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Abstract

Noise is often indispensable to key cellular activities, such as gene expression, necessi-
tating the use of stochastic models to capture its dynamics. The chemical master equation
(CME) is a commonly used stochastic model that describes how the probability distribu-
tion of a chemically reacting system varies with time. Knowing analytic solutions to the
CME can have benefits, such as expediting simulations of multiscale biochemical reaction
networks and aiding the design of distributional responses. However, analytic solutions are
rarely known. A recent method of computing analytic stationary solutions relies on gluing
simple state spaces together recursively at one or two states. We explore the capabili-
ties of this method and introduce algorithms to derive analytic stationary solutions to the
CME. We first formally characterise state spaces that can be constructed by performing
single-state gluing of paths, cycles or both sequentially. We then study stochastic biochem-
ical reaction networks that consist of reversible, elementary reactions with two-dimensional
state spaces. We also discuss extending the method to infinite state spaces and design-
ing stationary distributions that satisfy user-specified constraints. Finally, we illustrate
the aforementioned ideas using examples that include two interconnected transcriptional
components and chemical reactions with two-dimensional state spaces.

Subject Areas: systems biology, synthetic biology, biomathematics, bioengineering

Keywords: chemical master equation, analytical stationary solution, Markov chain, graph
theory, algorithm, distributional design

1 Introduction

Stochastic fluctuations in the levels of cellular components are essential to biological processes
such as gene expression coordination and cellular probabilistic differentiation [1, 2]. There are
two commonly used approaches to modelling the time evolution of a spatially homogeneous
mixture of molecular species that interact through a set of known chemical reactions [3]. The
deterministic formulation specifies the time–rates–of–change of the molecular concentrations of
component species with a set of coupled differential equations and assumes continuous variations
in the molecular concentrations [4]. In contrast, the stochastic formulation considers the time
evolution of the probability distribution of molecular compositions which is modelled by a set
of coupled linear differential equations [5, 6]. Although the deterministic approach is adequate
∗E-mail: xmeng@mit.edu
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in many cases, its assumption that a chemical reaction system evolves deterministically and
continuously can be invalid at low molecular counts due to experimental evidence of stochastic
effects and integer-valued molecular counts [7]. In such situations, stochastic modelling becomes
necessary [8–10].

The chemical master equation (CME) is a stochastic model that describes how the prob-
ability distribution of molecular counts of chemical species in a reacting system varies as a
function of time [7, 11]. The CME describes a continuous-time Markov jump process: each
state represents the molecular counts of all component species, and transitions between states
correspond to changes in molecular counts via chemical reactions [12]. Analytic solutions to the
CME are important in biological engineering for a number of reasons. For instance, simulations
of biochemical reaction networks that are multiscale in time can be expedited by incorporating
analytic solutions of the fast time-scale dynamics [13]. Analytic stationary solutions also enable
accurate analysis and design of the effect of parameter values on the stationary behaviour of
a reaction system [13]. In general, analytic forms of transient and stationary solutions to the
CME for arbitrary reaction network topologies are still unknown, mainly because the num-
ber of states increases exponentially with the number of component species [14]. However,
there are known results for some simple biochemical reaction networks with particular initial
conditions [14], such as mass-conserving [15] linear reaction systems with multinomial initial
distributions [16, 17], and linear reaction systems with Poisson initial distributions [18]. In the
absence of analytic solutions, Monte Carlo algorithms, such as Gillespie’s stochastic simulation
algorithm (SSA) [3, 5], are used to approximate the solution to the CME. Nevertheless, the
computational cost of SSA becomes enormous when there are numerous reactions present in
the system, and the method does not guarantee error bounds on the approximate solution [19].

Mélykúti et al. [13,20] recently proposed a technique for determining the analytic stationary
distributions of the CME for stochastic biochemical reaction networks whose state spaces can be
constructed by gluing two finite, irreducible state spaces at one or two states sequentially. The
stationary distribution on the combined state space is a linear combination of the equilibria
of the single Markov jump processes [13]. An analogous method for gluing state spaces at
two states was developed in [20]. Mélykúti et al.’s gluing technique forms a basis for the
construction of recursive algorithms that provides a fast way to compute analytical expressions
for stationary distributions on large state spaces. To illustrate this recursion graphically, we
can imagine gluing three triangles together at their vertices to form a triangular grid, and by
forming increasingly larger triangular grids using existing ones, we can rapidly construct very
large grids.

The gluing technique has a number of potential advantages over existing methods. The
simplest approach that one might take to compute an analytic stationary distribution of a
continuous-time Markov jump process is to solve for a left null vector of the transition rate
matrix [12]. However, the dimension of the matrix is almost always infinite, often making
the calculation exceedingly difficult. There are numerical methods such as the finite state
projection (FSP) algorithm [19] that can be used to truncate infinite state spaces. However,
it is unclear how to employ the FSP algorithm to obtain analytic stationary solutions. The
gluing technique can provide analytic solutions for finite state spaces, and may be the basis for
recursive algorithms that derive analytic solutions for infinite state spaces. The gluing technique
also provides a link between stationary distributions to the CME and the graphical structure
of the state space. Furthermore, predicting the dynamic behaviour of a biological network
from that of its constituent modules is a central yet generally unsolved problem in systems and
synthetic biology [21–24]. The development of the gluing technique can potentially contribute
to computing analytic solutions using its recursive property [20].

In this work, we explore the capabilities of Mélykúti et al.’s gluing technique and introduce
recursive algorithms that use the technique to compute the stationary solution to the CME. We
first introduce basic notions, including the CME model, the relationship between Markov jump
processes and graph theory, and Mélykúti et al.’s gluing technique. We then use graph theory
to formally characterise the set of state spaces that can be constructed by carrying out single-
state gluing of paths, cycles or both sequentially. We subsequently demonstrate the single and
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double-state gluing techniques with simple chemical reaction systems. In addition, we discuss
extending the method to infinite state spaces and designing stationary distributions that satisfy
user-specified constraints. Finally, we illustrate the aforementioned ideas using examples that
include two interconnected transcriptional components [25].

