
 

1 

REPARATION:  Ribosome Profiling Assisted (Re-)Annotation of Bacterial 

genomes. 

Elvis Ndah1,2,3, Veronique Jonckheere1,2, Adam Giess4, Eivind Valen4,5, Gerben 

Menschaert3 & Petra Van Damme1,2, *. 

 

1 VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium 

2Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium 

3Lab of Bioinformatics and Computational Genomics, Department of Mathematical 

Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent 

University, B-9000 Ghent, Belgium 

4Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 

5020, Norway 

5Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 

Bergen, Norway 

 

* To whom correspondence should be addressed: VIB-UGent Center for Medical 

Biotechnology, Ghent University, A. Baertsoenkaai 3, B9000 Ghent, Belgium. Tel: 32 

92649279 Fax: 32 92649496; E-mail: petra.vandamme@vib-ugent.be; 

 

Keywords: 

ribosome profiling, machine learning, N-terminomics, bacteria, genome (re-

)annotation, open reading frames. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2017. ; https://doi.org/10.1101/113530doi: bioRxiv preprint 

https://doi.org/10.1101/113530


 

2 

ABSTRACT 

Prokaryotic genome annotation is highly dependent on automated methods, as manual 

curation cannot keep up with the exponential growth of sequenced genomes. Current 

automated methods depend heavily on sequence context and often underestimate the 

complexity of the proteome. We developed REPARATION (RibosomeE Profiling Assisted 

(Re-)AnnotaTION), a de novo algorithm that takes advantage of experimental protein 

translation evidence from ribosome profiling (Ribo-seq) to delineate translated open 

reading frames (ORFs) in bacteria, independent of genome annotation. REPARATION 

evaluates all possible ORFs in the genome and estimates minimum thresholds based on 

a growth curve model to screen for spurious ORFs. We applied REPARATION to three 

annotated bacterial species to obtain a more comprehensive mapping of their 

translation landscape in support of experimental data. In all cases, we identified 

hundreds of novel (small) ORFs including variants of previously annotated ORFs. Our 

predictions were supported by matching mass spectrometry (MS) proteomics data, 

sequence composition and conservation analysis. REPARATION is unique in that it 

makes use of experimental translation evidence to perform de novo ORF delineation in 

bacterial genomes irrespective of the sequence context of the reading frame. 
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INTRODUCTION: 

In recent years, the advent of next generation sequencing has led to an 

exponential growth of sequenced prokaryotic genomes. As curation based methods 

cannot keep pace with the increase in the number of available bacterial genomes, 

researchers have reverted to the use of computational methods for prokaryotic genome 

annotation (Richardson & Watson 2013; Land et al. 2015). However, advanced genome 

annotation should entail more than simply relying on automatic gene predictions or 

transferred genome annotation, as these often introduce and propagate inconsistencies 

(Richardson & Watson 2013). Moreover, the dependence on sequence contexts of the 

open reading frame (ORF) by automatic methods often introduces a bias in gene 

prediction, as studies have shown that translation can occur irrespective of the sequence 

composition of the ORF (Michel et al. 2012; Fields et al. 2015). Further,  gene prediction 

methods that depend solely on the genomic template often lack the capabilities to 

capture the true complexity of the translation landscape (Fields et al. 2015), overall 

stressing the need for non in silico based gene prediction approaches. 

Ribosome profiling (Ingolia et al. 2009) (Ribo-seq) has revolutionized the study 

of protein synthesis in a wide variety of prokaryotic and eukaryotic species. Ribo-seq 

provides a global measurement of translation in vivo by capturing translating ribosomes 

along an mRNA. More specifically, ribosome protected mRNA footprint (RPFs) are 

extracted and converted into a deep sequencing cDNA library. When aligned to a 

reference genome, these RPFs provide a genome-wide snapshot of the positions of 

translating ribosomes along the mRNA at the time of the experiment (Ingolia et al. 

2009). This genome-wide positional information of translating ribosomes allows for the 

identification of translated regions. With the advent of Ribo-seq, numerous 

computational methods have been developed to detect putatively translated regions in 

eukaryotes, all taking advantages of inherent Ribo-seq based metrics to identify 

translated ORFs. In the studies of Lee et al. (2012) and Crappé et al. (2014), a rule 

based peak detection algorithm was used to identify translation initiation sites, while 

Bazzini et al. (2014) and Calviello et al. (2015) take advantage of the triplet periodicity 

property of Ribo-seq data. Fields et al. (2015) and Chew et al. (2013) developed an 

ensemble classifier that aggregate multiple features to predict putative coding ORFs. 

No computational method has yet been reported to delineate ORFs in prokaryotic 

genomes based on Ribo-seq data. In this work, we aimed at developing an algorithm 
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that makes use of experimental evidence from Ribo-seq to perform de novo ORF 

delineations in prokaryotic genomes. 

Our algorithm, REPARATION (RibosomeE Profiling Assisted (Re-)AnnotaTION) 

trains an ensemble classifier to learn Ribo-seq patterns from a set of confident protein 

coding ORFs for a de novo delineation of ORFs in bacterial genomes. REPARATION 

deduces intrinsic characteristics from the data and thus can be applied to Ribo-seq 

experiments targeting elongating ribosomes. We evaluated the performance of 

REPARATION on three annotated bacterial species. REPARATION was able to identify 

putative coding ORFs corresponding to previously annotated protein coding and non-

protein coding regions, variants of annotated ORFs (i.e. in-frame truncations or 5’ 

extensions) and intergenic ORFs. We validated our findings using matching proteomics, 

sequence composition and phylogenetic conservation analyses. 

 

RESULTS: 

 

To assess the performance and utility of our REPARATION algorithm (figure 1A), 

besides two publically available bacterial Ribo-seq datasets from Escherichia coli K12 

str. MG1655 and Bacillus subtilis subsp. subtilis str. 168 (Li et al. 2014), we generated 

ribosome profiling data and matching RNA-seq data from a monosome and polysome 

enriched fraction (Heyer & Moore 2016) of Salmonella enterica serovar Typhimurium 

strain SL1344 (experimental details in supplementary methods). 

REPARATION starts by traversing the entire prokaryotic genome sequence to 

generate all possible ORFs that have an arbitrary length of at least 10 codons (30nt) 

and initiate with either an ATG, GTG or TTG codon (the most frequently used start 

codons in a variety of prokaryotic species (Panicker et al. 2015)) until the next in-frame 

stop codon. REPARATION applies a random forest classifier trained on features derived 

from the meta-gene profile of known protein coding ORFs (figure 1B). These features 

encompass 1) the start region (first 45nt of the ORF) read density, 2) the stop region 

(last 21nt) read density (Fields et al. 2015) 3) ORF RPF coverage refers to the proportion 

of nucleotides within the ORF covered by positional RPF reads (Chew et al. 2013), 4) 

start region RPF coverage, i.e. the proportion of nucleotides within the start region 

covered by RPF reads, 5) the ratio of the average RPF read count within the start region 

divided by the average RPF read count within the rest of the ORF and 6) ribosome 
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binding site (RBS) energy (see supplementary methods). The classifier’s training set 

consisted of positive examples generated using a comparative genomic approach. First 

we used prodigal (Hyatt et al. 2010) to generate a set of ORFs, which were subsequently 

BLAST searched against a curated set of bacterial protein sequences from UniProtKB-

SwissProt, ORFs with e-values less than 10-5 and a minimum identity score of 75% were 

retained. Viewing their infrequent occurrence as translation starts (<0.01%) in the 

annotations of the interrogated species, the negative set consisted of all CTG-starting 

ORFs (supplementary table T1). The algorithm then estimates a minimum read density 

and ORF RPF coverage to discard spurious ORFs by exploiting the sigmoid relationship 

between these features (figure 1C). Using a four parameter logistic regression curve on 

the positive set, REPARATION estimates the lower bend point of the fitted curve 

representing a two dimensional threshold (read density and ORF RPF coverage). All 

ORFs with read density and ORF RPF coverage below these thresholds (supplementary 

table T2) were discarded, including those in the training set. When trained on these 

sets, the random forest classifier achieved on average an 89, 90 and 92% 10-fold cross 

validation accuracy with area under the curve values of 0.93, 0.93 and 0.95 for the 

Salmonella, E. coli and Bacillus data sets respectively (supplementary figure S1 A). 

