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Abstract

We analyze dynamic models of the evolution of androdioecy and gynodioecy under autosomal
modifiers of weak effect. In our zygote control models, the sex expressed by a zygote depends
on its own genotype, while in our maternal control models, the sex expressed by a zygote
depends on the genotype of its maternal parent. Our study addresses the Li-Price equation,
which for all its heuristic appeal, describes evolutionary change over a single generation. Our
analysis unifies full multi-dimensional local stability analysis with the Li-Price equation by
identifying a point in the neighborhood of a fixation state from which a single-generation
step indicates the asymptotic behavior of a rare, introduced allele initiated at an arbitrary
location near the fixation state. We incorporate our theoretical analysis into our previously-
developed Bayesian inference framework to develop a new method for inferring the viability
of gonochores (males or females) relative to hermaphrodites. Applying this approach to
microsatellite data derived from natural populations of the gynodioecious plant Schiedea
salicaria and the the androdioecious killifish Kryptolebias marmoratus, we find that while
female and hermaphrodite S. salicaria appear to have similar viabilities, male K. marmoratus
appear to survive to reproductive age at less than half the rate of hermaphrodites.
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1 Introduction

Changes in the breeding system and effective number induce genome-wide transformations of
the context in which evolution operates. Here, we address the evolution of androdioecy and
gynodioecy under nuclear control and explore the implications of that process for effective
number.

Among the central questions regarding the evolution of breeding systems is the nature
of Darwinian fitness. Reproductive success of an individual may depend not only on its
own sex expression but on the sex of other members of the present or descendant popula-
tion. Numerous authors have explored definitions of Darwinian fitness under androdioecy
and gynodioecy (Ross and Weir 1975; Lloyd 1975; Charlesworth and Charlesworth 1978).
An alternative approach, and the one we have adopted here, entails modeling the genetic
dynamics without appeal to an external definition of fitness (Ross and Weir 1975, 1976; Wolf
and Takebayashi 2004).

The evolution of gynodioecy under the joint control of cytoplasmic and nuclear factors has
been well-studied (reviewed by Bailey and Delph 2007; McCauley and Bailey 2009). Clearly,
the mechanism of sex expression in systems in which heritability of sex appears to be purely
nuclear may comprise a cytoplasmic component as well. For example, upon the fixation in a
population of a cytoplasm that induces cytoplasmic male sterility (CMS), variation among
individuals in sex expression would no longer depend on cytoplasmic variation (“cryptic
CMS,” Schultz 1994; Fishman and Willis 2006). Similarly, the genetic basis of sex expression
may shift from a single major locus to many loci of minor effect upon fixation at the major
locus.

We present models for the evolutionary modification of sex expression by autosomal
modifiers of weak effect and arbitrary dominance. Our models address determination of
sex of a zygote by either its own genotype (zygote control) or the genotype of its maternal
parent (maternal control). Previous workers have studied the evolution of sex expression
under zygote control, with simplifying restrictions on dominance (Ross and Weir 1975, 1976;
Charlesworth and Charlesworth 1978; Wolf and Takebayashi 2004). The evolution of an-
drodioecy and gynodioecy under maternal control has not to our knowledge been explored
previously.

In addition, we address the heuristically-appealing Li-Price framework (Li 1967; Price
1970) in the context of full multi-dimensional local stability analyses. We use our results to
explore the definition of heritability of sex expression and the evolution effective number.

Incorporation of our theoretical analysis into a previously-developed Bayesian inference
framework (Redelings et al. 2015) yields a new method for using multilocus data as a basis
for inferring the viability of gonochores (males or females) relative to hermaphrodites.

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2017. ; https://doi.org/10.1101/113605doi: bioRxiv preprint 

https://doi.org/10.1101/113605
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.6 0.7 0.8 0.9 1.00.6 0.7 0.8 0.9 1.00.6 0.7 0.8 0.9 1.0

C

K. marmoratus (BP)

K. marmoratus (TC)

S. salicaria

Figure 1: Posterior distributions of the collective contribution of hermaphrodites to the
population gene pool (C) for two populations of androdioecious Kryptolebias marmoratus
and for gynodioecious Schiedea salicaria.