2 Background

To introduce Mélykúti et al.’s [13, 20] gluing technique, we first present the CME and then
explain its connection with graph theory.

2.1 The chemical master equation

The chemical master equation describes the time evolution of a chemically reacting system
as a continuous-time Markovian random walk in the space of molecular counts of chemical
species [5,11]. Consider a system with n chemical species S1, . . . ,Sn in a well-stirred solution of
fixed volume and temperature. We denote the molecular count of each species Si by Xi ∈ Z≥0.
Suppose that the molecular counts of these chemical species are specified by the initial state
X0 ∈ Zn≥0 at the time t0 ≥ 0 and they change to other states X = (X1, . . . , Xn) via m possible
chemical reactions R1, . . . ,Rm. For each reaction Rj , let aj(X) be the associated propensity
function and νj ∈ Zn the state-change vector [18], which we will define as follows. At state X,
the probability that a single occurrence of Rj takes place in an infinitesimal interval dt is given
by aj(X)dt, and νj is the vector of induced changes in X. Therefore, the probability that a
particular reaction Rj occurs first, i.e. the random walk jumps to the state X+νj next, is equal
to aj(X)/

∑m
k=1 ak(X). We assume mass-action kinetics in this work. The reaction equations

of the zeroth, first, and second-order reactions have left-hand side of the forms ∅, Si, Si + Sl
(l 6= i), and 2Si. These reactions have propensity functions κ, κXi, κXiXl, and 1

2κXi(Xi − 1),
respectively, with an appropriate rate constant κ > 0.

Let Pr(X, t | X0, t0) denote the probability of the Markov jump being at state X at time
t > t0, conditional on the initial state X0. The CME is then a set of coupled linear differential
equations, with the equation for state X being

∂

∂t
Pr(X, t | X0, t0) =

m∑
j=1

aj(X − νj) Pr(X − νj , t | X0, t0)−
m∑
j=1

aj(X) Pr(X, t | X0, t0). (1)

The first summation term on the right-hand side of equation (1) corresponds to reactions via
which the random walk can jump to state X in one step, and the second summation term
considers reactions from which the random walk can leave X in one step [14].

2.2 The relationship between continuous-time Markov jump processes and
graph theory

In this subsection, we explain the connection between graph theory and the Markov jump
process that underlies the CME. We only consider reversible chemical reactions. The state
space of the Markov jump process described by the CME naturally gives an undirected graph
without self-loops (i.e. edges that connect a vertex to itself): vertices represent states, and an
edge exists between a pair of vertices if and only if there exists a reversible reaction that allows
transition between the two corresponding states.

For instance, gene expression regulation can be described as the reversible binding of tran-
scription factors with copies of a gene. Let T , G, and G∗ denote the transcription factor, the
free gene, and the gene–transcription factor complex, with molecular counts T , G, and G∗,
respectively. Let κb and κd be the binding and unbinding rate constants. The reaction equation
is then given by

T + G
κb−−⇀↽−−
κd

G∗. (2)
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If we assume the reaction system to be closed (i.e. mass-conserving), then mass conservation
leads to the relation T +G+ 2G∗ = C, where C ∈ Z≥0 is a constant that is determined by the
initial condition. For instance, if the initial condition is (T,G,G∗) = (1, 1, 2), then the state
space with the corresponding transition rates is

3
3
0

 2
2
1

 1
1
2

 0
0
3

 ,

9κb

κd

4κb

2κd

κb

3κd

and the corresponding graph is a path of length 3.
In the rest of this work, we refer to the graph that is given by a state space with corresponding

transition rates simply as the state space for brevity. In Section 2.3, we discuss deriving the
stationary distribution of a continuous-time Markov jump process by gluing two state spaces
together at one or two vertices.

2.3 The stationary distribution of a continuous-time Markov jump process
glued together from two state spaces at one or two vertices

Having introduced the CME and its connection with graph theory, we are ready to present the
technique proposed by Mélykúti et al. [13, 20].

Mélykúti, Hespanha, and Khammash developed a technique in [13] for solving the station-
ary distribution of a continuous-time Markov jump process by gluing the state spaces of two
finite, irreducible, continuous-time Markov jump processes at exactly one vertex. Mélykúti and
Pfaffelhuber [20] considered gluing state spaces at two vertices simultaneously. In both papers,
vertices are glued together if and only if they correspond to the same state. Without introduc-
ing any new jumps or losing any existing jumps, a new Markov process is naturally identified on
the combined state space. No existing literature has studied gluing at more than two vertices.

We first consider the one-vertex gluing technique in [13]. Suppose that A and B are two
continuous-time Markov jump processes with finite, irreducible state spaces. Suppose that
process A has a known stationary distribution ξA on states indexed by {1, 2, . . . , r}, and process
B has a known stationary distribution ξB on states indexed by {1, 2, . . . , s}. The order in which
the states are indexed does not affect the result. Without loss of generality, we assume gluing
the two state spaces at state r of process A and state 1 of process B. We relabel the states by
keeping the indices of process A the same and increasing the indices of process B by r− 1. The
new Markov process has a unique stationary distribution [13] given by

ξi =


ψξAi ξ

B
1 , if i ∈ {1, 2, . . . , r − 1},

ψξAr ξ
B
1 , if i = r,

ψξAr ξ
B
i−r+1, if i ∈ {r + 1, r + 2, . . . , r + s− 1},

(3)

where ψ = (ξAr + ξB1 − ξAr ξB1 )−1 is a normalising constant. Figure 1 illustrates the one-vertex
gluing technique using the example in Section 2.2.