Of the three species evaluated, REPARATION mapped putative coding ORFs 

corresponding to regions annotated as protein coding, as well as to non-coding and 

intergenic. 
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Figure 1: REPARATION pipeline for de novo ORF delineation in prokaryotes. (A) 

REPARATION workflow diagram. The entire prokaryotic genome is traversed and all 

possible NTG-starting ORFs are generated. Next, ORF-specific positional Ribo-seq signal 

information is calculated based on the metagenic gene profile (B). To discard spurious 

ORFs, the minimum log2 RPKM and ORF RPF coverage thresholds are estimated using 

a four parameter logistic S-curve (C). (B) Metagenic profile of salmonella data indicating 

read accumulation at the start and stop of ORFs (stitched together in the middle for 

visualization purposes). (C) S-curve with fitted four parameters logistic curve (red) and 

indication of predicted ORFs with support from N-terminal proteomics data (green) in 

the case of E. coli. 

 

REPARATION-predicted ORFs predominantly match to, or overlap with 

annotated ORFs and follow the reference model of start codon usage. 

 Viewing the previously reported similarities in the translation properties of 

monosomes and polysomes (Heyer & Moore (2016)) and the high correlation observed 

between the two samples (supplementary figure S1 B), we considered the Salmonella 

monosome and polysome samples as replicate samples for the purpose of translated 

ORF delineation.  
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For Salmonella, REPARATION predicted a total of 3868 and 3648 putative ORFs 

in the monosome and polysome sample respectively. Of these, 3267 (90%) ORFs found 

common in both datasets were considered as the high confident ORF set (supplementary 

file F1).  For E. coli, a high confident set of 3149 (90%) was selected based on the 3518 

and 3504 predicted ORFs in replicate samples 1 and 2 respectively (supplementary file 

F2). Thirdly, in the Bacillus sample, 3239 putative coding ORFs were predicted 

(supplementary file F3).  

 From the high confident set of predicted ORFs in Salmonella and E. coli, 83% 

(2696) and 89% (2806) correspond to previously annotated ORFs (respectively), while 

84% (2734) of the Bacillus predicted ORFs corresponds to previously annotated ORFs 

(figure 2). 15, 8 and 14% of predicted ORFs in the Salmonella, E. coli and Bacillus 

samples (respectively), correspond to variants of previously annotated ORFs, potentially 

giving rise to N-terminally truncated or extended protein variants referred to as N-

terminal proteoforms (Gawron et al. 2014). Consequently, in all three species, ≤ 3% 

belong to novel putative coding regions.  

 On average the truncations were 26, 25 and 19 codons downstream of the 

annotated starts while the extensions where 18, 18 and 15 codons upstream for 

Salmonella, E. coli and Bacillus (respectively). Of note, 14, 21 and 18 of the predicted 

variants are only 1 codon off from the annotated starts in Salmonella, E. coli and Bacillus 

respectively (supplementary table T3). 
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Figure 2: Proportion of REPARATION predicted ORFs per ORF category for the high 

confident ORF sets in Salmonella and E. coli as well as for the Bacillus predictions.  

 

Overall, 69%, 74% and 76% (including the variants) of all ENSEMBL annotated protein 

coding ORFs in Salmonella, E. coli and Bacillus (respectively) were predicted by 

REPARATION. 

 In our evaluation of REPARATION, we allow for the three commonly used start 

codons in prokaryotes ATG, GTG and TTG as translation initiation triplet. Of note 

however, REPARATION was designed without any bias in start codon selection for ORF 

prediction. The order of start codon usage over all predicted ORFs are consistent with 

the standard model for translation initiation in the ENSEMBL annotation of the 

corresponding species i.e. in case of Salmonella and E. coli, a preference of ATG over 

GTG and TTG and ATG>TTG>GTG in Bacillus (table 1) could be observed. 
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 ENSEMBL 

Annotation 

All 

predictions  

Matching 

Annotated 

Extensions Truncations Novel 

Salmonella        

ATG 4093 (88.0%) 2809 (86%) 2460 (91.2%) 168 (55%) 130(65%) 51 (80%) 

GTG 429 (9.20%) 318 (10%) 199 (7.4%) 71 (23%) 44(22%) 4 (6%) 

TTG 126 (2.70%) 140 (4%) 37 (1.4%) 69 (22%) 25(13%) 9 (14%) 

E. coli       

ATG 3747 (90.1%) 2736 (87%) 2549 (91%) 66 (43%) 66 (63%) 55 (65%) 

GTG 386 (9.2%) 273 (19%) 204 (7%) 33 (22%) 19(18%) 17 (20%) 

TTG 71 (2.0%) 139 (4%) 53 (2%) 54 (35%) 20 (19%) 12 (14%) 

Bacillus       

ATG 3253(77.7%) 2409 (74%) 2174 (80%) 80 (41%) 119 (49%) 36(48%) 

GTG 386 (9.2%) 352 (11%) 234 (9%) 59 (30%) 50 (20%) 9 (20%) 

TTG 529 (12.6%) 478 (15%) 326 (11%) 58 (29%) 75 (31%) 19(32%) 

 

Table 1: Start codon usage distribution of the predicted putative coding ORFs. 

The predicted ORFs in all three species follow the starts codon usage distributions of 

the corresponding species annotation. In case of Salmonella and E. coli, only ORFs from 

the high confident set were considered. 

 

Interestingly however, we observe that novel and variant ORFs are enriched for near-

cognate start codons when compared to annotated ORFs. In case of the variants, this 

bias is most likely due to the preference of automatic gene prediction methods to select  

a neighbouring ATG as the start codon (Salzberg et al. 1998; Hyatt et al. 2010).  

 

 Novel ORFs are evolutionary conserved and display similar amino acid 

sequence patterns as compared to annotated ORFs. 

To gain insight into the novel predictions, we analyzed and compared their 

evolutionary conservation pattern to that of predicted annotations. Novel and extended 

ORFs exhibit similar conservation patterns to annotated ORFs, with higher nucleotide 
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conservation from the start codon onwards and within the upstream ribosomal binding 

site or Shine Dalgarno region positioned -15 to -5nt upstream of the predicted start 

(figure 3), a region aiding in translation initiation by its base pairing with the 3'-end of 

rRNA (Shultzaberger et al. 2001; Suzek et al. 2001). The higher conservation and triplet 

periodicity observed upstream of the truncations is likely due to the fact that in some 

cases, multiple forms of the gene (i.e. N-terminal proteoforms) maybe (co-)expressed 

(supplementary table T4). A manual inspection of the alignments indeed indicates that 

different forms of the genes are expressed across different species. Of the 66 

truncations used in the Salmonella conservation analysis, 45% shows evidence of the 

existence of multiple forms across different bacterial species, while in case of E. coli and 

Bacillus these percentages were 40 and 28 from 26 and 25 truncations respectively. 

