ABSTRACT
All sensory systems must reliably translate information about the environment into a neural code, mediating perception. The most relevant aspects of stimuli may change as behavioral context changes, making efficient encoding of information more challenging. Sensory systems must balance rapid detection of a stimulus with perception of fine details that enable discrimination between similar stimuli. We show that in a species of weakly electric fish, Apteronotus leptorhynchus, two coding strategies are employed for these separate behavioral tasks. Using communication signals produced in different contexts, we demonstrate a strong correlation between neural coding strategies and behavioral performance on a discrimination task. Extracellular recordings of pyramidal cells within the electrosensory lateral line lobe of alert fish show two distinct response patterns, either burst discharges with little variation between different signals of the same category, or a graded, heterogeneous response that contains enough information to discriminate between signals with slight variations. When faced with a discrimination-based task, the behavioral performance of the fish closely matches predictions based on coding strategy. Comparisons of these results with neural and behavioral responses observed in other model systems suggest that our study highlights a general principle in the way different neural codes are utilized in the sensory system.
SIGNIFICANCE STATEMENT Research relating the structure of stimuli to the response of sensory neurons has left us with a detailed understanding of how different neural codes can represent information. Although various aspects of neural responses have been related to perceptual abilities, general principles relating behavioral tasks to sensory coding strategies are lacking. A major distinction can be made between signals that must simply be detected versus stimuli that must also be finely discriminated and evaluated. We show that these two different perceptual tasks are systematically matched by distinct neural coding strategies and we argue that our study identifies a general principle that is observed in various sensory systems.
Conflict of interest statement The authors declare no competing financial interests.