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Abstract 5 

All organisms utilize resources to grow, survive, and reproduce. The supply of 6 

these resources varies widely across landscapes and time, imposing ultimate 7 

constraints on the maximal trait values for allocation-related traits. In this review, we 8 

address three key questions fundamental to our understanding of the evolution of 9 

allocation strategies and their underlying mechanisms. First, we ask: how diverse are 10 

flexible resource allocation strategies among different organisms? We find there are 11 

many, varied, examples of flexible strategies that depend on nutrition. However, this 12 

diversity is often ignored in some of the best-known cases of resource allocation shifts, 13 

such as the commonly observed pattern of lifespan extension under nutrient limitation. 14 

A greater appreciation of the wide variety of flexible allocation strategies leads directly 15 

to our second major question: what conditions select for different plastic allocation 16 

strategies? Here, we highlight the need for additional models that explicitly consider the 17 

evolution of phenotypically plastic allocation strategies and empirical tests of the 18 

predictions of those models in natural populations. Finally, we consider the question: 19 

what are the underlying mechanisms determining resource allocation strategies? 20 

Although evolutionary biologists assume differential allocation of resources is a major 21 

factor limiting trait evolution, few proximate mechanisms are known that specifically 22 

support the model. We argue that an integrated framework can reconcile evolutionary 23 
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 2 

models with proximate mechanisms that appear at first glance to be in conflict with 24 

these models. Overall, we encourage future studies to 1) mimic ecological conditions in 25 

which those patterns evolve, and 2) take advantage of the ‘omic’ opportunities to 26 

produce multi-level data and analytical models that effectively integrate across 27 

physiological and evolutionary theory. 28 

Keywords: resource availability, resource allocation, phenotypic plasticity, evolutionary 29 

theory, proximate mechanisms, ecological context 30 

1. The central importance of the interplay between resource acquisition and 31 

allocation 32 

The amount of resources available to organisms, whether the source is sunlight, 33 

plant matter, or prey animals, is inherently variable over the landscape and across time. 34 

This variability presents a fundamental challenge to all organisms, from the smallest 35 

microorganisms to the largest plants and animals, all of which must coordinate the 36 

acquisition of resources from the environment with allocation of those resources among 37 

the many competing functions and structures that contribute to the organisms' fitness. 38 

When faced with variation in available resources, individuals could respond in one of 39 

two ways: (1) maintaining the same relative proportion allocated to each trait or (2) 40 

exhibiting phenotypic plasticity in resource allocation by altering the relative amount of 41 

resources allocated to one trait versus others. When the optimal allocation strategy 42 

changes with resource availability, selection will favour the evolution of a phenotypically 43 

plastic allocation strategy. 44 

The inescapable link between the amount of resources available to an organism 45 

and subsequent allocation of those resources means it is critical to consider how 46 
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allocation strategies change across a range of resource availabilities. There are many 47 

examples of flexible strategies that depend on availability. For example, an adaptive 48 

shift in resource allocation is thought to underlie the commonly observed pattern of 49 

lifespan extension under dietary restriction (reviewed in [1–5]. Likewise, sexually 50 

selected traits often show strong condition dependence (i.e. dependence on 51 

acquisition), also thought to result from an adaptive shift in allocation (reviewed in [6,7]. 52 

Even the current obesity epidemic in modern human populations is often hypothesized 53 

to result from a mismatch between a selective environment favouring increased storage 54 

under high resources and the modern environment of constant high resource availability 55 

[8] (see [9] for a recent review). To understand this wide diversity in allocation strategies 56 

in the natural world, we must understand how different ecological conditions select for 57 

different strategies and what mechanistic changes underlie these strategies.  58 

Understanding how and why this coordination of resource allocation with 59 

availability evolves has implications for nearly all areas of biology. Energetic costs to 60 

biological structures and functions (i.e. allocation trade-offs) are assumed to be 61 

universal and a major factor limiting trait evolution [10,11]. Typically, less attention is 62 

focused on the role of variation in the acquisition of resources, though it is no less 63 

important in determining trait values, and can obscure the detection of functional trade-64 

offs. In a seminal paper, van Noordwijk and de Jong introduced the Y model - a 65 

mathematical model linking resource acquisition and resource allocation [12], which has 66 

been a central concept in the field of life history evolution. In the Y model, two traits 67 

draw from a single resource pool, with trait values determined by the proportion of 68 

resources allocated to each (Figure 1 [12]).  One of the key strengths of this model is its 69 
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simplicity and generality; it can be applied to diverse questions such as why and how 70 