 

 

Figure 3: Conservation pattern of REPARATION predicted ORFs. Nucleotide 

conservation scores are calculated using the Jukes cantor conservation matrix for 

nucleotides. Site conservation scores are calculated using the rate4site algorithm and 
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displayed for a +/- 25nt window around the predicted start site. The site conservation 

score was calculated only for ORFs with at least 5 orthologous sequences from a 

collection of randomly selected bacteria protein sequences from species within the same 

family as Salmonella/E. coli and Bacillus and outside the family.  833 annotated, 203 

extensions, 66 truncations and 11 novel ORFs had at least 5 orthologous sequences in 

case of Salmonella, while the E. coli profile consisted of 2359 annotated ORFs, 49 

extensions, 26 truncations and 19 novel ORFs were considered. In the case of Bacillus 

there are 1886 annotated, 23 extensions, 25 truncations and 2 novel ORFs 

  

Of the 64 novel ORFs predicted in Salmonella, 61% (39) had at least one reported 

orthologous sequence (supplementary file F1). While 60 (71%) and 30 (47%) in E. coli 

and Bacillus (respectively) had at least one orthologous sequence (supplementary files 

F2 & F3). 

To further confirm that the newly identified ORFs do not represent random noise, 

we compared the amino acid composition of predicted annotations to that of novel 

putative coding ORFs and to a set of randomly generated amino acid sequences of equal 

lengths to predicted ORFs matching annotations. In all three species we observe a very 

high correlation (≥0.90) between the amino acid compositions of novel and annotated 

ORFs (supplementary figure S2). While a generally poor correlation (≤0.19) was 

observed when comparing novel or annotated ORFs against the random set of ORFs. 

Since evolutionarily conserved significant biases in protein N- and C-termini were 

previously reported for pro- as well as eukaryotes, often with pronounced biases at the 

second amino acid positions (van Damme et al. 2011; Palenchar 2008), we next 

investigated whether the amino acid usage frequency at position two of the novel and 

re-annotated ORFs exhibited a similar pattern to that of annotated ORFs.  Compared to 

amino acid frequency in the species proteome, clearly the overall distribution is similar 

for the two ORF categories. More specifically, a significant enrichment of Lys (about 3-

fold) at the second amino acid position was observed in case of all three species 

analysed. For Salmonella and E. coli, Ser and Thr was equally enriched while in Bacillus 

Asn was slightly more frequent in the second position while other amino acids are clearly 

underrepresented (i.e. Trp and Tyr), all observations in line with previous N-terminal 

biases observed (Palenchar 2008) (supplementary figure S3). 
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Proteomics assisted validation of REPARATION predicted ORFs. 

To validate our predicted ORFs we generated N-terminal and shotgun proteomics 

data from matching E. coli and Salmonella samples respectively. While N-terminomics 

enables the isolation of N-terminal peptides, making it appropriate for the validation of 

translation initiation events, shotgun proteomics provides a more global assessment of 

the expressed proteome. Three different proteome digestions were performed in the 

shotgun experiment to increase proteome coverage. The shotgun and N-terminal 

proteomics data were searched against a six frame translation database of the E. coli 

and Salmonella genomes. In both experiments, and based on identified peptides, 

longest non-redundant peptide sequences were aggregated to map onto the 

REPARATION predictions. 

In case of Salmonella, 10751 unique peptides belonging to 2235 ORFs in the six 

frame translation database were identified by means of shotgun proteomics. Of these, 

91% (9723) correspond to 1762 REPARATION predicted ORFs (figure 4A), the 9% 

missed by REPARATION mostly represent lowly expressed ORFs (Supplementary figure 

S4 A). While the vast majority of shotgun peptides support previously annotated regions 

(figure 4B), we additionally identified peptides in support of novel ORFs and ORF 

reannotations (i.e. N-terminal protein extensions). More specifically, supportive 

evidence was found in the case of 6 novel ORFs and 19 extensions having at least one 

identified peptide with a start position upstream of the annotated start (supplementary 

file F1). 

For E. coli, N-terminal proteomics identified a total of 785 blocked N-terminal 

peptides that are compliant with the rules of initiator methionine processing (see 

supplementary methods) belonging to 781 ORFs. Assuming that none of these ORFs 

have multiple initiation sites we choose the most upstream N-terminal peptide and 

overlapped these with the REPARATION predictions. Of the 781 ORFs with peptide 

support 720 pass the S-curve estimated minimum thresholds. 86% (621) of these 

matched REPARATION predicted N-termini (figure 4C & D), while in 6% of the cases, a 

different translation start was predicted by REPARATION 11 downstream (with an 

average distance of 10 codons) and 36 upstream (with an average distance of 86 

codons) from the N-termini peptides. The remaining 8%, not predicted by REPARATION, 

mainly represent lowly expressed ORFs (supplementary figure S4 B). The majority of 
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N-terminal supported ORFs matched annotations, while 17 correspond to re-annotations 

or novel ORFs (8 extensions, 7 truncations and 2 novel). We also assessed the predicted 

ORFs against the 917 E. coli K-12 Ecogenes verified protein coding sequences, a set 

consisting of proteins sequences with their mature N-terminal residues sequenced using 

Edman sequencing (Krug et al. 2013). Of these, 888 pass the estimated minimum 

thresholds of which 89% (788) matched REPARATION predicted ORFs (figure 4E). 

REPARATION predicted a different start sites for 40 of Ecogene verified ORFs, 34 

upstream (average distance of 24 codons) and 6 downstream (average distance of 8 

codons).  

 

Figure 4: MS validation of REPARATION pipeline. A) Overlap between the protein 

sequences identified from shotgun proteomics and the REPARATION predicted ORFs in 

Salmonella. B) The number of ORFs per category with at least one identified peptide for 

the high confident set of Salmonella predicted ORFs. C) Overlap between ORFs with N-

terminal peptide support and REPARATION predicted ORFs in E. coli. D) Number of 

predicted ORFs for each category with N-terminal peptide support in the E. coli high 

confident set.  E) Overlap between REPARATION predicted ORFs and the Ecogene 

verified E. coli ORFs. 
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REPARATION in the aid of genome re-annotation. 

 In case of the three species-specific translatomes analyzed, REPARATION 

uncovered novel putative coding genes in addition to extensions and truncations of 

previously annotated genes with supporting proteomics and conservation evidence. 

More specifically, in the case of the gene adhP (Salmonella), REPARATION predicts that 

translation initiates 27 codons upstream of the annotated start, this ORF extension is 

supported by an N-terminal peptide identification (figure 5A), the corresponding 

sequence of which is conserved (supplementary figure S5 A). N-terminal peptide 

support, next to the clear lack of Ribo-seq reads in the region between the novel and 

annotated start (figure 5B) of gene yidR (E. coli), also points to translation initiating 11 

codons downstream of the annotation start as predicted by REPARATION. A novel 

putative coding gene was found matching the intergenic region Chromosome:2819729-

2820319 (Salmonella) with Ribo-seq and RNA-seq signals complemented by two unique 

peptide identifications (figure 5C).  

