Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Exact sequence variants should replace operational taxonomic units in marker gene data analysis

Benjamin J Callahan, Paul J McMurdie, Susan P Holmes
doi: https://doi.org/10.1101/113597
Benjamin J Callahan
1Department of Population Health and Pathobiology, NC State University, Raleigh NC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul J McMurdie
2Whole Biome Inc, San Francisco CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Susan P Holmes
3Department of Statistics, Stanford University, Stanford CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Recent advances have made it possible to analyze high-throughput marker-gene sequencing data without resorting to the customary construction of molecular operational taxonomic units (OTUs): clusters of sequencing reads that differ by less than a fixed dissimilarity threshold. New methods control errors sufficiently that sequence variants (SVs) can be resolved exactly, down to the level of single-nucleotide differences over the sequenced gene region. The benefits of finer taxonomic resolution are immediately apparent, and arguments for SV methods have focused on their improved resolution. Less obvious, but we believe more important, are the broad benefits deriving from the status of SVs as consistent labels with intrinsic biological meaning identified independently from a reference database. Here we discuss how those features grant SVs the combined advantages of closed-reference OTUs — including computational costs that scale linearly with study size, simple merging between independently processed datasets, and forward prediction — and of de novo OTUs — including accurate diversity measurement and applicability to communities lacking deep coverage in reference databases. We argue that the improvements in reusability, reproducibility and comprehensiveness are sufficiently great that SVs should replace OTUs as the standard unit of marker gene analysis and reporting.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted March 07, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Exact sequence variants should replace operational taxonomic units in marker gene data analysis
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Exact sequence variants should replace operational taxonomic units in marker gene data analysis
Benjamin J Callahan, Paul J McMurdie, Susan P Holmes
bioRxiv 113597; doi: https://doi.org/10.1101/113597
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Exact sequence variants should replace operational taxonomic units in marker gene data analysis
Benjamin J Callahan, Paul J McMurdie, Susan P Holmes
bioRxiv 113597; doi: https://doi.org/10.1101/113597

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3689)
  • Biochemistry (7796)
  • Bioengineering (5675)
  • Bioinformatics (21283)
  • Biophysics (10578)
  • Cancer Biology (8174)
  • Cell Biology (11945)
  • Clinical Trials (138)
  • Developmental Biology (6763)
  • Ecology (10401)
  • Epidemiology (2065)
  • Evolutionary Biology (13866)
  • Genetics (9708)
  • Genomics (13073)
  • Immunology (8146)
  • Microbiology (20014)
  • Molecular Biology (7853)
  • Neuroscience (43056)
  • Paleontology (319)
  • Pathology (1279)
  • Pharmacology and Toxicology (2258)
  • Physiology (3351)
  • Plant Biology (7232)
  • Scientific Communication and Education (1312)
  • Synthetic Biology (2006)
  • Systems Biology (5538)
  • Zoology (1128)