When the two processes to be glued together have exactly two pairs of identical states, we
employ the two-vertex gluing introduced in [20]. With the same setting as before, we now glue
state r−1 of process A to state 1 of process B, and state r of process A to state 2 of process B.
We relabel the states by keeping the indices of process A the same and increasing the indices of
process B by r−2. The glued vertices are not necessarily consecutive in index, but we assume the
index introduced for simplicity of notation. In general, deriving the stationary distribution of the
new Markov process obtained by two-vertex gluing entails lengthy calculations. However, [20]
proves that if the proportionality condition specified by the equation

ξAr−1
ξAr

=
ξB1
ξB2

(4)
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Figure 1: An illustration of the one-vertex gluing technique in [13]. (i) The state spaces of two
Markov jump processes A and B with known stationary distributions (ξA1 , ξ

A
2 , ξ

A
3 ) and (ξB1 , ξ

B
2 ),

respectively. State 3 of A and state 1 of B represent the same state, and all the other states
are distinct, so we glue the two state spaces at these two states. (ii) The resulting state space
and the corresponding stationary distribution, where ψ = (ξA3 + ξB1 − ξA3 ξB1 )−1 is a normalising
constant.

is satisfied, then the stationary distribution on the combined state space is

ξi =


ψξAi ξ

B
1 , if i ∈ {1, 2, . . . , r − 2},

ψξAr−1ξ
B
1 , if i = r − 1,

ψξAr ξ
B
1 = CξAr−1ξ

B
2 , if i = r,

ψξAr−1ξ
B
i−r+2, if i ∈ {r + 1, r + 2, . . . , r + s− 2},

(5)

where ψ =
[
ξAr−1 + ξB1 − ξAr−1(ξB1 + ξB2 )

]−1 is a normalising constant. The condition in Equa-
tion (4) is necessary for the stationary distribution on the combined state space to preserve the
proportions of probability within each Markov jump process. It is interesting that this condition
is also sufficient.

3 Characterising graphs that can be obtained by gluing paths,
cycles, or both, at one vertex sequentially

In this section, we first introduce definitions in graph theory based on [26], and then use them
to characterise the set of state spaces that can be obtained by gluing paths, cycles, or both, at
one vertex sequentially. This set of state spaces provides a natural starting point for studying
Mélykúti et al.’s gluing technique [13, 20] for two main reasons. First, analytic solutions are
already known for the stationary distributions on path-like and circular state spaces [12, 27,
28]. Second, one-vertex gluing involves only simple arithmetic and is computationally efficient.
We find that (i) graphs obtained by gluing paths at one vertex sequentially are trees, (ii)
graphs obtained by gluing cycles at one vertex sequentially are “trees of cycles”, and (iii) graphs
obtained by gluing paths and cycles at one vertex sequentially are “trees of trees and cycles”.
We give formal propositions describing these results in this section and proofs in the electronic
supplementary material.

Let X(k) = {A ⊆ X : |A| = k} be the set of k-element subsets of X. A graph G is defined
by an ordered pair (V,E) where V (G) 6= ∅ is a finite set, called the vertex set, and E(G) ⊆ V (2)

is an edge set. We consider undirected graphs without self-loops in this work, as explained in
Section 2.2. In other words, if {u, v} ∈ E(G), then u 6= v and we can denote {u, v} by uv or vu
equivalently. If uv ∈ E(G), then vertices u and v are adjacent and are both endvertices of edge
uv. A path of length n, called an n-path, is a graph with the vertex set {vi : i = 1, 2, . . . , n+ 1}
and the edge set {vivi+1 : i = 1, 2, . . . , n}. By convention, a 0-path is a vertex. A cycle of
length n, called an n-cycle, is a graph with the vertex set {vi : i = 1, 2, . . . , n} and the edge
set {vivi+1 : i = 1, 2, . . . , n− 1} ∪ {vnv1}. A graph is connected if any two distinct vertices are
joined by a path. A connected and acyclic graph is called a tree. Furthermore, a graph H is a
subgraph of G, written as H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). Suppose that G is a
connected graph. For our purposes, we define the graph G−H as the graph obtained by first
deleting edges of H from G and then removing isolated vertices of the remaining graph (see
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Figure 2 for an example). Similarly, if G has three or more vertices and e ∈ E(G), then the
graph G − e is obtained by first deleting the edge e from G and then removing any isolated
endvertex of e in the remaining graph.

(i) (ii) (iii)

Figure 2: An illustration of removing a subgraph from a graph. (i) An example of a graph G
with a circular subgraph H (in red). To obtain G−H, (ii) delete the edges of H from G, and
(iii) remove isolated vertices from the remaining graph.

Proposition 1. A graph can be obtained by gluing paths together at one vertex sequentially if
and only if the graph is a tree.

Figure 3 gives an example of a tree and one way to construct the graph by gluing paths at
one vertex sequentially.

The degree of a vertex v ∈ V (G), denoted by dG(v), is the number of distinct vertices that
are adjacent to v in graph G. A vertex with zero degree is said to be isolated.

Proposition 2. A graph can be obtained by gluing cycles together at one vertex sequentially if
and only if the graph satisfies all of the following conditions:

(i) the graph is connected,

(ii) every vertex has an even degree, and

(iii) any two distinct cycles have at most one common vertex.

A graph that satisfies all of the conditions in Proposition 2 can be thought of colloquially
as a “tree of cycles”. Figure 4 gives an example of a tree of cycles and one way to construct
the graph by gluing cycles at one vertex sequentially. For a formal definition, see the electronic
supplementary material.

Proposition 3. A graph can be obtained by gluing paths and cycles together at one vertex
sequentially if and only if the graph satisfies both of the following conditions:

(i) the graph is connected, and

(ii) any two distinct cycles share at most one common vertex.

Intuitively, a graph that satisfies both of the conditions in Proposition 3 is a “tree of trees
and cycles” (see Figure 5 for an example).