Of note, there are currently 72, 182 and 70 annotated pseudogenes in the current 

ENSEMBL annotations of Salmonella, E. coli and Bacillus (respectively). REPARATION 

predicted conserved putative coding ORFs within 12, 34 and 7 pseudogene regions 

leading to 13, 45 and 7 predicted ORFs for Salmonella, E. coli and Bacillus 

(respectively). Since pseudogenes in bacteria are typically modified/removed rapidly, 

coupled with the fact that only uniquely mapped reads were allowed, the observed 

conservation with the existence of functional orthologues points to the genuine coding 

potential of these loci and thus functional importance of their translation product 

(Goodhead & Darby 2015; Lerat & Ochman 2005). One representative example is the 

identified putative coding ORF in the sugR pseudogene (Salmonella) which is supported 

by 3 unique peptide identifications (figure 5D). 
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Figure 5: REPARATION assisted reannotation of bacterial genomes. A) 

REPARATION predicted 5’ extension of the adhP gene (Salmonella) with supportive 

peptide evidence mapping upstream and in-frame with the annotated ORF. B) Gene 

yidR (E. coli) predicted as a 5’ truncation with N-terminal peptide support and Ribo-seq 

reads starting downstream of the annotated start. C) Novel putative coding intergenic 

ORF in the region Chromosome:2819729-2820319 (Salmonella) with supportive 

peptide evidence. D) Evidence of translation within pseudogene sugR (Salmonella), with 

two matching peptide identification.  E) Putative co-expression of a 3’ truncated ORF as 
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well as its 3’ extended counterpart due to a frameshifting event occurring during 

translation of the fdoG gene (E. coli). A magnification of the region beyond the stop 

codon displays a continuous, though ~100-fold lower pattern of Ribo-seq reads 

indicative of stop codon read-through.  

Interestingly, in case of fdoG (E. coli), REPARATION predicted two 

juxtapositioned ORFs, both contained within a previously annotated ORF with a stop 

codon read through event (figure 5E). In E. coli three other such read through events 

have been reported for genes fdnG, fdhF and prfB. The Ribo-seq read density within the 

C-terminal truncated ORF is about 100 fold higher as compared to the 5’ truncated ORF 

while only a 3-fold difference in RNA-seq density could be observed. The RNA-seq 

evidence supports the presence of the stop codon TGA at the end of the C-terminal 

truncated ORF. The observed continuous Ribo-seq signal indicative of translation 

beyond the sequencing-verified stop codon most likely points to a stop codon read 

through event (Feng et al. 2012). The so-called 3’ and 5’ truncations of the current 

annotation predicted by REPARATION are likely due to the algorithm not allowing for 

stop codon read through. A similar trend was observed in case of its Salmonella 

orthologue, with the Ribo-seq signal and RNA-seq 30- and 2-folds (respectively) higher 

for the C-terminal truncated ORF than the longer N-terminal truncated ORF 

(supplementary figure S5 B).  

 

REPARATION in the aid of small ORF annotation 

Small ORFs have historically been ignored in most in silico predictions because of 

the assumption that they can easily occur by chance due to their small size (Hyatt et 

al. 2010). As 71 codons is the average length when considering the length of the 5% 

shortest annotated ORFs in the 3 species, we here arbitrarily define a sORF as a 

translation product with a length of ≤71 codons. In Salmonella, REPARATION predicted 

95 putative coding sORFs. Of these, 24 (25%) represent novel ORFs including 1 

extension, 12 truncations and 62% (59) matched annotations. Supportive proteomics 

data was found for 28 predicted sORFs. While in E. coli and Bacillus the algorithm 

predicted 112 (90 (80%) matching annotations, 1 extension, 5 truncations and 16 

novel) and 223 (154 (69%) matching annotations, 6 extensions, 15 truncations and 48 

novel) sORFs. An interesting example of a possible re-annotation of gene yfaD (E. coli) 
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is the REPARATION predicted 56 codon sORF representing a truncated form (figure 6A). 

In line with transcriptional data pointing to transcription of an mRNA not encompassing 

the annotated ORF, Ribo-seq indicates expression of a smaller ORF of which the start 

of the gene is located 243 codons downstream of the annotated start. Other 

representative examples are the intergenic 47 codons long sORF 

Chromosome:2470500-2470643 (E. coli) (figure 6B), the 30 codon long sORF located 

on the reverse strand of the fre gene (Salmonella) (figure 6C) and a 57 codon long 

intergenic Bacillus sORF that overlaps with the CDS of the sORF-encoding hfq gene 

(figure 6D).  

 

Figure 6: Novel sORFs predicted by REPARATION.  Ribo-seq and RNA-seq profiles 

indicate expression of A) a truncated form of the annotated yfaD (E. coli) gene B) a 47 

codons sORF matching the region Chromosome:2470500-2470643 (E. coli.)   C) a sORF 

encoded on the reverse strand encoding the fre gene (Salmonella). D) a sORF 
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Chromosome:1867485-1867655 (Bacillus) that partially overlaps the annotated fhq 

sORF (Bacillus). The Ribo-seq profiles indicate translation initiation in another frame.   

 

 

DISCUSSION 

Experimental signals from ribosome profiling exhibit patterns across protein coding 

ORFs which can be exploited to accurately delineate translated ORFs. Although Ribo-

seq is not completely standardized (Diament & Tuller 2016) and certain experimental 

procedures such as treatments (e.g. no treatment versus antibiotic treatment) tend to 

have a noticeable influence on the translation patterns observed (Calviello et al. 2015), 

we here developed an algorithm that enables a de novo delineation of translated ORFs 

in bacterial genomes. Our algorithm, delineates putative protein coding ORFs in 

bacterial genomes using experimental information deduced from Ribo-seq, aiming to 

minimize biases inherent to in silico prediction methods.  

We applied REPARATION on three annotated bacterial species to illustrate its ability 

to predict putative coding regions. Multiple lines of evidence, including proteomics data, 

evolutionary conservation analysis and sequence composition suggest that the 

REPARATION-predicted ORFs represent bona fide translation events. As expected, the 

majority of predicted ORFs agreed with previous annotations, but additionally we were 

able to detect a multitude of ORF updates next to novel translated ORFs mainly within 

intergenic and pseudogene regions. While we clearly observed a shift towards near-

cognate versus cognate start selection for the novel predictions, we nonetheless 

observe that the order of start codon usage follows the standard model in the respective 

species. Perhaps unsurprisingly viewing the difficulty to predict short ORF using classical 

gene predictions, the novel ORFs predicted by REPARATION are predominantly shorter 

than those previously annotated. Our predictions also point to possible errors in the 

current start site annotation of some genes, resulting in the identification of N-terminal 

truncations and extensions. The predicted extensions exhibit a similar conservation 

pattern to annotated ORFs while a higher conservation and triplet periodicity upstream 

of the truncated predictions (figure 3) is likely due to the expression of multiple 

proteoforms across species. The identification of multiple TIS-indicative N-termini in our 

E. coli N-terminomics dataset point to the existence of multiple translation initiation 

sites in at least 10 genes (supplementary table T4), likely an underrepresentation due 
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to the low steady-state levels of N-terminally formylated N-termini. The former 

observation is in line with the recently revealed and until then highly underestimated 

occurrence of alternative translation events in eukaryotes (Ingolia et al. 2011; Van 

Damme et al. 2014). It is noteworthy that we identified 11 genes with multiple TIS-

evidence from the N-terminomics data (supplementary table T4 and figure S4 C), in 

case of REPARATION however, only a single ORF is selected per ORF family. 