1.1 Collective contribution of a sex

Of fundamental importance to breeding system evolution is the collective contribution of a
sex to the population gene pool. It is a key determinant of both reproductive value (Fisher
1930) and effective number (Wright 1931).

Empirical observations: Figure 1 presents posterior distributions of C, the collective
contribution of hermaphrodites, inferred from the three microsatellite data sets analyzed by
Redelings et al. (2015). In the androdioecious killifish Kryptolebias marmoratus, hermaphro-
dites collectively contribute a substantially greater proportion of the population gene pool
in the more highly inbred BP population than in the TC population. In Schiedea salicaria,
the collective contribution of females (male-steriles) lies close to the population proportion
of females of 12% reported by Campbell et al. (2010).

Effective number: Wright (1931) introduced the notion of effective population size
in the context of generalizing fundamental aspects of evolutionary change to populations
structured by sex, fluctuations through time in numbers of individuals, or other factors.
In their analysis of the concept of effective population size, Ewens (1982) and Crow and
Denniston (1988) noted departures among the various definitions in specific models.

We refer to the probability that a pair of genes randomly sampled from distinct reproduc-
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tives in the present (offspring) generation derive from the same reproductive in the preceding
(parental) generation as the rate of parent-sharing (1/NP ):

1

NP

=
C2

NH

+
(1− C)2

NG

. (1)

for NH and NG representing the effective number of hermaphrodites and gonochores (males
or females) in the parental generation, respectively, and C the probability that an autosomal
gene randomly sampled from a reproductive in the offspring generation derives from a her-
maphroditic parent. Here, C2 corresponds to the probability that two genes, each randomly
sampled from a reproductive, both derive from hermaphrodites, with 1/NH the probability
that the same hermaphrodite contributed both genes. Crow and Denniston (1988) denoted
the inverse of the rate of parent-sharing (NP ) as “inbreeding effective size.”

We define relative effective number (R) as the ratio of inbreeding effective size and the
total effective number of reproductives (N = NG +NH):

R =
NP

N
. (2)

From (1), we obtain

R =
NP

NH +NG

=
1

C2

h
+ (1−C)2

1−h

=
h(1− h)

h(1− h) + (h− C)2
, (3)

for h the proportion of hermaphrodites among reproductives:

h =
NH

NG +NH

. (4)

Clearly, relative effective number cannot exceed unity (R ≤ 1), attaining unity only for

h = C, (5)

at which the proportion of hermaphrodites among reproductives (h) is identical to C, the
probability that a random gene sampled from reproductives derives from a hermaphrodite
in the parental generation. Both (1) and (2) differ conceptually and quantitatively from
indices proposed by Laporte et al. (2000), who explored effective number in gynodioecious
populations. That distinct concepts of effective number exist is not unexpected under even
the most basic forms of population structure, including sex (Ewens 1982; Crow and Denniston
1988).

Figure 2 presents posterior distributions of relative effective number R (2) for the three
data sets studied by Redelings et al. (2015), including those derived from two populations
of the androdioecious killifish Kryptolebias marmoratus (Mackiewicz et al. 2006; Tatarenkov
et al. 2012). While the gynodioecious S. salicaria population (green) shows relative effective
number R near its maximum of unity, the killifish populations appear to have lower R,
especially the Belize population TC, in which higher male proportions (ca. 17%, Mackiewicz
et al. 2006) have been observed than in the Florida Keys population BP (ca. 1%, Turner
et al. 1992; Tatarenkov et al. 2012).
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Figure 2: Posterior distributions of relative effective number R (2).

