Stark et al., 2012), while connectivity between cities has been linked with spa-464

tial spread in the context of commuting and longer distance travel (Charaudeau et al., 2014;465

Brownstein et al., 2006;Crépey and Barthélemy, 2007; Lemey et al., 2014). Wemodeled county466

spatial dependence 𝜙𝑖 with an intrinsic conditional autoregressive (ICAR)model, which smooths467

model predictions by borrowing information from neighbors (Besag et al., 1991):468

𝜙𝑖|𝜙𝑗 , 𝜏𝜙 ∼ Normal( 1𝜉𝑖 ∑𝑖∼𝑗
𝜙𝑗 ,

1
𝜉𝑖𝜏𝜙

), (3)

where 𝜉𝑖 represents the number of neighbors for node 𝑖, 𝜙𝑗 is a vector indicating the neigh-469

borhood relationship between node 𝑖 and all nodes 𝑗 (𝑖 ∼ 𝑗), and 𝜏𝜙 is the precision parameter470

(Equation 3).471

Model fit, sensitivity, and validation472

To assess model fit, we examined scatterplots and Pearson’s cross-correlation coefficients be-473

tween observed and fitted values for the relative risk of total population seasonal intensity and474

for epidemic duration. We also examined scatterplots of standardized residuals and fitted val-475

ues; standardized residuals were defined as (𝑦 − 𝜇 ̂𝑦)/𝜎 ̂𝑦, where 𝜇 ̂𝑦 is the fitted value posterior476

mean and 𝜎 ̂𝑦 is the fitted value standard deviation. Model sensitivity was assessed by compar-477

ing model fits and inference robustness when observations were randomly removed from the478

model, as described below under “Applications to missing data & inference robustness.”479

For each disease burden measure, we compared models with no spatial dependence,480

county-level dependence only, state-level dependence only, and both county and state-level481

dependence. The goal of the county-level dependence was to capture local population flows,482

while state-level dependence attempted to capture state-level flight passenger flows (details483

in Appendix 1). We determined that models with only county-level spatial neighborhood484

structure best fit the data after examining the Deviance Information Criteria (DIC) values and485

spatial dependence coefficients of the four model structures. County-level spatial structure486

was subsequently used in all final model combinations. We report results from models with487

county-level dependence only.488

For model validation, we compared model fitted values for seasonal intensity with CDC ILI489

and laboratory surveillance data (details in Appendix 1).490

Statistical analysis491

The goals of our modeling approach were to i) estimate the contribution of each predictor492

to influenza disease burden, ii) predict disease burden in locations with missing data, and493

iii) improve mapping of influenza disease burden. We performed approximate Bayesian in-494

ference using Integrated Nested Laplace Approximations (INLA) with the R-INLA package495

(www.r-inla.org) (Rue et al., 2009; Martins et al., 2013). INLA has demonstrated computational496

efficiency for latent Gaussian models and produced similar estimates for fixed parameters497

as established implementations of Markov Chain Monte Carlo (MCMC) methods for Bayesian498

inference (Carroll et al., 2015). Extensions to INLA have enabled its application to spatial, spatio-499

temporal, and zero-inflated models (Lindgren et al., 2011; Arab, 2015), which is implicated in500

INLA’s growing use in the disease mapping and spatial ecology communities (Schrödle and501

Held, 2011; Blangiardo et al., 2013).502

Seasonal intensity was modeled with a lognormal distribution, and epidemic duration503

was modeled with a Poisson distribution and log link and excluded the offset term in Equa-504
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tion 2. Consequently, we note that all seasonal intensity models examine the relative risk of505

seasonal intensity, while epidemic duration models directly examine the duration in weeks.506

Multi-season models included all terms in Equation 2, while single-season models included507

all terms in Equation 2 except the season grouping (𝜈𝑡). Model coefficients were interpreted508

as statistically significant if the 95% credible interval for a parameter’s posterior distribution509

failed to include zero.510

Applications tomissing data & inference robustness511

We considered the robustness of our total population model results by refitting models where512