A substantial portion of the novel ORFs, with at least one identified orthologous gene, 

overlaps with known pseudogene loci. By virtue of the fact that pseudogenes in bacteria 

tend to be (sub)genus-specific and are rarely shared even among closely related species 

(Goodhead & Darby 2015; Lerat & Ochman 2005), it is likely that (part of) these genes 

have retained their protein coding potential, a finding that is further corroborated by 

proteomics data. The relatively fewer peptide identifications corresponding to the 

translation products of novel ORFs may in part be due to the difficulty of identifying 

these by MS, mainly because of their predominantly shorter nature and thus likely lower 

number of peptides (Fields et al. 2015). An in silico analysis of the identifiable tryptic 

peptide coverage shows that on average 85% of the annotated protein sequences are 

covered by identifiable tryptic peptides while on average only 69% of the novel ORFs 

are covered by identifiable tryptic peptides. Furthermore, bacterial translation products 

of sORFs have previously been shown to be more hydrophobic in nature and therefore 

extraction biases might also (in part) contribute to their underrepresentation in our 

proteomics datasets (Hemm et al. 2008). 

Historically sORFs have been neglected both in eukaryotes as well as prokaryotes. 

However, recently renewed interest has been directed toward the identification and 

characterization of sORFs (Andrews & Rothnagel 2014; Bazzini et al. 2014; Olexiouk et 

al. 2016). Small proteins represent a particularly difficult problem because they often 

yield weak statistics when performing computational analysis, making it difficult to 

discriminate protein coding from non-protein coding small ORFs (Samayoa et al. 2011; 

Pauli et al. 2015). Exemplified by the identification of tens of sORFs (with supportive 

metadata), REPARATION’s utilization of Ribo-seq signal pattern at least in part alleviates 

the pitfalls of traditional bacterial gene prediction algorithms concerning the 

identification of sORFs. 
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Based on matching N-terminal proteomics evidence and the sequenced N-terminals 

from Ecogene, REPARATION accurately predicts 86 and 89% of the ORFs with 

experimental evidence. Overall, the high correlative second amino acid frequency 

patterns observed when comparing annotated versus re-annotated/new ORFs ORFs 

provide further proof of the accuracy and resolution of start codon selection in case of 

REPARATION predicted ORFs. Nonetheless, start site selection by REPARATION resulted 

in a loss of 6% of the N-terminal supported gene starts which exceeded the S-curve 

thresholds. While the existence of multiple N-terminal proteoforms in bacteria in 

contrast to the single ORF selection by REPARATION is likely the main explanatory 

reason for this inconsistency. The discrepancy between predicted and N-terminally 

supported start, might especially in the case of short truncations also be contributed (in 

part) by the lack of accuracy of start codon selection. REPARATION could potentially 

take advantage of improved measures or features to increase the prediction power of 

the classifier. At present REPARATION is the first attempt to perform a de novo putative 

ORF delineation in prokaryotic genomes that relies on Ribo-seq data. With automated 

bacterial gene prediction algorithms estimated to have false prediction rate of up to 

30% (Angelova et al. 2010), machine learning algorithms that learn properties from 

Ribo-seq experiments such as REPARARTION pave the way for a more reliable (re-

)annotation of prokaryotic genomes. 

 

SOFTWARE 

REPARATION software is available at https://github.com/Biobix/REPARATION. 

 

ACCESSION NUMBERS 

Ribo-seq and RNA-seq sequencing data reported in this paper have been deposited in 

NCBI’s Gene Expression Omnibus with the accession number GSE91066. 

All MS proteomics data and search results have been deposited to the ProteomeXchange 

Consortium via the PRIDE (Vizcaino et al. 2016) partner repository with the dataset 

identifier PXD005844 for the Salmonella typhimurium SL1344 datasets and PXD005901 

for the E. coli K12 str. MG1655 dataset. Reviewers can access the Salmonella datasets 
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by using ‘reviewer61164@ebi.ac.uk’ as username and ‘Zg0VLXnS’ as password while 

the E. coli dataset can be accessed using ‘reviewer23743@ebi.ac.uk’ as username and 

‘cn5cG4jW’ as password. 
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SUPPLEMENTARY METHODS 
 

 
Experimental Procedures 

 
Shotgun proteome analysis – Salmonella 

Overnight stationary cultures of wild type S. Typhimurium (Salmonella enterica 

serovar Typhimurium - strain SL1344) grown in LB media at 37 °C with agitation 

(200 rpm) were diluted at 1:200 in LB and grown until they reached and OD600 

of 0.5 (i.e., logarithmic (Log) phase grown cells). Bacterial cells were collected 

by centrifugation (6000 × g, 5 min) at 4 °C, flash frozen in liquid nitrogen and 

cryogenically pulverized using a liquid nitrogen cooled pestle and mortar. The 

frozen pellet of a 50 ml culture was re-suspended and thawed in 1 ml ice-cold 

lysis buffer (50 mm NH4HCO3 (pH 7.9) and subjected to mechanical disruption 

by 3 repetitive freeze-thaw and sonication cycles (i.e. 2 minutes of sonication 

on ice for 20-s bursts at output level 4 with a 40% duty cycle (Branson Sonifier 

250; Ultrasonic Convertor)). The lysate was cleared by centrifugation for 15 min 

at 16,000 × g and the protein concentration measured using the DC Protein 

Assay Kit from Bio-Rad (Munich, Germany) according to the manufacturer's 

instructions.  For all proteome analyses performed, 1 mg of protein material 

(corresponding to about 300 µl of lysate) was subjected to shotgun proteome 

analysis as described previously (Koch et al. 2014). More specifically, 3 different 

proteome digestions were performed at 37°C and mixing at 550 rpm using mass 

spectrometry grade trypsin (enzyme/substrate of 1/100, w/w; Promega, 

Madison, United States), chymotrypsin (1/60, w/w; Promega, Madison, United 

States) or endoproteinase Glu-C (1/75, w/w; Thermo Fisher Scientific, Bremen, 

Germany). A final set of 24 samples per proteome digest was vacuum dried, re-

dissolved in 20 µl of 10 mM tris(2-carboxyethyl) phosphine (TCEP) in 2% 

acetonitrile and analysed by LC-MS/MS. 

 

N-terminal proteomics – E.coli 
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Overnight stationary cultures of E. coli tolC CAG12148 cells ordered at the E. 