organisms age, what limits crop yields in different environments, why some species 71 

produce hundreds of offspring while others produce very few, and what constrains the 72 

evolution of fitness. While the Y model provides a conceptual starting point to 73 

understand the evolution of acquisition and allocation, in the Y model the underlying 74 

mechanisms governing these processes are treated as a black box. Likewise, our 75 

empirical knowledge of the genetic and physiological mechanisms underlying these 76 

processes is still limited, due in large part to their vast complexity [13,14]. The allocation 77 

of resources is thought to influence nearly all the major structures and functions of an 78 

organism, is affected by an array of interacting physiological pathways, is variable 79 

across the lifetime of the organism, and interacts with many different environmental 80 

factors. To achieve a complete understanding of how resource allocation trade-offs 81 

govern these processes, we must explicitly consider its interaction with resource 82 

acquisition and integrate across genomics, physiology, and evolution.  83 

As we advance our ability to collect “omic” data at multiple levels (genomics, 84 

transcriptomics, proteomics, metabolomics, etc.) and in multiple environments, 85 

achieving this integration is becoming increasingly feasible. A major challenge now is 86 

developing new analytical methods to address multi-level, multi-environment data, and 87 

pulling out emergent themes that will help us better understand the complex processes 88 

underlying trade-offs and linking these with evolutionary models. We argue that 89 

resource allocation is a natural focal point in this effort. This relatively straightforward 90 

concept has the potential to integrate knowledge across fields and address key 91 

questions facing the intersection between evolutionary and molecular biology.  92 
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In this review, our goals are to: 1) detail the diversity of resource allocation 93 

strategies in response to environmental fluctuations in resource availability, 2) review 94 

the evolutionary explanations for these strategies and highlight where new models are 95 

needed, and 3) evaluate current approaches and suggest strategies for understanding 96 

the genetic and physiological mechanisms underlying resource allocation strategies. 97 

2. The diversity of phenotypically plastic resource allocation strategies in the 98 

natural world 99 

In the wild, organisms vary widely between species and populations in how they 100 

respond to variation in resource acquisition, with a diverse array of examples of 101 

phenotypically plastic resource allocation strategies (Table S1). Variation in resource 102 

acquisition can result from variation in resource abundance in the environment, and/or 103 

from differences among individuals in their ability to acquire resources. By far the 104 

largest challenge in describing broad patterns of phenotypic plasticity in allocation 105 

strategies is to directly quantify resource acquisition and the amount of those resources 106 

allocated to different traits. In only a very few cases have resource acquisition and 107 

allocation been successfully estimated in terms of energy units (e.g. [15–18]). In the 108 

majority of studies, these patterns must instead be inferred indirectly from phenotypic 109 

patterns.  110 

The problem of estimating acquisition can be avoided in part when acquisition 111 

can be experimentally manipulated via resource restriction. When resource levels are 112 

restricted, the expectation for resource-based trait values is that they will also decrease. 113 

When trait values increase instead or remain constant, it suggests increased allocation 114 

to that trait (Figure 1). A well-examined example of this type of pattern is the commonly 115 
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observed increase in lifespan (hypothesized to be due to increased allocation to somatic 116 

maintenance) under food restriction coupled with reduced reproduction (reviewed in [1–117 

5]). The majority of the work on the response of lifespan to food restriction has been 118 

focused on model organisms. While there are several examples in non-model species 119 

that show a similar response (Table S1), not all species live longer on food restriction 120 

[19], including some species of water striders [20], house flies [21], squirrel monkeys 121 

[22], and rotifers [23,24]. Additionally, several species show a marked increase in 122 

reproductive allocation under low resource conditions (flatworms [25], guppies [26], 123 

rotifers [24]), demonstrating reproductive allocation does not always decrease under 124 

food restriction. Another trade-off that is particularly well characterized in terms of 125 

differential resource allocation is the trade-off between flight capability and reproduction 126 

in several wing dimorphic insect species (reviewed in [27–30]). In these species, there 127 

exist discrete flight capable (macropterous) and flightless (micropterous or apterous) 128 

morphs. Wing morphology displays phenotypic plasticity in response to several 129 

environmental variables including rearing density, a likely correlate with acquisition, with 130 

different species displaying very different responses. In aphids and planthoppers, 131 

induction of flight capable morphs increases in response to crowding and low nutrition 132 