The one-vertex gluing technique [13] provides an easy method for computing the stationary
distributions of biochemical reaction systems whose state spaces are characterised by Proposi-
tions 1–3. We note that any state space can be constructed by gluing simple graphs together
at one or two vertices consecutively, such as by adding one edge at a time. However, this
strategy entails a large number of steps to build large graphs and thus is computationally in-
efficient. Moreover, deriving the stationary distribution of the new Markov process obtained
by two-vertex gluing is complicated in general, except when the proportionality condition in
equation (4) holds. In Section 4, we explore the development of recursive algorithms based on
the one and two-vertex gluing techniques in [13] and [20] through a set of biochemical reaction
systems.
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(i) (ii) (iii) (iv) (v)

Figure 3: (i) An example of a tree. (ii)–(v) One way to construct the tree by gluing paths
together at one vertex sequentially. New components are in blue. Graphs are glued together at
red vertices.

(i) (ii) (iii) (iv) (v)

Figure 4: (i) An example of a tree of cycles. (ii)–(v) One way to construct the graph by gluing
cycles together at one vertex sequentially.

Figure 5: An example of a tree of trees and cycles.

4 Computing analytic stationary solutions to the CME using
recursive algorithms

In this section, we propose recursive algorithms that apply Mélykúti et al.’s gluing technique to
find stationary solutions to the CME of a set of biochemical reaction systems. In Section 4.1,
we define the set of chemical reactions with finite state spaces for which our algorithms are
intended and demonstrate with examples. In Section 4.2, we derive the analytic stationary
solution of two interconnected transcriptional components, for which the state space is infinite,
and discuss designing stationary distributions with desired properties.

4.1 Closed systems with reversible, elementary reactions

In this subsection, we shall focus on a set of chemical reactions that have finite state spaces,
which can be constructed by using Mélykúti et al.’s gluing technique finitely many times. We
study a biochemical reaction system with an infinite state space in Section 4.2.

We first define an elementary reaction in Definition 1 for the purposes of our study.

Definition 1. Consider three distinct chemical species S1,S2, and S3. For i = 1, 2, and 3, let
αi, βi ∈ {0, 1, 2}. A reaction of the form

α1S1 + α2S2 + α3S3 −−→ β1S1 + β2S2 + β3S3 (6)

is an elementary reaction if
∑

i αi ∈ {1, 2},
∑

i βi ∈ {1, 2}, and (
∑

i αi − 1)(
∑

i βi − 1) = 0.

The reactions specified by Definition 1 can be categorised into five types: S1 −−→ S2,
S1 −−→ 2S2, S1 −−→ S2 + S3, 2S2 −−→ S1, and S2 + S3 −−→ S1. These reactions can be
seen as building blocks for more complex reactions. For instance, S1 + S2 −−⇀↽−− S3 + S4 is an
approximation to the reactions S1 + S2 −−⇀↽−− C −−⇀↽−− S3 + S4, where C is an intermediate.

We study reversible, elementary reactions in closed systems in this subsection. The state
spaces of these biochemical reaction systems are determined by the initial state and the number
of reversible reactions present.
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4.1.1 One reversible reaction

There are three kinds of closed systems with exactly one reversible, elementary reaction, which
we list in Table 1. The state spaces of these reactions are paths, the lengths of which are
determined by the initial state. We first present the known results in [27] about the stationary
distributions on finite, path-like state spaces. We then propose a recursive algorithm that uses
the one-vertex gluing technique.

S1 −−⇀↽−− S2
2S1 −−⇀↽−− S2
S1 + S2 −−⇀↽−− S3

Table 1: Systems with exactly one reversible, elementary chemical reaction.

Let N ∈ Z>0 and consider a continuous-time Markov jump process on a path-like state
space with vertices indexed by {0, 1, . . . , N}. Suppose that pi is the transition rate from i to
i + 1 for i ∈ {0, 1, . . . , N − 1}, and qi from i to i − 1 for i ∈ {1, 2, . . . , N}. The stationary
distribution (ξ0, ξ1, . . . , ξN ) is given by the relation ξi = ξ0

∏i−1
k=0 pk/qk+1 and the normalisation

equation
∑N

i=0 ξi = 1.
For x ≥ 0, let bxc denote the integer part of x. Alternatively, the stationary distribution

can be obtained by gluing paths of lengths 1, 2, 4, . . . , 2blog2Nc−1 at one endvertex sequentially
and then adding a path of length N − 2blog2Nc. The stationary distribution on a path of length
N − 2blog2Nc can be obtained using a similar strategy. Consider the example in Section 2.2
with initial state (T,G,G∗) = (7, 7, 0). Figure 6 illustrates graphically our recursive algorithm
to obtain the stationary distribution on the state space, which is a path of length 7.

(i) (ii) (iii) (iv)

Figure 6: A graphical demonstration of a recursive algorithm that uses the one-vertex gluing
technique in [13] to solve the stationary distribution on a path-like state space. New components
are in blue. Graphs are glued together at red vertices.

4.1.2 Two reversible reactions

There are eight types of closed systems with exactly two reversible, elementary reactions, which
we list in Table 2. The state spaces of these reactions are diagonally truncated grids, the sizes
of which depend on the initial state. We propose a recursive algorithm that applies Mélykúti
et al.’s gluing technique to compute analytic stationary distributions on such state spaces.