1.2 Reproductive value

Fisher (1930) explored the evolutionary modification of the sex ratio under gonochorism,
with Nf females and Nm males participating in reproduction. Under the assumption that
reproduction is limited by the number of females, the total number of zygotes is proportional
to Nf and the reproductive value of a male relative to a female corresponds to Nf/Nm.
Because males and females make equal collective contributions at each autosomal locus,
autosomal modifiers evolve toward equal investment in male and female offspring (Fisher
1930). Edwards (2000) provides an account of the origins of this argument.

The evolution of the sex ratio has also been addressed in the context of the marginal
value of parental investment in offspring of each sex (e.g., Shaw and Mohler 1953; Lloyd
1975; Charnov et al. 1976). Increased investment in the sex with the highest marginal value
affords increased transmission to the grandoffspring generation. Equal marginal value among
mating types implies that no transmission advantage accrues to any change in investment
strategy. For sexual forms corresponding to hermaphrodites and gonochores, the per capita
contribution of hermaphroditic offspring to the grandoffspring generation corresponds to
C/NH , reflecting the partitioning among NH reproductive hermaphrodites of the collective
contribution to the gene pool by hermaphrodites (C). The marginal value of investing in
hermaphroditic offspring exceeds the marginal value of investing in gonochorous offspring
only if

C

NH

>
Z(1− C)

NG

, (6)

for Z the expected number of gonochores of reproductive age that can be produced with the
investment required to produce a single hermaphrodite of reproductive age. In this context,
the reproductive value of a sex is proportional to a ratio of marginal values.
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An evolutionarily stable strategy (ESS, Maynard Smith and Price 1973) corresponds to
an investment allocation against which no other allocation can increase when rare. Candidate
ESS hermaphrodite proportions (h∗) correspond to points of equality between the marginal
values of hermaphrodites and gonochores:

h∗

1− h∗
=

C

Z(1− C)
. (7a)

If the departure of Z from unity derives entirely from differential viability of gonochores
relative to hermaphrodites, this candidate ESS corresponds to a sex ratio immediately before
the sex-specific viability phase (rather than at reproduction) of

ĥ

1− ĥ
=

C

1− C
. (7b)

A candidate hermaphrodite proportion would in fact correspond to an ESS only if any
rare modifier of the sex ratio fails to increase at a geometric rate in a monomorphic pop-
ulation exhibiting the candidate sex ratio. Further, ĥ would correspond to an ESS that is
locally attracting in parameter space if rare autosomal enhancers of hermaphrodite produc-
tion invade a population with hermaphrodite proportion hc only if hc < ĥ and suppressors
invade only if hc > ĥ. Such an investment allocation has been described as a continuously
stable strategy (CSS, Eshel and Motro 1981) or as showing m-stability (Taylor 1989) or
convergence stability (Christiansen 1991).

Attainment of the presumptive ESS sex ratio (7) implies maximization of relative effective
number (2) only if gonochores and hermaphrodites have equal viability (Z = 1). Otherwise
(Z 6= 1), the departure from unity of relative effective number at the candidate sex ratio ESS
provides a basis for inference of Z. Under the assumption that the natural populations under
study (Fig. 1) have in fact evolved to the ESS, we use the Bayesian sampler of Redelings
et al. (2015) to obtain posterior densities for the relative viability of gonochores (Z) in
Kryptolebias marmoratus and Schiedea salicaria. While we find little support for differential
viability of the alternative sexual forms in S. salicaria, K. marmoratus males appear to have
significantly lower viability than hermaphrodites.