[31,32], while in crickets, group rearing and other stressors increase induction of 133 

flightless morphs [33,34]. Both of these examples, the lifespan-reproduction trade-off 134 

and the flight capability-reproduction trade-off, demonstrate the wide variation in 135 

allocation patterns across different species. 136 

Most experimental manipulations of acquisition simply consider a single “low” 137 

and single “high” resource environment, and often the diet used is artificial and quite 138 
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different from the organism's natural diet. Recently, the community has begun to take a 139 

“nutritional geometry” perspective, considering wider ranges of nutritional conditions, 140 

both in terms of caloric content and individual diet components (i.e. protein, 141 

carbohydrate, and lipid content), as well as a wider range of the timing of resource level 142 

changes across an organism's lifetime [35–37]. These efforts provide a much more 143 

complete picture of how an organism responds to diet, in that they distinguish between 144 

allocation changes due to limitation in specific nutrient classes vs effects due to more 145 

general caloric restriction [38,39]. However, this approach increases complexity, which 146 

can make interpreting the results in an evolutionary context a challenge when patterns 147 

are highly dynamic. To best place diet manipulations in an evolutionary context, we 148 

need ecological studies that characterize typical diet sources, and the degree of natural 149 

variation in resource availability experienced by populations in the wild. For many 150 

populations, this goal will be a challenge.  151 

Overall, a broad view of trait variation reveals many examples of variation in 152 

plastic resource allocation in response to variation in acquisition (Table S1). Often, 153 

patterns vary substantially among closely related species (e.g. [20,22,23,25]), among 154 

populations of the same species (e.g. [20,26]), or between different inbred strains [40]. 155 

These examples argue against any hard and fast, universal resource allocation 156 

strategies in response to variation in acquisition and lead to the key questions of why 157 

and how environmental variation in resource availability leads to the evolution of 158 

different resource allocation strategies. From the resource allocation strategies detailed 159 

in Table S1, we can conclude two basic points: 1) phenotypic plasticity in resource 160 

allocation is common, and 2) the pattern of plasticity varies widely among populations 161 
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and taxa. Beyond these points, it is difficult to draw any general conclusions given that 162 

the dataset is biased (e.g. model organisms are overrepresented), and there are many 163 

different methods for estimating resource allocation (see discussion of these methods 164 

above), making it challenging to generalize across studies. Clearly, we require a better 165 

understanding of the ecological conditions that would lead to the evolution of such 166 

different populations. 167 

3. Why do phenotypically plastic resource allocation strategies evolve? 168 

There is a long and rich history of theoretical evolutionary models addressing both 169 

optimal resource allocation patterns in different environmental conditions (i.e. life history 170 

evolution models; e.g. [41–45]; see [10,46] for extensive reviews), and the evolution of 171 

phenotypic plasticity [47–53]. However, there are few models that specifically focus on 172 

the evolution of phenotypically plastic resource allocation in response to variation in 173 

resource availability [54–56]. While this category might seem to be a special case, there 174 

is reason to expect general models of phenotypic plasticity might not be fully applicable 175 

to variation in resource availability. Resource availability places an ultimate constraint 176 

on the maximal trait values for allocation-related traits, and in that way, it is 177 

fundamentally different from other types of environmental conditions. The dependency 178 

creates the somewhat paradoxical situation in which no plasticity in allocation will lead 179 

to plasticity in trait values, as they will necessarily decrease with resource availability 180 

(Figure 1). Thus, it is critical for theoretical models to explicitly consider variability in 181 

resource availability when predicting how plastic allocation strategies will evolve.  182 

One emergent property of models that do explicitly consider the interplay 183 

between acquisition and allocation is that environmental predictability (i.e. whether 184 
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current resource availability is correlated with future availability) is a major determinant 185 

of the pattern of phenotypic plasticity that evolves [54–56]. In a model considering 186 

allocation to flight capability versus reproduction, King et al [54] showed completely 187 

opposite patterns of plasticity in allocation are expected to evolve in environments with 188 

predictable versus unpredictable patterns of resource availability. Fischer and co-189 

workers [55,56] showed that, in response to short term resource availability fluctuations, 190 

populations should evolve to allocate toward somatic maintenance under low food 191 

conditions. However, this response is more complicated. If conditions are low enough to 192 

be indicative of low survival probability, allocation to survival is not favoured. Rather, a 193 

terminal investment strategy, investing heavily in reproduction at the expense of 194 

survival, is favoured.  195 

One area where models of the evolution of condition-dependent (i.e. acquisition-196 

dependent) resource allocation strategies is well developed is in the field of sexual 197 

signalling. In many cases, male advertisements to females are dependent on the 198 

condition of the male, producing so-called ‘honest’ signals (e.g. [57,58]; for reviews see 199 

