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Abstract

Natural scenes contain higher-order statistical structures that can be encoded in their1

spatial phase information. Nevertheless, little progress has been made in modeling2

phase information of images in order to understand efficient representation of3

image phases in the brain. Based on recent findings of spatial phase structure in4

natural scenes, we introduce a generative model of the phase information in the5

visual systems according to the efficient coding hypothesis. In this model, we6

assume independent priors for the amplitude and phase of the coefficients, and7

model the phase using a non-uniform distribution, which extends existing models8

of independent component analysis for complex-valued signals. The parameters of9

the proposed model are then estimated under the maximum-likelihood principle.10

Using simulated data, we show that the proposed model outperforms conventional11

models with a uniform phase prior in blind source separation of complex-valued12

signals. We then apply the proposed model to natural scenes in the Fourier domain.13

The learning yields nonlinear features specified by a pair of similar Gabor-like14

filters in quadratic phase structure. These features predict properties of phase15

sensitive complex cells in the visual cortex, and indicate that the phase sensitive16

complex cells are essential for removing redundancy in natural scenes.17

1 Introduction18

One of the successful guiding principles to understand visual systems in the brain is the efficient19

coding hypothesis [3]. According to this hypothesis, organizations of a visual system are adapted20

to regularities in natural scenes that an animal encounters. The efficient coding hypothesis has21

successfully guided us to construct physiologically plausible statistical models of neurons in early22

visual cortices. However, most of the previous models extracted information contained only in23

amplitudes of an image in the Fourier domain, and were blind to its phase structure. Contrary to the24
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assumption of the previous models, it is well known that the phase of an image contains significantly25

more perceptual information than the amplitude of an image [24]. Perceptually salient features26

such as edges and bars are encoded in the ventral visual cortex based on their phase congruency27

[2, 5, 7, 15]. It has also been shown that both simple and complex cells in macaque V1 are sensitive28

to the phase images [9, 16, 20, 28]. Nevertheless, constructing models of a visual system that utilizes29

the characteristic phase information in the natural scenes remains to be a challenging problem.30

The classical linear generative models represent the natural images by linearly combining features31

(i.e., receptive fields), and by weighting them using different coefficients [22, 4]. The coefficients32

of the features (i.e., responses of the receptive fields) are learned from natural images so that they33

become as independent as possible, according to the efficient coding hypothesis. Nevertheless it34

is known that their dependency cannot completely removed. It was pointed out that the residual35

dependency in the responses of the receptive fields is conveniently described by using scalar and36

circular components [30, 21, 19]. This suggests to use complex representation (a pair of real and37

imaginary features) of the natural images [21, 8, 17]. A successful complex representation model may38

explain why nearby simple cells in the primary visual cortex are phase quadratic [26, 13], and support39

psychophysical studies which suggested image phases may be detected by combining responses of40

simple cells possessing two odd and even symmetric receptive fields [26].41

In this study, we present a linear generative model of complex representation for natural images using42

a superposition of complex features (a pair of features). While we consider independent priors for the43

amplitude and phase of the coefficients, our attention is particularly paied to the phase distribution.44

MaBouDi et al. previously demonstrated that local phases of natural scenes detected by Gabor filters45

are characterized by not only uniform but also non-uniform phase distributions [19]. Based on this46

knowledge, we model the phase distribution using a mixture of von Mises distributions, and provide47

inference algorithms under the maximum likelihood principle. We then demonstrate the utility and48

neurophysiological implications of this approach by both blind source separation of simulated data49

and analysis of natural scenes.50

2 Complex-valued independent component analysis51

LetXobs = (X1, X2, . . . , XT ) be a collection of a complex-valued matrix that is a Fourier transform52

of image patches with size N pixels. These T patches were selected randomly from natural scenes. If53

we whiten the complex-valued data, we can assume that the samples, Xt(t = 1, . . . , T ), are mutually54

uncorrelated with zero mean.55

We consider the following complex-valued generative model for these observations. In this model, a56

complex domain of natural patches, X , is generated from a superposition of unknown N complex57

features, Ai(∈ CN×1), namely X =
∑N
i=1 siAi. Here si is a complex coefficients given as58

si = sRi + jsIi (j =
√
−1), where sRi and sIi are real and imaginary components of the coefficient.59

This equation can be summarized as X = AS, where A = [A1, A2, . . . , AN ] is a mixing invertible60

matrix and S = [s1, s2, . . . , sN ]
T is a vector of complex coefficients. We assume that the samples61

are generated by the complex linear model using the complex coefficients that are sampled from62

an independent distributions of S, namely ps(S) =
∏N
i=1 psi (si). This means, for each Xt, the63

coefficients st are chosen independently, although the theory is applicable to the case in which st and64

st
′

are dependent. Using the de-mixing matrix W = A−1 (i.e., S =WX), the Jacobian of the above65

linear transformation is given as det (W ), where W = [WR , −W I ; W I , WR ] with WR and66