20%, 40%, 60% and 80% of all county observations were replaced with NAs (sentinels in fixed513

locations), and where 20%, 40%, 60% and 80% of model observations were stratified by sea-514

son and randomly replaced with NAs (sentinels in moving locations). We also refit three mod-515

els where one, three, and five of seven flu seasons were randomly chosen and completely re-516

placedwith NAs (inclusion of historical data). To account for variability due to random chance,517

models were replicated ten times each with different random seeds. For each sequence of518

missingness, we compared the magnitude and significance of socio-environmental and mea-519

surement drivers, and the posterior distributions of county-season fitted values. Fitted value520

distributions were noted as significantly different if the interquartile ranges for two fitted val-521

ues failed to overlap with each other.522
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Table 1. Final model predictors and hypotheses.

Factor Index Plot
Label

Spatial
Scale

Hypothesized
Effect

Environmental factors
Flu transmission Specific humidity humidity county −
Respiratory disease
risk

Fine particular matter pollution county +

Transmissionmechanisms
Density-dependent Population density popDensity county +
Frequency-dependent Average household size householdSize county +
Diffusionmechanisms
Local spread % child population child county +
Importation risk % adult population adult county +
Immunity
Vaccine-acquired Toddler vacc. coverage toddlerVacc state −

Elderly vacc. coverage elderlyVacc state −
Prior exposure Population protected due

to prior season exposure
priorImmunity county −

Influenza circulation
Dominant A subtype % H3 subtype among flu

type A samples
fluH3 HHS

region
+

B circulation %B type amongpositive flu
samples

fluB HHS
region

+

H3 has older age
distribution

adult population x
dominant A subtype

adult-fluH3 HHS
region

+

B circulates primarily
in children

child population x
B circulation

child-fluB HHS
region

+

Socioeconomic factors and access to care
Health care availability Hospitals per capita hospAccess county +
Social deprivation % single-person

households
onePersonHH county +

Material deprivation % in poverty poverty county +
Claims-reporting
population

% with health insurance insured county +

Measurement factors
Claims database
coverage

% physicians reporting to
claims database

claimsCoverage county +

Care-seeking behavior
in claims database

All visits per capita
reported in database

careseeking county +
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Appendix 1744

Seasonal intensity model fit and validation745

Model fit746

747

Appendix 1 Figure 1. Observed vs. fitted values for the relative risk of total population seasonal
intensity.

748

749750

751

Appendix 1 Figure 2. Residuals vs. fitted values for the total population log seasonal intensity.752753

Selection for spatial dependence terms754

To determine county-level spatial neighbors, we started with the 2010 U.S. Census Bu-
reau 500k resolution county shapefile, and connected abutting counties that were sep-
arated by bodies of water. We then used the clean shapefile to identify neighbors as
counties that shared borders.

755

756

757

758

To define state-level spatial neighbors, monthly air travel passenger flows were col-
lected from the Bureau of Transportation Statistics T-100 Domestic Market (U.S. Car-
riers) table from their website at http://www.transtats.bts.gov/. Airport flows were ag-
gregated to the state-level and states were neighbors if passengers traveled between
them from November 2007 through April 2008.

759

760

761

762

763
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Appendix 1 Table 1. Comparison of total seasonal intensity models with different spatial
dependence structures according to Deviance Information Criterion (DIC).

764

765766

Spatial dependence structure DIC

None (no 𝜙 terms) 40,932
County only (bordering neighbors, 𝜙𝑖) 40,070
State only (flight passenger flows, 𝜙𝑗 ) 40,933
County and state together (𝜙𝑖 and 𝜙𝑗 ) 40,070

767

768

Appendix 1 Figure 3. 95% credible intervals for the state-level spatially structured coefficients
when modeling seasonal intensity with state-level spatial dependence (𝜙𝑗 ). None of the spatially
structured state coefficient distribution were significant.