[59–61]. This condition dependence can be continuous (e.g. call duration in male grey 200 

tree frogs [57]) or a discrete polymorphism (e.g. sexually dimorphic mandible growth in 201 

stag beetles [62]). There are several models considering how the benefits and costs of 202 

increased allocation toward a sexual signal change depending on an individual’s 203 

condition [59,61,63], with models predicting low condition individuals that allocate more 204 

toward sexual signals experience lower benefits and/or higher costs depending on the 205 

assumptions of the model (see [61]). These models are a subset of models considering 206 

allocation strategies in poor condition as a ‘best of a bad lot’ strategy [46]. In essence, it 207 
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does not pay to invest heavily in a sexual signal if one simply does not have enough 208 

resources to produce a high-quality signal that will attract many mates.  209 

The majority of evolutionary models focus solely on why, not how, allocation 210 

patterns evolve, ignoring the underlying mechanisms. Often, this is a sensible strategy, 211 

given that when mechanisms don’t act as ultimate constraints, evolutionary endpoint will 212 

remain the same, irrespective of the specifics of the mechanistic underpinning. 213 

Nevertheless, evolutionary models that incorporate explicit mechanisms, can be highly 214 

informative in explaining the mechanisms underlying evolutionary patterns.  For 215 

example, Mangel and Munch [64] integrated physiological parameters such as oxidative 216 

damage associated with faster growth and resource allocation to damage repair in a 217 

model predicting when compensatory growth (increased allocation to growth following a 218 

period of food restriction) should evolve. Only by explicitly incorporating the 219 

physiological mechanisms of damage and repair, were they able to simulate patterns of 220 

compensatory growth that matched observations. Compensatory growth never arose 221 

using a simple optimality framework, demonstrating that explicitly incorporating 222 

physiology can fundamentally change the predictions of life history models in some 223 

cases. We encourage the development of evolutionary models that integrate proximate 224 

mechanisms as a way to expand our understanding of the evolution of resource 225 

allocation strategies in multiple systems.  226 

4. Genetic and physiological mechanisms underlying phenotypic plasticity in 227 

resource allocation  228 

It is clear organisms have evolved the ability to shift the allocation of resources in 229 

response to their nutritional state in many different ways, but how do they accomplish 230 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2017. ; https://doi.org/10.1101/113027doi: bioRxiv preprint 

https://doi.org/10.1101/113027
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

this change? What physiological changes accompany a shift in allocation strategy and 231 

what genes are involved? Not surprisingly, the greatest progress in the effort to uncover 232 

the mechanisms governing the coordination between acquisition and allocation comes 233 

from model organisms (e.g. yeast, worms, flies, and mice) that have been the focus of 234 

studies for decades. However, the relatively recent "omic" technologies available, and 235 

the decreasing cost of these technologies, make it increasingly feasible to gather data 236 

at multiple levels of the genotype to phenotype map in multiple environments for nearly 237 

any organism, opening up the possibility of moving beyond unnatural manipulations in 238 

model organisms and toward more ecologically relevant contexts. 239 

a. Evolutionary endocrinology suggests key role of hormones in resource 240 

allocation 241 

At first glance, resource acquisition and allocation might seem hopelessly 242 

complex, casting doubt on the prospect of uncovering the proximate mechanisms 243 

involved in the relatively subtle variation, at least when compared to mutants, in natural 244 

populations. However, an emergent theme from several systems, including many of the 245 

above detailed examples in model organisms, is the key role of hormone pathways as 246 

major determinants of resource allocation. These discoveries have spurred the 247 

expansion of the field of “evolutionary endocrinology” [65–68]. For instance, we have 248 

learned a great deal about the mechanisms governing allocation of resources in 249 

response to environmental changes from genetic screens and mutational analysis in 250 

model organisms (e.g. [68–70]). In this section, we review our current knowledge in 251 

model and non-model systems on how plasticity in nutrient allocation and hormonal 252 
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signalling impact reproduction-lifespan and reproduction-dispersal trade-offs. The 253 

hormone pathways we discuss here include insulin, ecdysone, and juvenile hormone.  254 

i. Large effect mutations support the idea that major signalling pathways 255 

modulate allocation 256 

Studies that have yielded the most insights have tended to focus on mutations of 257 

large effect. Several studies have implicated leptin as a mediator of acquisition and 258 

allocation of nutrients. In mammals, leptin together with AMPK (AMP-activated protein 259 

kinase) control appetite thus regulating nutrient intake [71], and leptin also mediates the 260 

energetic trade-off of reproduction with the immune system by acting as a proximate 261 

endocrine indicator of the energy state to the immune system [72]. In D. melanogaster, 262 