S1 −−⇀↽−− S2 −−⇀↽−− S3
2S1 −−⇀↽−− S2 −−⇀↽−− S3
S1 −−⇀↽−− 2S2 −−⇀↽−− S3
2S1 −−⇀↽−− S2 −−⇀↽−− 2S3
S1 + S2 −−⇀↽−− S3 −−⇀↽−− S4
S1 −−⇀↽−− S2 + S3 −−⇀↽−− S4

S1 + S2 −−⇀↽−− S3 −−⇀↽−− S4 + S5
S1 + S2 −−⇀↽−− S3 −−⇀↽−− 2S4

Table 2: Systems with exactly two reversible, elementary chemical reactions.
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Consider a closed system with two coupled monomolecular reversible reactions

S1
κ1−−⇀↽−−
κ2

S2
κ3−−⇀↽−−
κ4

S3. (7)

The total number of molecules, denoted by N , is a constant that is determined by the initial
state. It is sufficient to denote each state by a 2-vector (X1, X2) as X3 can be calculated using
X3 = N−X1−X2. Figure 7 shows the state space when N = 3 and the corresponding graphical
representation. All closed systems with exactly two reversible, elementary reactions have state
spaces of such a diagonally truncated grid structure.
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Figure 7: (i) The state space of a closed system with two coupled monomolecular reversible
reactions. Formation and degradation of species S1 correspond to moving up and down the
state space, respectively. Formation and degradation of species S3 correspond to moving right
and left, respectively. (ii) The corresponding graphical representation.

When N = 1, the state space is simply a 3-path. For integer N ≥ 2, we propose an algorithm
that takes N and κj , where j ∈ {1, 2, 3, 4}, as inputs and returns the stationary distribution of
the corresponding chemical reaction system. The algorithm constructs the state space recur-
sively by sequentially gluing together small graph components. Figure 8 demonstrates the case
when N = 3. Specifically, we construct the state space by first gluing together three L-shaped
components sequentially at one vertex and then checking the proportionality condition, as given
in equation (4), for the remaining missing edges. The method is applicable to the general case
for any integer N ≥ 2. We label states in the state space from left to right and from bottom to
top so that the index increases naturally as the graph grows.

(i) (ii) (iii) (iv)
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Figure 8: A graphical demonstration of constructing the state space of a closed system with
two coupled monomolecular reversible reactions when N = 3. Vertices are labelled in green.
New components are in blue. Graphs are glued together at red vertices. In Subfigures (ii) and
(iii), we glue together three L-shaped components sequentially at one vertex. In Subfigure (iv),
blue edges are added one at a time.

In general, we can construct the state space by first gluing together N L-shaped components
sequentially at one vertex and then checking the proportionality condition, as given in equa-
tion (4), for all missing edges. For each L-component, we call the state with the lowest index
state 1, the state with the second lowest index state 2, and so on. For x2 ∈ {1, 2, 3, . . . , N}, the
stationary distribution ξx2 on an L-shaped component with state 1 being (X1, X2) = (0, x2) is
given by

ξx2i =

 ψx2
(
x2
i−1
) (

κ2
κ1

)i−1
, if i ∈ {1, 2, 3, . . . , x2 + 1},

ψx2
κ3x2

(N−x2+1)κ4
, if i = x2 + 2,

(8)
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where ψx2 is a normalising constant. After gluing together N of these L-shaped components
sequentially at one vertex, the graph contains all of the states from the state space. In order
to complete the construction, we need to add

(
N
2

)
edges by gluing at the two endvertices of

each missing edge simultaneously. The proportionality condition, as given in equation (4),
holds at all missing edges (i.e. all edges between states (i − 1, x2 − i + 1) and (i − 1, x2 − i)
for x2 ∈ {2, 3, 4, . . . , N} and i ∈ {2, 3, 4, . . . , x2}). Therefore, the stationary distribution of the
orignal state space is the same as that of the state space constructed with L-shaped components
which is given by the equation

Pr(i− 1, x2 − i+ 1) = ψ

(
N

x2

)(
x2
i− 1

)(
κ3
κ4

)N−x2 (κ2
κ1

)i−1
, (9)

with the normalising constant ψ =
(

1 + κ2
κ1

+ κ3
κ4

)N
for x2 ∈ {1, 2, 3, . . . , N} and i ∈ {1, 2, 3, . . . ,

x2 + 1}. Moreover, the state with the highest index has probability of
(
κ3
κ4

)N
in the stationary

distribution.

4.1.3 Three reversible reactions

A planar graph is a graph that can be drawn on the plane in such a way that edges intersect only
at their endvertices [26]. There are three possible closed systems with exactly three reversible,
elementary reactions, the state spaces of which are planar graphs. We list these reaction systems
in Table 3. In such a system, each elementary reaction gives rise to the same chemical change
as the overall effect of the other two reactions. If this condition does not hold or a chemical
reaction system contains more than three reversible, elementary reactions, then its state space
is not a planar graph, and our recursive algorithm does not apply.

S1 −−⇀↽−− S2 S2 −−⇀↽−− S3 S3 −−⇀↽−− S1
S1 −−⇀↽−− 2S2 2S2 −−⇀↽−− S3 S3 −−⇀↽−− S1

S1 −−⇀↽−− S2 + S3 S2 + S3 −−⇀↽−− S4 S4 −−⇀↽−− S1

Table 3: Systems with exactly three reversible, elementary chemical reactions.

Consider a closed system with three coupled monomolecular reversible reactions

S1
κ1−−⇀↽−−
κ2

S2, S2
κ3−−⇀↽−−
κ4

S3, S1
κ5−−⇀↽−−
κ6

S3. (10)

Figure 9 shows the state space when N = 3 and the corresponding graphical representation.
All closed systems with exactly three reversible, elementary reactions as given in Table 3 have
state spaces of such a diagonally truncated grid structure.

(i) (ii)
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Figure 9: (i) The state space of a closed system with three coupled monomolecular reversible
reactions as given in Equation (10). In addition to the transitions illustrated in Figure 7,
diagonal moves denote conversion between species S1 and S3. (ii) The corresponding graphical
representation.
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We observe that the recursive algorithm introduced in Section 4.1.2 contructs part of the
state space of the system with reactions given in Equation (10). If the proportionality condition
in Equation (4) is also satisfied for all of the diagonal edges, then the three-reaction system
has the same stationary distribution as that of the two-reaction system. Therefore, a closed
system with three coupled monomolecular reversible reactions as given in Equation (10) has
the stationary distribution that is specified by Equation (9) if the reaction rate constants are
compatible in the sense that

κ5
κ6

=
κ1κ3
κ2κ4

. (11)

If Equation (11) does not hold, then it is an open question whether the chemical reaction system
has a stationary distribution or not.