2 Methods

2.1 Candidate ESS sex expression levels

We derive candidate ESS values under zygote and maternal control of sex expression in
populations comprising NH hermaphrodites and NG gonochores (males or females). These
candidate ESS levels extend those proposed by Lloyd (1975). Our full local stability analysis
(Section 3) demonstrates that these candidates do in fact correspond to continuously stable
strategies.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2017. ; https://doi.org/10.1101/113605doi: bioRxiv preprint 

https://doi.org/10.1101/113605
http://creativecommons.org/licenses/by-nc-nd/4.0/


Life cycle: Figure 3 depicts the major phases of the life cycle. A proportion s̃ of
egg cells produced by hermaphrodites are self-fertilized (uniparental). In the gynodioecy
models, females produce offspring (all biparental) at rate σ̃ relative to hermaphrodites (σ̃
corresponds to σ in Redelings et al. 2015). Inbreeding depression occurs immediately after
zygote formation, with uniparental offspring surviving to the juvenile stage at rate τ relative
to biparental offspring. Under a rescaling at the juvenile stage, a female has an average
of σ surviving offspring relative to a hermaphrodite, for which uniparentals constitute a
proportion s of its surviving offspring. Gonochorous offspring survive to reproductive age at
rate Z relative to hermaphroditic offspring, irrespective of whether they are uniparental or
biparental.

Zygotes Juveniles Adults 

inbreeding 
depression 

sex-specific 
viability 

Figure 3: Life cycle. Hermaphrodites (}) self-fertilize a proportion s̃ of their egg cells, with
the complement randomly outcrossed. Under gynodioecy, females (~) generate σ̃ egg cells
relative to hermaphrodites (σ̃ corresponds to σ in Redelings et al. 2015). Inbreeding depres-
sion occurs immediately after zygote formation, with uniparental zygotes (“Uni”) surviving
at rate τ relative to biparental zygotes (“Bi”). At the juvenile stage, a proportion s of the
remaining offspring of hermaphrodites are uniparental, with σ the relative number of juve-
nile offspring produced per female parent. Sex-specific viability selection occurs between the
juvenile and adult phases, with gonochores (males or females) surviving to reproductive age
at rate Z relative to hermaphrodites. In the absence of heritable variation in sex expression
(e.g., fixation of a modifier allele that induces the ESS), the sex of an offspring is indepen-
dent of parental sex and of whether it is uniparental or biparental; in such cases, s and σ
are identical at the juvenile and adult stages.

Our full dynamical models depict evolving autosomal modifiers of sex expression. In
contrast, our ESS derivation assumes the absence of heritable variation in sex expression:
for example, upon the fixation of a modifier allele that induces the ESS sex ratio. Under this
assumption, offspring sex (gonochore or hermaphrodite) is independent of parental sex and
independent of the level of inbreeding. Accordingly, the relative proportions of uniparental
and biparental offspring (s and σ in Fig. 3) are identical at the juvenile and adult stages and
the sex ratio among zygotes is identical to the sex ratio among juveniles.

Androdioecy: Under androdioecy (NG males and NH hermaphrodites), outcrossing en-
tails fertilization of egg cells from the pollen cloud, to which a female-sterile (male) individual
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contributes at rate ω relative to hermaphrodites. In accordance with the laboratory experi-
ments of Furness et al. (2015) on Kryptolebias marmoratus, our Kryptolebias model imposes
the additional assumption that all biparental individuals have a male parent (ω =∞).

Hermaphrodites alone produce egg cells, of which are s̃ are fertilized by self-pollen. The
uniparental proportion among juveniles,

sA =
s̃τ

s̃τ + 1− s̃
, (8)

is independent of the population sex ratio.

The probability that an autosomal gene randomly sampled from juvenile offspring (Fig.
3) derives from a hermaphrodite in the parental generation corresponds to

CA = 1− (1− sA)GA/2,

in which GA reflects the relative contribution of males of the parental generation to the
pollen pool:

GA =
ωNG

ωNG +NH

=
ω(1− h)

ω(1− h) + h
, (9)

for (1−h) the frequency of males among reproductives in the parental generation (4). In the
Kryptolebias model, in which all biparental offspring have a male parent (GA = 1, ω =∞),
the collective contribution of hermaphrodites reduces to

CA = 1− (1− sA)/2 = (1 + sA)/2.