Upd2 (unpaired 2), a functional homolog of leptin [73], causes a nutrient dependent 263 

effect on growth, mediating production of Dilps (Drosophila insulin-like peptides) in the 264 

fed state, and subsequent secretion of insulin in response to dietary fat [73]. These 265 

studies demonstrate a direct connection between nutrient limitation and allocation. 266 

Both ecdysone and the insulin/insulin-like signalling pathway (IIS) have a role in 267 

the plastic allocation of nutrients. Sequential perturbation of IIS and ecdysone signalling 268 

in ovarian somatic cells of D. melanogaster on different diets showed that ecdysone 269 

signalling regulated the rate of increase in ovary volume in general while IIS conferred 270 

the same effect before larvae attained critical weight [74,75]. This nutrient-dependent 271 

development of the ovary illustrates the role of hormonal signalling in plastic allocation 272 

of nutrients. Perhaps one of the most significant contributions emerging from mutation 273 

studies is that IIS signalling pathways are critical in the regulation of lifespan in many 274 

species. In several model organisms (including fly, mice and worm), reduced IIS 275 
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phenocopies nutrient deprivation, resulting in longer-lived individuals (e.g. [76–78]). In 276 

addition, a suppressed IIS or removal of the germ-line produces life extending effects by 277 

activating the forkhead transcription factor (FOXO) which is conserved across C. 278 

elegans (daf-16), D. melanogaster (dFOXO) and mammals (FOXO3a) [79,80]. 279 

At the whole-body level [71], AMPK regulates metabolic energy balance by 280 

affecting feeding behaviour and circadian rhythms. When nutrient abundance is low, the 281 

elevated AMP to ATP ratio activates AMPK, with subsequent gain in health span and 282 

longevity in D. melanogaster. AMPK is a conserved modulator of lifespan in flies and 283 

mammals linking energy sensing to longevity, and is emerging as a major mechanism 284 

accounting for variation in longevity [71].   285 

ii. Lessons from studies with more ecological context  286 

Hormone pathways have also been implicated in nutrient allocation shifts in non-287 

model systems. Studies in flies and beetles have likewise suggested the IIS as a major 288 

pathway involved in resource distribution. An exonic indel polymorphism in the Insulin-289 

like Receptor (lnR) gene was identified as a functional direct candidate target of natural 290 

selection in wild D. melanogaster [81,82]. In rhinoceros beetles, horn size is highly 291 

sensitive to nutrition and to perturbations in the IIS than are other body structures [83]. 292 

The precise details about how nutrients are mobilized toward competing traits have 293 

perhaps been best characterized in the wing dimorphic sand cricket, Gryllus firmus [84]. 294 

Juvenile hormone (JH) levels determine the morph, and trigger a whole host of 295 

processes leading to differential allocation of actual resource components toward flight 296 

capability versus reproduction. Flight capable morphs preferentially metabolize amino 297 

acids and convert a larger proportion of fatty acids to triglycerides while flightless 298 
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morphs preferentially metabolize fatty acids and convert a larger proportion of amino 299 

acids to ovarian protein [65,84]. Adult crickets on low food diets allocate proportionally 300 

fewer resources toward flight capability [17,18], however, whether this diet-dependent 301 

shift is also mediated through JH has not yet been established. Juvenile hormone 302 

signalling is also involved in nutrition-based sex-specific mandible development via 303 

doublesex gene in the staghorn beetle [62]. 304 

These studies support the hypothesis that the evolution of allocation patterns 305 

ultimately results from the evolution of key endocrine pathways [66–68], potentially 306 

providing a simple theme in complex web of traits at various levels. Thus, while there is 307 

no denying acquisition and allocation of resources are highly complex processes, it is 308 

clear that hormone pathways serve as major mediators in many cases.  309 

iii. Understanding the underlying genetics of natural variation 310 

Most of the above-described studies that identify key genes (except a few e.g. 311 