W I being the real and imaginary component of W , respectively. Thus given ps(S), the probability67

density function of X is obtained as68

pX(X) = det (W )
N∏
i=1

psi(si). (1)

The complex independent component analysis (cICA) aims to infer the transform matrix A (or W )69

and source signals S under the assumption of their independence.70

In this study, we propose to model each complex coefficient by polar coordinates, and impose71

independence between the amplitude and phase components. Namely, we rewrite the complex72

coefficients as si = rie
jϕi , where ri = |si| and ϕi = arctan

sIi
sRi

are the amplitude and phase73
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components of si, respectively. Then the probability density function of si is74

psi(si) =
p(ri, ϕi)

ri
=

1

ri
pri(ri)pϕi

(ϕi). (2)

Throughout this paper, we assume that the amplitude distribution pri(ri) follows the gamma distribu-75

tion with the shape parameter being 2,76

pri(ri; βi) = β2
i rie

−βiri , (3)

where βi > 0 is a scale parameter. This distribution resembles the amplitude distribution obtained77

from responses of complex Gabor filters to natural scenes [19], and imposes sparseness on the78

complex coefficients. We let the shape parameter be 2 because we found that the optimization79

algorithm to estimate the complex features under the maximum likelihood principle results in the80

algorithms proposed by previous studies (see below). While the previous studies utilized only81

amplitude information (a flat phase prior), our approach based on the maximum likelihood principle82

allows us to use different types of phase priors, and compare their performance. In the following83

sections, we derive optimization algorithms by considering two types of prior knowledge on the84

distributions of the phase components of the complex coefficients.85

Circular complex-valued ICA (c-cICA) In this approach termed a circular cICA (c-cICA), we86

assume a uniform phase distribution, pϕi
(ϕi) = 1/2π. The goal is to estimate the linear transforma-87

tion W such that the elements of the complex coefficient vector, S, are as independent as possible88

through an iterative optimization procedure. We estimate the parameters of the c-cICA model under89

the maximum likelihood principle. Given that the image patches are sampled independently, Eq. 190

gives the log-likelihood function of the model parameters:91

l(W,β; Xobs) =
T∑
t=1

N∑
i=1

log psi(WiX
t) + T log detW, (4)

where Wi is the i-th row of W . By considering the prior knowledge of amplitude, Eq. 2, and a92

uniform phase distribution, we have93

l(W, β; Xobs) =
T∑
t=1

N∑
i=1

[2 log βi − βirti ]− TN log 2 π + T log detW. (5)

Note that this log-likelihood function generalizes the contrast function used in the complex Fast94

ICA [6]. Moreover since this model assumes a uniform phase distribution for the complex random95

variables, it is applicable for separation of circular complex random variables [14]. The maximum96

likelihood estimates (MLEs) of the model can be obtained by gradient descent algorithms, using the97

following gradients:98

∂l(W, β)

∂βi
=

T∑
t=1

(
2

βi
− rti), (6)

∂l(W, β)

∂Wm,n
= T (W−H)m,n −

T∑
t=1

βmx
t
ns
t
m
∗

rtm
, (7)

where the superscripts * and H denote the conjugate of complex coefficient, sm, and Hermitian99

transpose of de-mixing matrix W , respectively. Note that ri and sm, are calculated from W and X .100

Modified circular complex-valued ICA (mc-cICA) The c-cICA model does not use phase in-101

formation that may be contained in the image patches. However, it was previously reported that102

higher-order statistics of natural scene is additionally encoded in non-uniform bimodal phase dis-103

tributions [19]. In this section, we extend the complex ICA, and construct a model that utilizes the104

non-uniform phase distributions.105

More specifically, we model the phase distribution by a mixture of uniform and von-Mises distribu-106

tions:107

pϕi
(ϕi;κi, λ) = λ vM(ϕi;κi, 0) + λ vM(ϕi;κi, π) + (1− 2λ)

1

2π
. (8)