4.2 Stationary distributions of two interconnected transcriptional compo-
nents

In this subsection, we study the stationary behaviour of two interconnected transcriptional com-
ponents [25] by developing a recursive algorithm that is analogous to the algorithms introduced
in Section 4.1. Specifically, we first model the cascade of two connected transcriptional com-
ponents using the CME. We then apply the gluing technique on a finite subset of the infinite
state space, providing an error bound on the approximate solution. We subsequently obtain
the analytic stationary solution of the CME by taking the size of the subset to infinity, arriving
at the same results as in [25]. Finally, we discuss designing stationary distributions that satisfy
user-specified constraints by searching over the parameter space of the biochemical reactions.

4.2.1 Modelling two interconnected transcriptional components using the CME

We first present the chemical reactions that are introduced in [25] to model two interconnected
transcriptional components and then provide the corresponding CME model.

Figure 10 illustrates a transcriptional component connected to a downstream component.
The upstream component comprises the constitutive expression of a transcription factor Z,
which subsequently binds reversibly to a promoter P at the downstream component. Let C
denote the complex formed by Z and P. The reactions are then given by the chemical equations

∅ κ−−⇀↽−−
δ
Z, Z + P

κon−−⇀↽−−
κoff

C, (12)

where κ > 0, δ > 0, κon > 0, and κoff > 0 are the corresponding reaction rates. Let P , C, and
Z be the numbers of P, C, and Z, respectively. Since the total amount of DNA is conserved, it
always holds that P +C = N for some constant N that is determined by the initial condition.

Figure 10: Two interconnected transcriptional components. The figure is reproduced from [25]
with permission.
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If the initial condition is (C,Z, P ) = (c0, z0, p0) ∈ Z3
≥0, then the conservation constant is

given by N = c0 + p0. It is sufficient to denote each state by a 2-vector (C,Z) as P can
be calculated using P = N − C. Since there can be arbitrarily many transcription factors,
the reaction system described by equation (12) has an infinite state space, as illustrated in
Figure 11.
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Figure 11: (i) The infinite state space of two interconnected transcriptional components with
reactions given by Equation (12) when N = 3. Expression and degradation of transcription
factors, Z, correspond to moving up and down the state space, respectively. Formation and
decomposition of complexes, C, correspond to moving right and left, respectively. (ii) The
graphical representation of the state space given in (i).

For simplicity, we assume that the chemical reaction system has volume V = 1. Let Pr(c, z)
be the probability that the stochastic process is in state (c, z) ∈ Z2

≥0 at time t > 0, conditional
on the initial state (C,Z) = (c0, z0). Each state (c, z) contributes exactly one linear ordinary
differential equation to the CME, which is given by

dPr(c, z)

dt
= κPr(c, z − 1) + δ(z + 1) Pr(c, z + 1) + κon(z + 1)(N − c+ 1) Pr(c− 1, z + 1)

+κoff(c+ 1) Pr(c+ 1, z − 1)− [κ+ δz + κonz(N − c) + κoffc] Pr(c, z).
(13)

The CME of two interconnected transcriptional components comprises infinitely many dif-
ferential equations that have the form of Equation (13). Therefore, we need to truncate the
infinite state space to a finite subset that can then be recursively constructed by applying
Mélykúti et al.’s gluing technique finitely many times.

4.2.2 Truncating infinite state spaces with guaranteed accuracy

Applying the initialisation step of Munsky and Khammash’s finite state projection (FSP) algo-
rithm [19], we approximate the stationary distribution on the infinite state space. Specifically,
depending on the desired accuracy of the approximate solution, we truncate the infinite state
space by imposing a maximum value, M ∈ Z>0, on the number of transcription factors consid-
ered. For instance, Figure 12 presents the truncated state space of Figure 11 when M = 2.

We now derive M as a function of the desired accuracy. Let Ω be the infinite state space,
and suppose that ε ∈ [0, 1] is the level of acceptable error. We choose M such that the total
probability that the finite state approximation fails to capture is at most ε. Let Ωf ⊂ Ω denote
the corresponding truncated finite state space. In other words, the total probability accounted
by Ωc

f ≡ Ω \ Ωf is at most ε. In order to calculate the total probability that is accounted for
by the states in Ωc

f at equilibrium, we regard the states in Ωf as one state, called ωf, and states
in Ωc

f as state ωc. The transition rate from ωf to ωc is the sum of the transition rates from Ωf
to Ωc

f , and vice versa. Therefore, the transition rate from ωf to ωc is κ(N + 1), and the reverse
transition rate is δ(M + 1)(N + 1). At equilibrium, the probabilities of ωf and ωc are

δ(M+1)
δ(M+1)+κ

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 3, 2017. ; https://doi.org/10.1101/113340doi: bioRxiv preprint 

https://doi.org/10.1101/113340
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

0

(i)

0

1

1

0

(ii)

0

2

1

1

1

2

2

0

2

1

2

2

3

0

3

1

3

2

Figure 12: (i) The truncated state space of two interconnected transcriptional components when
N = 3 and M = 2. (ii) The graphical representation of the truncated state space given in (i).

and κ
δ(M+1)+κ , respectively. We choose M ∈ Z>0 such that κ

δ(M+1)+κ ≤ ε. Hence, we choose

M = max(1,

⌊
κ(1− ε)
δε

⌋
). (14)

4.2.3 Analytic stationary solutions on infinite state spaces

We propose a recursive algorithm that, together with asymptotic analysis, yields the analytic
stationary solution to the CME of two interconnected transcriptional components. The algo-
rithm takes N , M , κ, δ, κon, and κoff as inputs and returns the stationary distribution on the
corresponding truncated finite state space. The algorithm constructs the truncated state space
recursively by gluing small graph components together sequentially. In the limit of M → ∞,
the stationary distribution of the truncated state space converges to that of the original infinite
state space.