[81,82]) rely on evidence from large effect mutations or major perturbations and they 312 

have been very successful at identifying genes involved in the regulation of metabolism 313 

and resource allocation and of the effects of large alterations to individual genes. Our 314 

knowledge of the genetic basis of natural variation in metabolism and resource 315 

allocation is severely lacking in comparison, a predicament that is shared by the 316 

majority of complex traits [85–87]. The large effect genetic mutants identified via 317 

classical genetic techniques are typically not segregating in natural populations, which 318 

is not surprising given the central role of the pathways involved [88]. Additionally, 319 

despite the fact that several large effect mutations have been found to influence lifespan 320 

in D. melanogaster (see [3]), mapping studies and evolution experiments using natural 321 
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populations have not independently identified these same genes as important 322 

contributors to natural genetic variation (e.g. [3,89–91]), with few exceptions [85,86]. 323 

These results are not due to a lack of genetic variation at these loci, given the 324 

populations used are derived from wild populations and typically have high heritabilities 325 

for most phenotypes, including gene expression levels of some of these same genes 326 

[92]. There are several possible explanations for this large disconnect regarding genes 327 

in these hormone pathways: 1) they do not contribute to natural genetic variation, 2) 328 

their effects are subtle and thus difficult to detect, 3) their effects stem from trans 329 

regulatory changes affecting gene expression [93]. Large effect mutant studies may 330 

represent the extreme tail of effect size distribution in nature [14], or, in the case of 331 

increase in longevity, different mechanisms altogether may induce altered nutrient 332 

signalling pathways in captive populations due to absence of stressors [86,87,94].  333 

 One of the strongest messages to emerge from modern quantitative genetics is 334 

that the genotype to phenotype map is more complex than some anticipated [95]. Within 335 

this complexity, our goals should be to find the main roads and general patterns. Newer 336 

mapping strategies, such as multi-parental populations, will help to assay multi-level 337 

traits on the same set of lines and leverage what is known about hormone pathways to 338 

reveal mechanistic bases of plastic resource allocation in natural organisms.  339 

b. Integrating genetic and physiological mechanisms into evolutionary 340 

perspectives of resource allocation  341 

As with the above evolutionary models, traditionally, questions surrounding 342 

proximate mechanisms have been considered separately from evolutionary questions, 343 

with a more recent movement toward integration across sub-disciplines. In particular, a 344 
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major question surrounding hypothesized resource-based trade-offs is the degree to 345 

which the proximate mechanism underlying trade-offs stems from functional resource 346 

competition, or whether some other mechanism (e.g. hormone signalling), produces the 347 

relationship between traits. Here, we argue that these proximate mechanisms are not in 348 

conflict with the conceptual framework of the Y model. 349 

i. Challenge of a resource-based Y model 350 

The Y model of resource allocation, as a framework to explain proximate 351 

mechanisms underlying life history trade-offs [12,96], has in recent years been criticized 352 

by some as inadequate, leading some to seek revision of life history theory (see 353 

exchanges in [97–101]). The challenge to a resource-cantered model is based on new 354 

empirical data showing that 1) abrogation of reproduction does not always extend 355 

lifespan, 2) some mutations that extend lifespan do not affect, or in fact, increase 356 

fecundity, and 3) male and female organisms of several species respond differently to 357 

interventions that increase lifespan. The most notable of these are studies in C. elegans 358 

[102,103] and D. melanogaster [104,105] in which gonad ablation failed to increase 359 

lifespan, while ablation of the germline only, doubled lifespan. Evidence suggests this 360 

effect is mediated largely by the insulin/IGF-1 system, which is thought to integrate 361 

molecular signals from the germ line and those from the somatic gonad to determine 362 

lifespan, rather than direct redistribution of resources. This hormonal signalling 363 

alternative has spurred a vigorous debate [99,100] whose reconciliation, in our view, 364 

depends on the eventual and successful integration of proximate mechanisms of trade-365 

offs into evolutionary theory.  366 

ii. Is the new data really in conflict with the Y model? 367 
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We have reviewed above, case studies that directly or indirectly offer support for a 368 

resource model of life history evolution. Of particular note are studies demonstrating 369 

preferential amino acid metabolism and allocation of fatty acids to either flight or 370 

reproduction in winged vs wingless cricket morphs [84,106–110]. These works 371 

represent compelling evidence for differential resource allocation associated with the 372 

flight capability-reproduction trade-off. In addition, studies that quantified amino acid 373 

metabolism in vivo confirmed the predictions of the Y model for this trade-off [84,107]. 374 