As indicated in our exposition of the life cycle (Fig. 3), the absence of heritable genetic
variation for sex expression (e.g., at a genetically monomorphic ESS state) implies that the
uniparental proportion sA is identical at the juvenile and adult stages. At such an ESS
state, CA corresponds to the probability that a random autosomal gene sampled at either
the juvenile or the adult stage derives from a hermaphrodite in the preceding generation.

Candidate ESS sex ratios at reproductive age (7) satisfy

h∗

1− h∗
=

1− (1− sA)/2
[

ω(1−h∗)
ω(1−h∗)+h∗

]
Z(1− sA)/2

[
ω(1−h∗)

ω(1−h∗)+h∗

] .

Solving, we obtain candidates for the unbeatable sex ratio at reproduction under androdi-
oecy:

h∗A
1− h∗A

=

{
ω(1+sA)/2

Zω(1−sA)/2−1 if valid

∞ otherwise.
(10a)

Maintenance of androdioecy (1 > h∗A > 0) requires that the expected contribution of a
juvenile male to the subsequent generation exceed that of a juvenile hermaphrodite by at
least twofold:

Zω(1− sA) > 2. (10b)
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This condition becomes more stringent as the rate of outcrossing (1 − sA) or the relative
viability of males (Z) decline. If (10b) fails, the sole candidate ESS corresponds to pure
hermaphroditism (hA = 1).

At the juvenile (rather than adult) stage, the candidate ESS (10a) corresponds to a sex
ratio of

ĥA

1− ĥA
=

{
Zω(1+sA)/2
Zω(1−sA)/2−1 if valid

∞ otherwise.
(10c)

indicating that the the composite parameter Zω represents the net effects on the ESS of
differential viability and pollen success of males.

In his treatment of androdioecy, Lloyd (1975, his equation (7)) proposed an unbeatable
proportion of males of

q =
t− 2lv[t+ i(1− t)]

2iv(1− t)(1− l) + t(1 + v − 2lv)
, (11)

for q the proportion of males at reproductive age, t the proportion of seeds set by non-self
pollen, l the pollen production of a hermaphrodite (described as “female”) relative to a
male, v the rate of survival to reproduction of a hermaphrodite relative to a male, and i the
viability of uniparental offspring relative to biparental offspring. Substitution of

t = 1− s̃
1/l = ω

1/v = Z

i = τ.

into (11) corresponds to our non-zero ESS candidate (10).

Gynodioecy: Under gynodioecy (NG females and NH hermaphrodites), females set
seeds at rate σ̃ relative to hermaphrodites (Fig. 3). An autosomal gene randomly sampled
from a juvenile offspring derives from a hermaphrodite parent with probability

CG =
NGσ̃/2 +NH(τ s̃+ 1− s̃)
NGσ̃ +NH(τ s̃+ 1− s̃)

=
(1− h)σ/2 + h

(1− h)σ + h
(12)

for h the proportion of hermaphrodites among parents in the preceding generation (4) and
σ the scaled seed fertility of females (Fig. 3). This expression also corresponds to

CG = 1− (1− sG)GG/2,

for the uniparental proportion among juveniles given by

sG =
NHτ s̃

NGσ̃ +NH(τ s̃+ 1− s̃)
=

hs

(1− h)σ + h
, (13)
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and the proportion of biparental offspring that have a female parent by

GG =
NGσ̃

NGσ̃ +NH(1− s̃)
=

(1− h)σ

(1− h)σ + h(1− s)
. (14)

In contrast with androdioecy (8), the uniparental fraction sG (13) depends on the population
sex ratio. Once again, at a monomorphic ESS (absence of heritable genetic variation for sex
expression), the uniparental proportion among offspring of reproductive age is identical to
sG among juvenile offspring.

From (7) and (12), the candidate ESS at reproductive age corresponds to

h =
(1− h)σ/2 + h

(Z + 1)(1− h)σ/2 + h
.