Coli Genetic Stock Collection (CGSC7437; F-, λ-, tolC210::Tn10, rph-1;  

http://cgsc.biology.yale.edu/) (Singer et al. 1989) were grown in LB media at 

37 °C with agitation (200 rpm) and diluted into 100 ml fresh medium until a 

OD600 of 0.02 and incubated. When the OD600 reached 0.55, 8 µg/ml actinonin 

(Sigma-Aldrich) was added. After 2 hours of cultivation (OD600 1.1), cells were 

harvested and collected by centrifugation (3300 × g, 5 min) at 4 °C, flash frozen 

in liquid nitrogen and cryogenically pulverized using a liquid nitrogen cooled 

pestle and mortar. The frozen pellet of a 50 ml culture was re-suspended and 

thawed in 1 ml ice-cold lysis buffer (50 mm NH4HCO3 (pH 7.9) and subjected to 

mechanical disruption by 3 repetitive freeze-thaw and sonication cycles as 

described above. The lysate was cleared by centrifugation for 15 min at 16,000 

× g and the protein concentration measured using the DC Protein Assay Kit from 

Bio-Rad according to the manufacturer's instructions. 4 mg of protein material 

(corresponding to about 1 ml of lysate) was digested overnight at 37°C and 550 

rpm with sequencing-graded modified trypsin (Promega, Madison, WI, USA; 

enzyme/substrate, 1/200 (w/w)). The digested and modified peptides were 

subjected to a modified version of N-terminal COFRADIC (Staes et al. 2008) as 

will be described elsewhere. A final set of 90 samples were vacuum dried, re-

dissolved in 20 µl of 10 mM tris(2-carboxyethyl) phosphine (TCEP) in 2% 

acetonitrile and analysed by LC-MS/MS. 

 

LC-MS/MS analysis  

The Salmonella shotgun samples were separated by nano-LC and analyzed with 

a Q Exactive instrument (Thermo Scientific) operating in MS/MS mode as 

previously described (Stes et al. 2014). In case of the E. coli N-terminal 

proteomics samples, LC-MS/MS analysis was performed using an Ultimate 3000 

RSLC nano HPLC (Dionex, Amsterdam, the Netherlands) in-line connected to an 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2017. ; https://doi.org/10.1101/113530doi: bioRxiv preprint 

http://cgsc.biology.yale.edu/
https://doi.org/10.1101/113530


 

24 

LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Bremen, 

Germany) (Gawron et al. 2016). 

The generated MS/MS peak lists were searched with Mascot using the Mascot 

Daemon interface (version 2.5.1, Matrix Science). Searches were performed 

using 6-FT database of S. typhimurium (Salmonella enterica serovar 

Typhimurium - strain SL1344) genome or E. coli (K-12 strain MG1655), in each 

case combined with the Ensembl protein sequence database (assembly 

AMS21085v2 version 86.1 in the case of Salmonella and assembly 

ASM584v2version 87.1 for E. coli), which resulting to a total of 139408 and 

120714 Salmonella and E. coli entries respectively, after removal of redundant 

sequences. The 6-FT databases were generated by traversing the entire genome 

across the six reading frames and searching for all NTG (N=A,T,C,G) start codons 

and extending each to the nearest in frame stop codon (TAA,TGA,TAG), with 

ORFs less than 30nt discarded. The Mascot search parameters were set as 

follows for the Salmonella samples; methionine oxidation to methionine-

sulfoxide was set as fixed modifications. Variable modifications were formylation, 

acetylation (both at peptide level) and pyroglutamate formation of N-terminal 

glutamine. Mass tolerance was set to 10 ppm on the precursor ion (with Mascot’s 

C13 option set to 1) and to 20 mmu on fragment ions. Peptide charge was set 

to 1+, 2+, 3+ and instrument setting was put to ESI-QUAD. Enzyme settings 

were set to ‘no enzyme’ in the case of the Chymo and Glu-C digested proteome 

samples (Tanco et al. 2013) and endoproteinase Trypsin/P (Trypsin specificity 

with Arg/Lys-Pro cleavage allowed) was set as enzyme in the case of the tryptic 

samples, only in case of the latter allowing for one missed cleavage. 

For the E. coli N-terminal proteomics samples: Heavy acetylation at lysine side-

chains (Acetyl:2H(3)C13(2) (K)) and carbamidomethylation of cysteine a were 

set as fixed modifications. Variable modifications were methionine oxidation to 

methionine-sulfoxide, formylation, acetylation and heavy acetylation of N-

termini (Acetyl:2H(3)C13(2) (N-term)) all at peptide level) and pyroglutamate 

formation of N-terminal glutamine. Mass tolerance was set to 10 ppm on the 
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precursor ion (with Mascot’s C13 option set to 1) and to 0.5 Da on fragment ions. 

Peptide charge was set to 1+, 2+, 3+ and instrument setting was put to ESI-

TRAP.  Endoproteinase semi-Arg-C/P (Arg-C specificity with arginine-proline 

cleavage allowed) was be selected as enzyme allowing for 1 missed cleavages. 

Only peptides that were ranked one, have a minimum amino acid length of 

seven, scored above the threshold score, set at 95% confidence, and belonged 

to the category of peptides compliant with the rules of initiator methionine (iMet) 

processing (Martinez et al. 2006) were withheld (Supplementary File F2). More 

specifically, iMet processing was considered in the case of iMet-starting N-

termini followed by any of the following amino acids; Ala, Cys, Gly, Pro, Ser, 

Thr, Met or Val and only if the iMet was encoded by ATG or any of the following 

near-cognate start codons; GTG and TTG.We thus allow for ambiguous double 

initiation codon, where the N-terminal peptide could equally support either start 

codons. If an ORF was predicted to start at one of these positions, the position 

supporting that ORF was selected. 

 

Ribosome Profiling 

Overnight stationary cultures of wild type S. Typhimurium (Salmonella enterica 

serovar Thyphimurium - strain SL1344) grown in LB media at 37°C with agitation 

(200 rpm) were diluted at 1:200 in LB and grown until they reached and OD600 

of 0.5 (i.e., logarithmic (Log) phase grown cells). Bacterial cells were pre-treated 

for 5 min with chloramphenicol (Sigma Aldrich) at a final concentration of 100 

μg/ml before collection by centrifugation (6000 × g, 5 min) at 4°C. Collected 

cells were flash frozen in liquid nitrogen. The frozen pellet of a 50 ml culture was 

re-suspended and thawed in 1 ml ice-cold lysis buffer for polysome isolation (10 

mM MgCl2, 100 mM NH4Cl, 20 mM Tris.HCl pH 8.0, 20 U/ml of RNase-free DNase 

I (NEB 2U/µl), 1mM chloramphenicol (or 300µg/ml), 20 µl/ml lysozyme 

(50mg/ml in water) and 100u/ml SUPERase.In™ RNase Inhibitor (Thermo Fisher 

Scientific, Bremen, Germany)), vortexed and left on ice for 2 min with periodical 

agitation. Subsequently, the samples were subjected to mechanical disruption 

by two repetitive cycles of freeze-thawing in liquid nitrogen, added 5mM CaCl2, 
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30µl 10% DOC and 1 × complete and EDTA-free protease inhibitor cocktail 

(Roche, Basel, Switzerland) and left on ice for 5 min. Lysates were clarified by 

centrifugation at 16,000 x g for 10 min at 4°C. 

 

Preparation of ribosome profiling libraries: For the monosome 

sample, the supernatant was subjected to MNase (Roche diagnostics Belgium) 

digestion using 600 U MNase (about~ 1000 U per mg of protein). Digestion of 

polysomes proceeded for 1h at 25°C with gentle agitation at 400 rpm and the 

reaction was stopped by the addition of 10 mM EGTA. Next, monosomes were 

recovered by ultracentrifugation over a 1 M sucrose cushion in polysome 

isolation buffer without RNase-free DNase I and lysozyme, and with 2 mM DTT 

added using a TLA‐120.2 rotor for 4 hr at 75,000 rpm and 4°C.   