Studies that fail to find the trade-off or find a positive relationship may not logically 375 

invalidate those that observe a negative correlation as multiple factors may be 376 

responsible. Further, the bulk of known mechanisms have been described in non-377 

natural laboratory mutant organisms with limited or zero selection pressures 378 

experienced in the wild [86,87,94]. Although, the evidence for the connection between 379 

signalling and resource allocation is unclear, this absence of evidence should not be 380 

treated as evidence of absence. 381 

iii. Opportunities for integration of fields 382 

Conceptual dichotomies where available empirical data do not sufficiently fit 383 

standing theoretical principles are not new to biology. These apparent conflicts have 384 

fuelled progress of the broad field and successfully led to the integration of once thought 385 

disparate fields – Mendelian, molecular, and quantitative genetics in the last century 386 

(see [111]). Instead of asking whether survival costs are best explained either by literal 387 

resource competition or by resource-free signalling, it may be useful to explore how the 388 

two integrate into the observed trade-off. This strategy can redirect attention to potential 389 

connections between nutrients and signals and factors that affect that connection. There 390 
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is strong evidence that hormonal signalling is involved in nutrient sensing mechanisms 391 

implicated in aging [112], and that these mechanisms are at the base of appetite 392 

regulation and redistribution of nutrients [71]. It is thus possible to see how hormonal 393 

signalling may regulate optimal allocation and account for evolution of diverse resource 394 

allocation patterns. Thus, new data showing that signals regulate lifespan do not, 395 

presently, preclude the evolutionary role of resource constraints, especially in natural 396 

settings. It is completely fitting with evolutionary theory to expect organisms to use 397 

specific cues to indicate environmental conditions such as food availability. Thus, when 398 

results find that a single amino acid level can change how organisms allocate resources 399 

[113], an evolutionary interpretation is that that amino acid is what is cueing the 400 

organism about the environment, not that actual resource levels are not important to the 401 

response.  402 

We do not yet know whether one or more proximate explanations govern a given 403 

trade-off. A possible scenario to emerge may negate the notion of a single proximate 404 

explanation since there may be unique mechanisms in different species and/or 405 

environmental settings. For example, in selected lines of D. melanogaster, offspring 406 

ovariole number increased in response to maternal starvation [114]; in wild-living D. 407 

melanogaster larval age and larval weight predicted survival in temperate and tropical 408 

regions, respectively [115]; and, in redback spider dietary restriction extended lifespan 409 

in mated, but imposed cost in unmated females [116]. These examples suggest multiple 410 

mechanistic possibilities defining a given phenotypic trade-off in different species or 411 

within species in different environments. Whether the trade-off is affected by diet, 412 

temperature, or behaviour, molecular signalling could lead to changes in how resources 413 
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are allocated. It will benefit both fields if future studies take advantage of the ‘omic’ 414 

technologies to step up cross-field approaches in the search for mechanisms governing 415 

these traits in nature. 416 

5. Future Directions 417 

In this review, we have attempted to argue that a resource-based Y model is 418 

uniquely favoured to facilitate integration of evolutionary life history theory with 419 

proximate mechanisms underlying the near-ubiquitous trade-offs in life history traits. In 420 

doing so we have brought to the fore two key areas where significant progress is 421 

attainable, especially with the aid of ‘omic’ approaches: 1) performing studies in more 422 

ecologically-relevant contexts, and 2) increasing the level of integration between fields.  423 

A major gap in our understanding of life history trade-offs in general, and the 424 

relationship between survival and reproduction in particular, is a general paucity of 425 

studies focusing on the underlying mechanisms in natural species, and lack of 426 

concordance between results of mutational studies in model species and those from 427 

studies of natural variation in the few cases where these have been undertaken. Here, 428 

we have attempted to show the wide variety of plastic resource allocation strategies in 429 

response to environmental fluctuations in availability that exist among natural 430 

populations and species. Understandably, many of the patterns so far uncovered have 431 

been demonstrated using laboratory studies with explicit diet manipulations (at most, 432 

three diet variations). We support this approach but, in addition, advocate for a broader, 433 

more realistic consideration of experimental diets. In this direction, studies taking 434 

‘nutritional geometry’ approaches discussed earlier have the potential to provide a 435 

broader understanding of how organisms respond to changes in diet. In addition to 436 
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considerations of mere nutritional content, experimental diets should attempt to mimic 437 

the natural diet of the organism as closely as possible, and the natural range of 438 

availability in the field in order to ensure that results most reflect evolutionarily relevant 439 

patterns that occur in nature.  440 

Secondly, we have highlighted gaps in theoretical evolutionary models that 441 

address both optimal resource allocation patterns, and the evolution of phenotypic 442 

plasticity. To our knowledge, very few models specifically focus on evolution of 443 

phenotypically plastic resource allocation in response to variation in resource 444 

availability. We encourage the development of evolutionary models that integrate 445 