3
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Here vM(ϕi;κi, 0) is a von-Mises distribution for a circular variable ϕi with zero mean and a concen-108

tration parameter κi. We assume the zero mean because the peak phase location is redundant when109

the features are learned from the data. Further, given the observations of spatial phase distributions in110

natural scenes [19], we consider symmetric bimodal phase distributions with two peaks separated111

by π. For simplicity we further assume equal contributions from each component (λ = 1/3). Then112

the phase distribution that can cover a uniform and a spectrum of bimodal phase distributions is113

simplified as114

pϕi
(ϕi;κi) =

1

3π I0(κi)
cosh(κi cosϕi) +

1

6π
, (9)

where I0(.) is the Bessel function of order 0. This model is a modification of the previous circular115

cICA. We call this new model the modified circular cICA (mc-cICA).116

The log-likelihood function of the mc-cICA model is117

l(θ;Xobs) =
T∑
t=1

N∑
i=1

[2 log βi −βirti+log cosh (κi cosϕ
t
i)−log 3πI0(κi)]+T log det W, (10)

where θ = (W, {βi, κi}Ni=1) is a vector of the model parameters.118

The MLEs of the parameters in the proposed model are obtained by gradient descent algorithms using119

Eq. 6 and the following gradients:120

∂l(θ)

∂κi
=

T∑
t=1

cosϕti tanh(κi cosϕ
t
i)− T

I1(κi)

I0(κi)
, (11)

∂l(θ)

∂Wm,n
= T (W−H)m,n −

T∑
t=1

[
βmx

t
ns
t
m
∗

2 rtm
+

1

2
jκm sinϕti tanh(κm cosϕtm)

xtns
t
m
∗

rtm
2 ], (12)

where I1(.) is the Bessel function of order 1. For both c-cICA and mc-cICA, we use the conjugate121

gradient method.122

3 Results123

Performance comparison using simulated data In this section, we evaluate efficiency of source124

separation by variants of the cICAs, using simulated data. For this goal, we generated a data set X by125

mixing 10 independent complex-valued source signals S, using a random invertible matrix A. We126

considered two different types of the complex-valued source signals using the polar coordinates: In127

one data set, phases were sampled from a uniform distribution; in the other data set, phases were128

sampled from a bimodal distribution (Eq. 8). Amplitudes were sampled from Eq. 3 in both cases. In129

total, we generated 20 data sets for each case. The mixing matrix and parameters of the probability130

density function of sources were chosen randomly for each data set.131

We then applied the various cICA models to estimate the de-mixing matrix W . We evaluated their132

performance as follows. If the source signals are perfectly separated by these algorithms, the product133

of the mixing matrix, A, and the estimated transformation W must be close to a permutation of the134

identity matrix. This matrix P =WA is called a performance matrix. Examples of the performance135

matrices P obtained from the c-cICA and mc-cICA models are shown in Fig. 1. The performance136

matrix of the mc-cICA model is closer to the permutation of identity matrix than the performance137

matrix of the c-cICA model, which indicates that the mc-cICA performs better in source separation.138

The quality of separation is summarized by the Amari index [1] defined on this performance matrix139

as140

AI =
N∑

m=1

(
N∑

n=1

|Pm,n|
maxk |Pm,k|

− 1) +
N∑

n=1

(
N∑

m=1

|Pm,n|
maxk |Pk,n|

− 1), (13)

where Pm,n is a (m,n)-element of P .141

Using the Amari index, we compared the mc-cICA with c-cICA as well as the previously suggested142

complex FastICA algorithm [6]. Figure 2 shows performance of the models for separating mixed143

independent complex-valued signals. We computed mean and standard deviation of the Amari index144

for 20 data sets composed of different sample sizes. Overall the performance of all 3 models increases145

4
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Figure 1: Examples of performance matrices obtained from c-cICA and mc-cICA. The perfor-
mance matrix was computed as a product of a mixing matrix and a de-mixing matrix estimated by the
two proposed algorithms (A: c-cICA, B: mc-cICA). The data were generated from a mixures of 10
independent complex-valued signals, using a non-uniform phase distribution. The two performance
matrices are normalized by the absolute maximum value in each column. This comparison shows
that the mc-cICA performs better than the c-cICA.

Figure 2: Comparison of model’s performance in complex-valued signal separation. The Amari
indexes of the models are plotted as a function of the sample size (a mean of 20 data sets ± SD ). The
data sets were constructed using a combination of a uniform and bimodal phase distributions (Left)
or a uniform phase distribution (Right).

with the sample sizes. Figure 2A shows the performance of models when they are applied to mixed146

complex signals generated by a combination of the bimodal and uniform phase distributions. Overall147

the mc-cICA outperformed the c-cICA and the complex Fast ICA for these data sets, although the148

performance of mc- and c-cICA were close in particular for small sample size. Figure 2B exhibits149

performance of the models when they are applied to mixed complex signals generated by the uniform150

phase distribution (i.e., circular complex variables). For these data sets, the c-cICA and mc-cICA151

outperform the complex Fast ICA. Importantly, the performance of the mc-cICA approaches that152

of c-cICA whose assumption coincides with the data, indicating that the mc-cICA can successfully153

estimate the uniform phase distribution in the data.154

Application of the mc-cICA to natural scenes In this section, we apply the mc-cICA model to155

natural scenes, and then analyze the optimal parameters of complex features learned from the natural156

scenes. We used the Hans van Hateren’s repository of natural scenes [29] provided by Olshausen157

and Field [23]. We randomly selected 100, 000 image patches with size 16 × 16 pixels from the158

natural scenes. We then computed the Fourier transform of each patch, and obtained the complex159

representation of natural scenes. After the DC components of each complex-valued patches were160

subtracted, we performed the complex whitening algorithm on the data. Finally, we applied the161

mc-cICA to the whitened natural patches to obtain the complex-valued features and source signals.162