For the selective purification of monosomes from polysomes (polysome 

sample), the supernatant was resolved on 10-55% (w/v) sucrose gradients by 

centrifugation using an SW41 rotor at 35,000 rpm for 2.5 hr at 4°C. The 

sedimentation profiles were recorded at 260 nm and the gradient fractionated 

using a BioComp Gradient Master (BioComp) according to the manufacturer's 

instructions. Polysome-enriched fractions were pooled and subjected to MNase 

digestion and monosome recovery as described above. 

Ribosome-protected mRNA footprints with sizes ranging from 26-34 

nucleotides were selected and processed as described  previously (Ingolia et al. 

2012)with some minor adjustments as described in (Gawron et al. 2016). The 

resulting ribosome profiling cDNA libraries of the monosome and polysome 

sample were duplexed and sequenced on a NextSeq 500 instrument (Illumina) 

to yield 75‐bp single‐end reads. 

 

RNA-seq 

For monosome and polysome-enriched samples, part (1/10th) of the cleared 

lysate or pooled polysome-enriched fractions obtained using sucrose gradient 

centrifugation was taken for total RNA isolation, respectively making use of the 

TRIzol reagent (Invitrogen, Thermo Fisher Scientific Inc.) according to 

manufacturer’s instructions or making use of phenol/chloroform extraction after 
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the addition of SDS at a final concentration of 1% as described before (Ingolia 

et al. 2011). RNA yields were determined using a NanoDrop spectrophotometer 

(Wilmington, Delaware, USA) and RNA quality was assessed by Agilent 

Bioanalyzer RNA 600 Nano Kit running the assay class ‘Prokaryote Total RNA 

Nano’. Of note, in this case of Salmonella, rRNA transcripts carry intervening 

sequences that are excised during ribosome formation (Evguenieva-Hackenberg 

2005). As such, the 23S and 16S rRNA components elute in multiple peaks 

precluding reliable analysis of the current algorithms used by the BioAnalyzer 

platform to analyse RIN values to calculate RNA quality scores. Nonetheless, 

repeated isolations demonstrated reproducible profiles in line with previous 

reports (Bhagwat et al. 2013) and E. coli samples processed in parallel all 

showed RIN values above 9. Library construction including random 

fragmentation, cDNA synthesis and library generation were performed Library 

preparation and sequencing was performed at the VIB Nucleomics Core 

(www.nucleomics.be) using the TruSeq stranded total RNA sample preparation 

kit (Illumina, San Diego, California, USA) and including a Ribo-Zero (Illumina) 

depletion step as to remove ribosomal RNA from total RNA by the use of 

biotinylated Ribo-Zero oligos. Libraries were subjected to sequencing on a 

NextSeq 500 instrument (Illumina) to yield 75 bp single-end reads. 

 

 

Ribo-seq and RNA-seq data processing.   

The E. coli and Bacillus Ribo-seq and RNA-seq data can be downloaded from the 

GEO repository with accessions GSM1300279 (Li et al. 2014) and GSM872395 

(Li et al. 2012), respectively. In case of Salmonella, the Ribo-seq and RNA-seq 

datasets were generated in house.  

Adapter sequences were removed from the reads using fastx_clipper and reads 

aligning onto rRNA and tRNA sequences were discarded. The remaining reads 

were aligned to the genome of using bowtie with settings –v1 –m2 –k1 allowing 

only for uniquely mapped reads. Since improved results were obtained this way 
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(data not shown), ribosome occupancy positions were assigned to the 3’ end of 

the reads in case of E. coli and Bacillus while the 5’ ends were used for 

Salmonella.  Only reads of length between 22 and 40nt were considered in the 

analysis (Li et al. 2014). The RNA-seq data was stripped of the adapter 

sequences and subsequently aligned onto the appropriate genomes using bowtie 

(–v1 –m2 –k1). 

 

 

REPARATION. 

REPARATION performs de novo ORF delineation by training a random forest classifier 

to learn patterns from Ribo-seq data. A random forest model was chosen over other 

algorithms for training because of its robustness to outliers, low bias and optimal 

performance with few parameter tuning (Hastie & Tibshirani 2009). The REPARATION 

pipeline (figure 1A) starts by first traversing the entire genome and collect all ORFs 

starting with NTG (N = A, T, G) across all six reading frames (selection of start codon(s) 

is a user definable parameter). For each possible start codon, the algorithm searches 

for the first in frame downstream stop codon (TAA, TAG or TGA) that is at least 10 

codons apart (can be adjusted by the user). 

 

Training Sets. 

The set of positive examples is constructed by a comparative genomic approach. The 

algorithm uses Prodigal V2.6.3 (Hyatt et al. 2010) to generate an ORF set, this set is 

then BLAST searched against a database of curated bacterial protein sequences (e.g. 

UniprotKB-SwissProt). The BLAST search is performed using the UBLAST algorithm from 

the USEARCH package (Edgar 2010). ORFs that match at least one known protein 

coding sequence with a minimum e-value of 10-5 and a minimum identity of 75% are 

selected for the positive set. The negative set consist of ORFs starting with CTG viewing 

their infrequent occurrence as translation starts (<0.01%) in the annotations of the 

interrogated species (supplementary table T1) and at least as long as the minimum ORF 

length in the positive set. We then grouped all CTG ORFs sharing the same in frame 

stop codon into an “ORF family”. Per ORF family we select the longest ORF as a 

representative member of that “ORF family”. Of note, REPARATION allows the user to 
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provide a custom list of ORFs to be used as the positive sets in training the random 

forest classifier. 

 

Feature construction. 

To train the random forest classifier we constructed five features based on Ribo-seq 

signals of translated ORFs and complemented these with the ribosome binding energy 

measurements (Suzek et al. 2001) (see below). The meta gene profile shown in figure 

1B illustrates a Ribo-seq signal pattern reminiscent to patterns previously reported for 

protein coding transcripts in prokaryotes for Ribo-seq experiments that targets 

elongating ribosomes (Woolstenhulme et al. 2015). The profile exhibits read 

accumulation within the first 40-50nts downstream of the start and a slight increase 

just before the stop codon. The features used in the model are as follows: 

Start and stop region read density (RPKM). We defined a start region of an ORF by 

taking 3nt upstream (to account for any error in P-site assignment) and 45nt 

downstream of the ORF start position, while the stop region constitutes the last 21nt 

upstream of the stop position. Of note, for ORFs shorter than 63 nucleotides we used 

the first 70% and last 25% of the ORF length to model the start and stop regions of the 

ORF. The ORF RPF read count per nucleotide position is divided by the total RPF reads 

within the ORF to ensure that features are comparable across different ORFs. The start 

and stop region RPF read densities are subsequently calculated from the proportional 

reads. 

ORF coverage and start RPF coverage. We defined the ORF (start) RPF coverage as 

the proportion of nucleotide positions covered by RPF reads within a region of interest 

i.e within the entire ORF and the start region. RPF coverage is calculated from the 

positional read profile. 