769

770

771772

Validation to CDC surveillance data773

We collected a) the percentage of ILI out of all patient visits among the total popu-
lation, and child and adult populations as reported by CDC’s ILINet, and b) the per-
centage of positive influenza laboratory confirmations as reported by CDC laboratory
surveillance. = We note that child and adult ILI percentage was calculated with a de-
nominator of patient visits across all age groups due to limited data availability. Both
CDC surveillance systems were reported at the HHS region level and aggregated cu-
mulatively for each flu season in our study period. We then examined scatterplots and
Pearson cross-correlation coefficients (double-sided test where 𝐻𝑜 = no difference) be-
tween the mean model fits (where we took the mean across all counties in a given HHS
region) and each CDC surveillance dataset.
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Appendix 1 Figure 4. Mean model fit averaged across counties in a given HHS region vs.
percentage of positive influenza laboratory confirmations in a given HHS region and flu season.
The Pearson cross-correlation coefficient was 0.35 with a p-value of 0.003 for a double-sided
hypothesis test.

785

786

787

788789

790

Appendix 1 Figure 5. Mean model fit averaged across counties in a given HHS region vs.
cumulative percentage of ILI visits in a given HHS region for all age groups. The Pearson
cross-correlation coefficient was 0.38 with a p-value of 0.001 for a double-sided hypothesis test.
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792

793794

795

Appendix 1 Figure 6. Mean model fit averaged across counties in a given HHS region vs.
cumulative percentage of ILI visits in a given HHS region for children. The Pearson
cross-correlation coefficient was 0.42 with a p-value of 0.0002 for a double-sided hypothesis test.
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800

Appendix 1 Figure 7. Mean model fit averaged across counties in a given HHS region vs.
cumulative percentage of ILI visits in a given HHS region for adults. The Pearson cross-correlation
coefficient was 0.42 with a p-value of 0.0003 for a double-sided hypothesis test.
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Appendix 2805

Age-specific drivers of seasonal intensity806

Model Fit807

808

Appendix 2 Figure 1. Comparison of observed and predicted relative risk of seasonal intensity
across flu seasons from 2002-2003 through 2008-2009 for children and adults.

809

810811

Spatial and temporal patterns812

813

Appendix 2 Figure 2. Temporal group effects for seasonal intensity among children. 95%
credible interval for flu season coefficients in child population seasonal intensity.

814

815816

817

Appendix 2 Figure 3. Spatial group effects for seasonal intensity among children. Continental
U.S. maps highlighting states with significantly greater or lower child seasonal intensity.
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821

Appendix 2 Figure 4. Temporal group effects for seasonal intensity among adults. 95% credible
interval for flu season coefficients in adult population seasonal intensity.
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823824

825

Appendix 2 Figure 5. Spatial group effects for seasonal intensity among adults. Continental U.S.
maps highlighting states with significantly greater or lower adult seasonal intensity.

826

827828

Socio-environmental andmeasurement drivers829

In reference to the total seasonal intensity results, the child and adult models shared
the same significant positive associations for the interaction term between child pop-
ulation and influenza B circulation and a proxy for prior immunity, and the same sig-
nificant negative associations for adult and child population sizes, average flu season
specific humidity, proportion of single person households, and infant vaccination cover-
age. The child and adult models shared a positive association with hospitals per capita
where the total population model had no effect, and a negative association with esti-
mated average household size where the total population model had a positive effect.

830

831

832

833

834

835

836

837

Child population seasonal intensity had a unique positive association with influenza
B circulation andauniquenegative associationwith elderly vaccination coverage. Adult
population seasonal intensity haduniquepositive associationswithH3 circulation among
influenza A, proportion of the population in poverty, and elderly vaccination coverage,
and a unique negative association with the interaction between adult and influenza
H3.