proximate mechanisms as a way to expand our understanding of the evolution of 446 

resource allocation strategies in multiple systems. In addition, testing the predictions of 447 

models predicting the evolution of different resource allocation strategies should be a 448 

major priority. Natural systems where patterns of availability differ among populations 449 

and species, can also inform these questions. Alternatively, experimental evolution 450 

approaches, where resource availability can be altered in a controlled way, and different 451 

types of variability across time can be induced, are potentially a powerful way to test 452 

these models. An experimental evolution approach could also allow for tracking change 453 

across the genotype to phenotype map in an integrative way, tracking changes in 454 

proximate mechanisms as evolution occurs. 455 

Overall, viewing phenotypes within a framework of resource acquisition and 456 

allocation allows for a natural integration of physiology, genetics, and evolution. Studies 457 

that measure phenotypes at multiple levels (genomic, physiological, organismal levels) 458 

and in multiple resource environments provide a potentially productive path forward. 459 
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Figure 1: Expectations for trait values for two traits involved in a resource allocation 791 

trade-off when A) there is no phenotypic plasticity in allocation in response to resource 792 

availability, and B) there is phenotypic plasticity in allocation with increasing proportions 793 

allocated to trait Y as resource availability increases. 794 
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Table S1: Examples of the diversity of resource allocation strategies in some life history 799 
traits across the animal kingdom. 800 
 801 

Trade-off Taxa Increased allocation with 
low resource availability 

Selected 
examples 

a) Trade-offs presented in the literature as two-trait cases 
Dispersal–reproduction Prokelisia marginata dispersal [1] 

Gryllus rubens flightlessness  [2] 
Gryllus firmus flightlessness [3] 
Gryllus firmus adults to dispersal;  

juveniles to reproduction 
[4,5] 

Growth–reproduction* Daphnia magna growth  [6] 
Current reproduction–future 
reproduction 

Synchaeta pectinata current reproduction^ [7] 

Storage–reproduction 
 

Drosophila 
melanogaster 

storage [8] 

Survival–reproduction# Nothobranchius furzeri survival [9] 
Trichoptera spp. to storage in short lived 

species; no change in long 
lived species  

[10] 

Elephas maximus survival [11] 

Poecilia reticulata  reproduction$ [12] 
Theraphosidae  survival [13] 
Callosobruchus 
maculatus 

survival  [14] 

Asobara tabida  survival  [15] 

Anastrepha ludens survival  [16] 
Notiophilius buguttatu  survival  [17] 
D. melanogaster survival [18–22] 
Rhabditophora reproduction  [23] 
10 rotifer species most to survival  [24] 

Eupelmus vuilletti depends on nutrient (lipid vs 
sugar) 

[25] 

Romalea microptera  similar allocation to both traits [26] 
Odocoileus virginianus survival  [27] 
Larus michahellis survival  [28] 
Saccopteryx bilineata survival  [29] 
Gerris spp. survival [30] 
Diomedea exulans survival (with terminal 

reproductive investment) 
[31] 

Survival–body size Macaca mulatta, 
Saimiri sp. 

M. mulatta to survival; Saimiri 
sp no effect  

[32] 

Starvation resistance– 
reproduction 

D. melanogaster starvation resistance [18] 

Egg mass–clutch size Microlophus delanonis to none [33] 
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Trade-off Taxa Increased allocation with 
low resource availability 

Selected 
examples 

Total clutch mass–post-
nesting condition 

Microlophus delanonis to none [33] 

Egg size–egg number Northobranchius furzeri egg size [9] 

Offspring quality–reproduction examines 24 bird 
species on elevational 
gradient 

quality in high elevation 
species 

[34] 

b) Trade-offs presented in the literature as multi-trait cases 

Body condition–progeny 
quality‡ 

Paroedura picta body condition  [35] 

Dispersal–survival– 
reproduction–body mass  

Speyeria mormonica survival 
 

[36] 

Dispersal–lifespan–
reproduction 

Colias eurytheme, 
Speyeria mormonica 

dispersal, no effect on lifespan [37] 

Growth rate–development 
time–body size 

Scathophaga 
stercoraria 

faster growth rate and faster 
development time 

[38] 

Growth–reproduction– sprint 
speed 

Anolis sagrei survival [39] 

#Many of these refer to early reproductive effort; *current reproduction; ^ovary size reduction, not absolute 802 
resource allocation; ‡body length, head length vs clutch size, egg size; $Study measures somatic investment 803 
which may benefit both lifespan and fecundity. 804 
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