Read accumulation proportion. This feature is based on the positional RPF reads, it 

measures the ratio of the RPF reads accumulated at the start region (first 45nt) relative 

to RPF reads within the rest of the ORF. It is defined by 

 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =  {

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑃𝐹 𝑐𝑜𝑢𝑛𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑂𝑅𝐹 𝑠𝑡𝑎𝑟𝑡 𝑟𝑒𝑔𝑖𝑜𝑛 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑃𝐹 𝑐𝑜𝑢𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑂𝑅𝐹
 

0,   𝑖𝑓 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑎𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑂𝑅𝐹 = 0
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We reasoned that since Ribo-seq reads tend to accumulate within the start region of a 

translated ORF relative to the rest of the ORF, correctly delineated ORFs will tend to 

have score greater than one. Spurious ORFs that overlap at the start or stop of 

translated ORFs will score lower as their non-overlapping regions would tend to have 

no reads, hence resulting to accumulation scores less than one.  

Ribosome binding site (RBS) energy. The interaction between Shine-Dalgarno (SD) 

sequence and its complementary sequence in the 16S rRNA (anti-SD), referred to as 

SD ribosome binding site (RBS) was proven to be very important in the recruitment of 

the ribosome for translation initiation in bacteria (Shultzaberger et al. 2001). As such, 

and to aid in the prediction of SD/anti-SD dependent translation events, the ribosome’s 

free binding energy or ribosome binding site (RBS) energy was included as in feature 

in the model. The RBS energy, representative of the probability that the ribosome will 

bind to a specific mRNA and thus proportional to the mRNA’s translation initiation rate, 

was calculated using the distance dependent probabilistic method and using the anti-

Shine Dalgarno (aSD) sequence GGAGG as described in Suzek et al. (2001).The 

inclusion of the  of the RBS energy features in the prediction model as well as the aSD 

sequence are user defined parameters to allow for bacterial species where non aSD/SD 

dependent translation events have been reported (Shultzaberger et al. 2001; Hyatt et 

al. 2010; Omotajo et al. 2015). 

 

Sigmoid (S)-curve model.  

Since REPARATION pipeline was developed to allow for ORFs as short as 30nt, 

this results in an exponential increase of potential ORFs. To ensure the algorithm is 

traceable, we defined minimum threshold values to eliminate spurious ORFs. To do this 

we take advantage of the sigmoid curve (S-curve) relationship observed between ORF 

RPF coverage and the ORF log2 read density (RPKM) as depicted in figure 1C and 

supplementary figure S6. The fitted logistic curve (red), modelled by a 4 parameter 

logistic regression and describing the relationship between ribosome density and RPF 

coverage was used to estimate the minimum read density and ORF RPF coverage to 

allow for correct ORF delineation. We estimated the lower bend point of the fitted 4 

parameter logistic regression using the method described in (Lutz & Lutz 2009) and 

implemented in the R Package Sizer (Sonderegger et al. 2009). 

Tuning the classifier parameters 
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As the number of possible ORFs in the negative set vary across different bacterial 

genomes and are often 3 or more folds that of the positive set (supplementary table 

T2), we first ensure that the classifier is robust to class imbalance. To avoid any bias in 

predictions towards the majority class (Chawla et al. 2002) we evaluated four strategies 

to account for class imbalance; 1) over sampling the minority class i.e. by sampling the 

minority class with replacement to obtain a balanced training set, 2) down sampling, 

randomly selecting a subset from the majority class (Blagus & Lusa 2010) 3) evaluation 

using the SMOTE technique (Chawla et al. 2002) which is a hybrid of the above 

techniques and 4) the class prior setting, determining the proportion samples of each 

class to be used constructing the trees. The class prior technique performed the best in 

accounting for class imbalance with a 10-fold cross validation precision measure of 80% 

on the Salmonella and E. coli data sets (supplementary figure S7) and with optimal split 

of at least 25% from the minority class. We next keep all parameters constant and tune 

the number of samples in each terminal node, the best result was obtained with a value 

of four using a 10-fold cross validation from the values in the range 1 through 30 while 

optimal number of variable in each split was four. The number of trees in the model 

was optimized and the best performance was obtained with 3001 trees from the range 

251 through 6001, step 500. We optimized only these parameters because they have 

been shown to influence the random forest model (Hastie & Tibshirani 2009). The model 

was implemented using the R package randomForest (Liaw & Wiener 2002) on a Linux 

Fedora R3, kernel version 4.7.2-101.  

 

Post Processing Random Forest predicted ORFs.  

We implement a rule based post processing algorithm to eliminate false positives 

that might be called because they share overlapping regions with actual coding ORFs 

(supplementary figure S8). First, considering the simplified assumption that bacterial 

genes can have only one possible translation start site, we group all predicted ORFs 

sharing the same in frame stop codon into an “ORF family”. Supplementary figure S8 A 

depicts an ORF family with two predicted starts, if start S1 has more reads than S2 then 

we select S1 as the gene start. If there are no Ribo-seq reads between S1 and S2 then 

we select S2 as the gene start since S1 adds no extra information to the gene profile. 

If S1 has more reads than S2 but if S1 falls within the coding region of an out-of-frame 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2017. ; https://doi.org/10.1101/113530doi: bioRxiv preprint 

https://doi.org/10.1101/113530


 

32 

upstream predicted ORF on the same strand, we select S1 as the most likely start if 

there is a peak (i.e. kurtosis > 0) within a window of -21 to +21 around S1. 

Next we consider two overlapping ORFs on different frames as depicted in 

supplementary figure S8 B. If the read density and RPF coverage of the non-overlapping 

region of F1 are less than the S-curve estimated thresholds, then F1 is dropped in favor 

of F2 and vice versa. If both non-overlapping regions have a read density and RPF 

coverage greater than the minimum, then we assume both are expressed. Finally, we 

drop all internal out-of-frame ORFs falling completely within another ORF 

(supplementary figure S8 C).  

 

 

Conservation Analysis.   

Nucleotide conservation scores were calculated using the rate4site tool (Pupko et 

al. 2002). To obtain site conservation scores, we downloaded the protein and genome 

sequences of 165 bacteria species from Enterobacteriaceae, Bacillus and other closely 

related and distant genus was randomly selected from Ensembl (supplementary file F4). 

We combined all protein sequences into a Fasta database and used the cluster_fast 

algorithm in the USEARCH package (Edgar 2010) to remove redundant sequences 

within the database by clustering sequences with minimally 90% of similarity and 

keeping only the centroid sequence. For each predicted ORF, we searched for all possible 

orthologues sequences using OrthoFinder tool (Emms & Kelly 2015) in the non-

redundant database and after adjusting the tool by replacing blastp with the faster 

ublast (Edgar 2010) algorithm. For each orthologue we obtain its genomic coordinates 

and extracted the nucleotide sequence of the ORF as well as 30nt upstream of the ORF 

start. We then performed a multiple sequence alignment of all orthologues ORFs using 

MUSCLE (Edgar 2010) and concatenated the corresponding upstream sequence with 

the appropriate ORF in the multiple sequence alignments. Finally, the position-specific 

conservation scores were calculated using the rate4site (Pupko et al. 2002) tool with 

the empirical Bayesian estimate and Jukes-Cantor probabilistic model for nucleotides. 

Only ORFs with at least five orthologues (minimum number of orthologues to properly 

estimate the site conservation score (Goldenberg et al. 2009)) were considered for the 

conservation analysis. 
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