We demonstrate the recursive algorithm for the case when N = 3 and M = 2 in Figure 13,
but the method is applicable to the general case of N ∈ Z>0 and M ∈ Z>0. Specifically, we
construct the truncated state space by first gluing together three T-shaped components and
a path sequentially at one vertex and then checking the proportionality condition, as given in
equation (4), for the remaining missing edges. Similar to Section 4.1.2, we label states in the
truncated state space from left to right and from bottom to top so that the index increases
naturally as the graph grows.

(i) (ii) (iii) (iv) (v)

1 1111

2 22224 4444

3 3333 5555 7777

666 8886 101010

999 1111

1212

Figure 13: A graphical demonstration of constructing a truncated state space of two intercon-
nected transcriptional components when N = 3 and M = 2. Vertices are labelled in green.
New components are in blue. Graphs are glued together at red vertices. In Subfigures (i)–(iii),
we glue together three T-shaped components sequentially at one vertex. In Subfigure (iv), we
add a path in order to complete the vertex set. In Subfigure (v), blue edges are added one at
a time.

In general, a T-shaped component consists of M + 2 states. There are three steps for
constructing a truncated state space: (i) glue together N of T-shaped components sequentially
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at one vertex, (ii) add a path of length M to the existing state space at the vertex with the
highest index, and (iii) check the proportionality condition, as given in equation (4), for all
missing edges.

For c ∈ {0, 1, 2, . . . , N − 1}, the stationary distribution ξc on a T-shaped component for
which state 1 (i.e. the vertex with the lowest index) represents (C,Z) = (c, 0) is given by

ξci =

 ψc
(κ/δ)i−1

(i−1)! , if i ∈ {1, 2, 3, . . . ,M + 1},

ψc
κκon(N−c)
δκoff(c+1) , if i = M + 2,

(15)

where ψc is a normalising constant. The stationary distribution on the M -path is given by

ξNi = ψN
(κ/δ)i−1

(i− 1)!
, (16)

for i ∈ {1, 2, 3, . . . ,M + 1}, where ψN is a normalising constant.
After step (ii), the graph contains all the states from the truncated state space. In order to

complete the construction, we need to add N(M − 1) edges by gluing at the two endvertices
of each edge simultaneously. The proportionality condition, as given in equation (4), holds at
all missing edges (i.e. all edges between states (c, z) and (c+ 1, z − 1) for c ∈ {0, 1, 2, . . . ,N-1}
and z ∈ {2, 3, 4, . . . ,M}). Therefore, the stationary distribution on the truncated state space is
already obtained in step (ii). For instance, when N = 3 andM = 2, the stationary distributions
of Subfigures 13(iv) and 13(v) are the same.

We may truncate the infinite state space to a finite subset by bounding the maximum value
of Z as limz→∞ Pr(c, z) = 0 for c ∈ {0, 1, 2, . . . , N}. Moreover, the dependence of Pr(c, z)
on M is only through the normalising constant. Therefore, by normalising over z ∈ Z≥0 and
c ∈ {0, 1, 2, . . . , N}, we obtain the accurate stationary distribution of the original infinite state
space, which is given by the equation

Pr(c, z) =

(
1 +

κκon
δκoff

)−N (N
c

)(
κκon
δκoff

)c
e−κ/δ

(κ/δ)z

z!
. (17)

Equation (17) can be written as a product of a function of c and a function of z, which
implies independence between the stationary behaviour of the upstream and downstream tran-
scriptional components. In addition, the stationary distribution of random variable C is bino-
mially distributed with the number of trials and success probability in each trial being N and
[(δκoff)/(κκon) + 1]−1, respectively. The stationary distribution of random variable Z follows a
Poisson distribution with mean κ/δ. Our results confirm theorem 5.1 in [25]. However, the proof
of [25] relies on the deficiency zero theorem [29] and the theorem of product-form stationary
distributions (theorem 4.1 of [30]).

4.2.4 Designing stationary distributions using analytic solutions

Mathematical methods for designing distributional properties of stochastic biochemical systems
have been developed in conjunction with the field of synthetic biology as a means to engineer
predictable biochemical responses [31,32]. The stationary distribution design in this subsection
is simpler than the general methods introduced in [31,32] because of the analytic solutions that
we obtained using Mélykúti et al.’s gluing technique [13,20].

Computing stationary distributions in analytic form enables us to design the equilibrium
behaviour of biochemical reaction networks simply by tuning their reaction rate parameters.
For the two-component transcriptional system, this corresponds to altering the dilution rate
or the degradation rate, making more RNA polymerases available to increase the transcription
rate, or even choosing a transcription factor with the desired strength of binding and unbinding
to DNA.

In this subsection, we focus on designing features of the stationary distribution of the two-
component transcriptional system by adjusting the parameters of the biochemical reactions
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given in equation (12). We formulate and find solutions for two potential design problems in
Propositions 4, 5, and Corollary 1. We consider two sets of design features, namely, the mean
and the variance of the marginal probability distributions, and the location of the peak of the
joint stationary distribution. For the latter, we prove that the stationary distribution has a
unique global maximum if and only if the conditions in Proposition 5 are satisfied. Consid-
ering only stationary distributions with a unique global maximum simplifies the subsequent
design of the peak’s location. We present the proofs of Propositions 4 and 5 in the electronic
supplementary material.

Proposition 4. Consider the system of two interconnected transcriptional components that are
modelled by reactions as given in Equation (12), where κ > 0, δ > 0, κon > 0, and κoff > 0
are the corresponding reaction rate constants. Let P , Z, and C be the numbers of promoters
P, transcription factors Z, and P–Z complexes C, respectively. Let α = κκon

δκoff
, β = κ

δ , and
γ = Nα−1

α+1 , where N is a constant given by N = P + C due to the conservation of DNA. In
(i)–(iii), we set up and solve three design problems using the marginal stationary distributions
of Z and C.