5
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Figure 3: Complex features learned from natural scenes. The whole set of real (Left) and imagi-
nary (Right) components of complex features obtained by the mc-cICA (panel A) and complex Fast
ICA (panel B).

Figure 3A shows the features extracted from the natural scenes in the original domain, i.e., an inverse163

transformation of the obtained complex-valued features to a real domain by multiplying them by164

the de-whitened matrix and inverse Fourier transform matrix. As a comparison, we show in Fig. 3B165

features obtained from the complex Fast ICA applied to the same natural patches. By comparing the166

complex features obtained from the mc-cICA and complex Fast ICA (Figs.3A and 3B ), we conclude167

that the mc-cICA model provides the features that are more close to the receptive fields of neurons in168

early visual cortex than the complex FastICA model.169

We further analyzed the learned complex features by comparing them with neurophysiological170

properties of V1 simple and complex cells. In order to quantify the learned features, we projected171

them to a space of parametric model of a simple cell receptive field: a two-dimensional Gabor172

function with five parameters that control location, frequency, phase and orientation of the filter. This173

artificial receptive field covers various selectivity of simple cells in the primary visual cortex [10, 25].174

We extracted these parameters by changing the set of parameters of the Gabor-like receptive field,175

and finding the one that maximizes an inner product of the complex features with it.176

The distribution of extracted frequency bandwidths shown in Fig. 4A covered the spatial frequency177

bandwidth of simple cells from 0.4 to 2.6 octaves [25, 10]. The median value of the learned complex178

6
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Figure 4: Histogram of spatial frequency bandwidths. (A) Histogram of extracted frequency
bandwidths (octave) for real (Left) and imaginary (Right) components of learned complex features.
A median for real and imaginary components is 1.318. (B) Histogram of difference between spatial
frequency bandwidths of real and imaginary components. The real and imaginary components mostly
exhibit the same frequency bandwidth.

features (1.318) was close to ~1.4 octaves that was reported as a median value of macaque V1 neurons179

[27]. A histogram of difference between the extracted spatial frequency bandwidths of the real and180

imaginary components of the complex features (Fig. 4B) indicates that they exhibit mostly the same181

structure.182

Figure 5A displays a scatter plot of the spatial frequency bandwidth v.s. orientation bandwidth183

extracted from the real component of complex features. The orientation bandwidths were distributed184

uniformly irrespective of the spatial frequency bandwidths [12]. Further, the real and imaginary185

complex features were tuned to the same specific orientation bandwidth (Fig. 5B). Finally, the real186

and imaginary components of the complex features were orthogonal to each other (Fig. 5C).187

In summary, the real and imaginary components of the complex features learned from natural188

scenes resembled the Gabor-like receptive fields observed in neurophysiological literature. The real189

and imaginary components of complex features exhibited the same structures in spatial frequency,190

7
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Figure 5: Orientation bandwidths and orthogonality of learned complex features. (A) Scatter
plot of orientation bandwidth versus spatial frequency bandwidth of real components of complex
features. (B) Histogram of differences between orientations of the real and imaginary components.
(C) Orthogonality between the real and imaginary components of the complex features.

orientation and scale, but their phase are in quadrature (i.e., they are orthogonal), similarly to adjacent191

simple cells in early visual cortex [26, 13]. These features emerged even though we did not impose192

any assumption on their structure during training.193

4 Conclusion194

In this study, we suggested a generative model for complex representation of natural scenes in195

the visual cortex, which is applicable for separation of non-circular complex source signals. We196

demonstrated that, in blind source separation of complex-valued signals, the proposed model out-197

performs over and above the other methods that do not consider the phase information because the198

proposed model adaptively infers the underlying phase distribution including the uniform phase.199

Applied to natural scenes, we found that the components of learned complex feature better represent200

characteristic of the simple-cell receptive fields, and that the pair of components explains observed201

topographic relations between nearby simple cells. These results are consistent with proposals in202

signal processing to use quadrature pairs of Gabor filters [11, 18]. Under efficient coding hypothesis,203

these features suggest functions of phase sensitive complex cells in the redundancy reduction.204
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