838

839

840

841

842

843

Similar to the total populationmodels, the child and adult seasonal intensitymodels
had significant positive associations with careseeking behavior and claims database
coverage. However, both the child and adult seasonal intensity models had significant
negative associations with proportion of the population with health insurance, where
the total population model demonstrated no effect.
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849

Appendix 2 Figure 6. Diagram comparing model inference between total, child, and adult
seasonal intensity.
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Appendix 3853

Drivers of epidemic duration854

Model fit855

856

Appendix 3 Figure 1. Observed versus fitted values for epidemic duration.857858

859

Appendix 3 Figure 2. Residuals versus fitted values for epidemic duration.860861
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862

Appendix 3 Figure 3. Continental U.S. county maps for fitted (left) and observed (right) epidemic
duration in weeks from 2002-03 through 2008-09.
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Spatial and temporal patterns866

867

Appendix 3 Figure 4. Temporal group effects for influenza-like illness. 95% credible interval for
flu season coefficients in epidemic duration.

868

869870

871

Appendix 3 Figure 5. Spatial group effects for influenza-like illness. Continental U.S. map
highlighting states with significantly longer or shorter epidemic durations.
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873874

Socio-environmental andmeasurement drivers875

876

Appendix 3 Figure 6. For the total population multi-season epidemic duration models, these are
the 95% credible intervals for the posterior distributions of the socio-environmental coefficients
and B) measurement-related coefficients.
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881

Appendix 3 Figure 7. For the total population multi-season epidemic duration models, these are
the 95% credible intervals for the posterior distributions of measurement-related coefficients.
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Appendix 4885

Comparison of disease burdenmetrics886

887

Appendix 4 Figure 1. Comparison of epidemic duration and relative risk for seasonal intensity
among fitted (left) and observed (right) values.
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Appendix 5891

Model predictors892

Checks for multicollinearity893

We checked formulticollinearity among predictors by examining Spearman rank cross-
correlation coefficients between all pairs of final model predictors (excluding interac-
tion terms). No single pair had a linear correlation coefficient that exceeded a magni-
tude of 0.6.

894

895

896

897

898

Appendix 5 Figure 1. Spearman rank cross-correlation matrix for all pairs of final model
predictors.

899

900901

Additionally, we ran ourmulti-season seasonal intensitymodelwith each coefficient
individually. Multicollinearity between predictors may sometimes be detected when a
predictor significantly deviates from zero in the single predictor model, but does not
appear to have an effect in a multivariate context. Some predictors (pollution, popDen-
sity, fluB) that were significant in the single predictor context no longer had an effect
in our complete model (and vice versa for householdSize and child). Nevertheless, all
of these predictors had small effect sizes in both single and multivariate models, and
the other predictors that were significant in both models retained effect sizes with the
same order of magnitude and directionality.
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911

Appendix 5 Figure 2. These are the 95% credible intervals among multi-season models with a
single predictor for seasonal intensity.

912

913914

Medical claims coverage915

Medical claims database coverage increased over time across each state.916

917

Appendix 5 Figure 3. Medical claims database coverage by year and state. Colors represent
states that belong to the same HHS region. The black horizontal line at 20% effective physician
coverage is a visual guide to ease the comparison of data across panels.
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Figure 1–Figure supplement 1. Continental U.S. county maps for fitted (left) and observed
(right) relative risk of seasonal intensity for remaining influenza seasons.
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Figure 3–Figure supplement 1. For the total population single-season seasonal intensity
models, these are the 95% credible intervals for the posterior distributions of the socio-
environmental coefficients.
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Figure 3–Figure supplement 2. For the total population single-season seasonal intensitymod-
els, these are the 95% credible intervals for the posterior distributions of the measurement
coefficients.

924

Figure 4–Figure supplement 1. Diagram indicating changes to model inference as fewer
moving-location sentinels reported data.

925

Figure 4–Figure supplement 2. Map of model prediction match between the complete
model and the 60% and 80% missing levels for moving-location sentinels.
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Figure 4–Figure supplement 3. Diagram indicating changes to model inference as historical
seasons were randomly removed from the model.

927

Figure 4–Figure supplement 4. Map of model prediction match between the complete
model and models missing one, three, or five historical flu seasons.
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