(i) Since the marginal stationary distribution of Z is Poisson distributed, its mean and vari-
ance are equal. The design problem of fixing the mean of Z at an objective value µz > 0 is
feasible, and the solution is β = µz, with N and the reaction rate constants being arbitrary
otherwise.

(ii) The design problem of setting the mean of C at an objective value µc ∈ (0, N) is feasible,
and the solution is α = µc

N−µc , with N and the reaction rate constants being arbitrary
otherwise.

(iii) The design problem of choosing the variance of C to be an objective value σ2c > 0 is

feasible if and only if σ2c ≤ N
4 , and the solutions are α =

N−2σ2c±
√
N2−4Nσ2

c

2σ2
c

, with N and
the reaction rate constants being arbitrary otherwise.

We now consider designing the location of the peak of the joint stationary distribution
as given in Equation (17). In Proposition 5, we find necessary and sufficient conditions for
the existence of a unique global maximum and provide its location. We include the proof of
Proposition 5 in the electronic supplementary material. Corollary 1 shows that the uniqueness
of the peak simplifies the design of its location.

Proposition 5. Consider the system of two interconnected transcriptional components that are
modelled by the reactions in Equation (12). With the same notation as in Proposition 4, the
stationary distribution in Equation (17) has a unique global maximum if and only if N > 1,
β > 1, 0 < γ < N − 1, and β, γ /∈ Z. In this case, the maximum is at (c∗, z∗) = (bγc+ 1, bβc).
Corollary 1. Under the constraints N > 1, β > 1, 0 < γ < N − 1, and β, γ /∈ Z, designing the
location of the unique global maximum of the two-component transcriptional system modelled by
the reactions in Equation (12) is equivalent to finding N , β, and γ such that (bγc + 1, bβc) is
the objective location.

When the global maximum of the two-component transcriptional system exists and is
unique, there are infinitely many parameter values that can lead to the objective location of the
peak, and no closed-form solutions exist because of the floor-function form. Since any α, β, γ,
and N that satisfy the conditions in Corollary 1 would lead to the desired location, this implies
the relative insensitivity of the peak’s location with respect to experimental inaccuracies.

Propositions 4, 5, and Corollary 1 illustrate that analytic solutions can greatly facilitate the
design of stationary distributions. Design problems can be formulated as feasibility problems
over decision variables, which are α, β, γ, and N in the case of the two-component tran-
scriptional system. Specifically, solving the four design problems in Propositions 4 and 5 and
Corollary 1 is equivalent to tuning the ratio of the production and decay rates of the tran-
scription factor, the ratio of the binding and unbinding rates of the transcription factor with
promoters, and the total amount of DNA.
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5 Summary and discussion

In this work, we have explored the capabilities of a method that was recently proposed by
Mélykúti et al. [13,20] to derive analytical expressions for the stationary solutions to the CME.
The method relies on gluing simple state spaces together recursively at one or two states. We
have introduced graph theoretical characterisations of state spaces that can be constructed
by performing single-state gluing of paths, cycles or both sequentially. Moreover, we have
characterised a set of stochastic biochemical reaction networks for which the state spaces can
be constructed using the gluing technique finitely many times. For these reaction networks,
we have developed recursive algorithms that apply the gluing technique to obtain stationary
distributions in analytic form. Combining recursion and asymptotic analysis, we have extended
the method to derive the stationary distribution for an infinite state space, illustrating with
the example of two interconnected transcriptional components. In addition, we have discussed
using analytic stationary distributions to design desired distributional properties by searching
over the parameter space of reaction rate constants and the amount of DNA.

While stationary distributions can be obtained symbolically by computing left null vectors
of transition rate matrices, the method discussed in this work provides an alternative that is
of interest for a number of reasons. Firstly, it is interesting from a theoretical perspective, as
it provides a link between the graphical structure of the state space associated with the CME,
and the corresponding stationary distribution. Secondly, the possibility of creating recursive
algorithms that employ the repeating structure of the state space may provide better computa-
tional or analytical tractability than methods that rely on matrix algebra to compute left null
vectors of transition rate matrices. Thirdly, as we have demonstrated with the example of two
interconnected transcriptional components, the recursive nature of the algorithms that can be
developed using this method may enable the derivation of analytic solutions for infinite state
spaces.

Analytic stationary distributions of biochemical reaction systems modelled by the CME are
valuable for designing user-specified distributional properties. Using analytic solutions, we can
search over the parameter space of the model for stationary distributions with, for example,
desired shape, modality, and moments, similar to [31]. Stationary distribution design is part of
designing distributional responses of stochastic biochemical systems [32]. These methods are
useful in, for instance, synthetic biology, where a principal goal is to design genetic circuits that
meet user-specified design criteria. They are also important for designing population-level dis-
tributions of heterogeneous cell responses when these distributions capture unique information
that is not encoded in individual cells [34].

Another application of analytic stationary distributions is to reduce the CME model using
the quasi-steady-state approximation [35, 36]. This involves separating a system into fast and
slow subsystems and subsequently removing the fast dynamics from the model by substituting
in stationary distributions of the fast subsystems at each time step of the slow subsystem.
While traditionally developed for deterministic modelling, stochastic model reduction has drawn
significant attention in recent years [37], and the methods developed in this study hope to extend
the set of tools for the computation of stationary distributions.

For future work, it is valuable to broaden the set of stochastic biochemical reaction networks
for which analytic forms of stationary distributions can be obtained using recursive algorithms.
One potential breakthrough would be to generalise Mélykúti et al.’s technique in order to allow
gluing state spaces at more than two states simultaneously. Since many biochemical reactions
are irreversible, it is also important to study the gluing technique on directed state spaces that
are weakly connected graphs. For biochemical reaction networks with known analytic stationary
distributions, a natual next step is to achieve complex distributional design by optimising over
possibly large parameter spaces.
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