Solving, we obtain candidates for the unbeatable sex ratio under gynodioecy:

h∗G
1− h∗G

=

{
σ

Zσ−2 if valid

∞ otherwise.
(15)

Maintenance of gynodioecy (1 > h∗G > 0) requires that the expected number of offspring
produced by a juvenile female exceed that of a juvenile hermaphrodite by at least twofold:

Zσ > 2. (16)

More intense inbreeding depression (smaller τ) and higher female viability or fertility (larger
Z or σ̃) tend to promote gynodioecy. For cases in which (16) fails, (15) indicates that the
sole candidate ESS corresponds to pure hermaphroditism (h∗G = 1).

At the juvenile stage (Fig. 3), the candidate ESS (15) corresponds to

ĥG

1− ĥG
=

{
Zσ
Zσ−2 if valid

∞ otherwise,
(17)

with composite parameter Zσ comprising the net effects on the ESS of differential viability
and seed set of females.

Equation (2) of Lloyd (1975) provides the unbeatable sex ratio under gynodioecy:

p

1− p
=
b− 2SX

bS
, (18)

for p the proportion of females at reproductive age, b the seed set of females, S the viability
of a hermaphrodite (described as “male”) relative to a female, and X the number of zygotes
surviving to reproduction produced by a hermaphrodite relative to a female. In Lloyd’s
notation,

X = i[a+ be(1− a)(1− w) + (1− be)(1− a)r] + be(1− a)w,

in which i corresponds to the relative viability of uniparental offspring (our τ), the first
bracket the proportion of seeds of hermaphrodites set by self-pollen (our s̃), and be(1− a)w
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the proportion of seeds of hermaphrodites set by pollen from the pollen cloud (our (1− s̃)).
Substitution of

i = τ

X = (τ s̃+ 1− s̃)
b = σ̃

1/S = Z.

into (18) corresponds to our non-zero ESS candidate (15).

2.2 Li-Price equation

Li (1967) and Price (1970) expressed the one-generation change in the frequency of an allele as
a covariance between fitness and the frequency of the allele across genotypes. Here, we extend
this framework to the evolution of effective number and sex ratio in inbred populations.

Table 1 presents measures associated with genotypes at a biallelic autosomal locus. In the
population, genotypes AA, Aa, and aa occur in frequencies to u0, u1, and u2 (

∑
i ui = 1).

The locus may influence the expression of a trait, with genotype i associated with trait

Table 1
Phenotypic and genetic values

Genotypes

AA Aa aa

Frequency u0 u1 u2

Trait deviation P0 − P̄ P1 − P̄ P2 − P̄
Additive genotypic value 2α0 α0 + α1 2α1

Fitness deviation T (u′0 − u0)/u0 T (u′1 − u1)/u1 T (u′2 − u2)/u2

deviation (Pi − P̄ ), in which the average value of the trait corresponds to

P̄ =
∑
i

uiPi.

Price (1970) defined the fitness of genotype i as proportional to the number of gametes
transmitted to the offspring generation. In panmictic populations, in which genotypic fre-
quencies at the point of zygote formation conform to Hardy-Weinberg proportions, this
definition of fitness corresponds to the expected rate of survival to reproduction, as assumed
by Li (1967). Because fitness in the present context may include various components, we
here define the fitness of genotype i as the ratio of numbers of individuals of genotype i at
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the same point in the life cycle in consecutive generations:

Wi =
Tu′i
ui

, (19)

for the prime representing the next generation forward in time. Denniston (1978) observed
that this measure departs from more conventional notions of fitness: high genotypic fitness
reflects high production of the genotype rather than by the genotype. Under this definition,
fitness is virtually always frequency-dependent: even for the most basic model of constant
viability selection, (19) ceases to change only at equilibria (u′i = ui).

To genotypes AA, Aa, and aa, we associate additive genotypic values 2α0, α0 + α1,
and 2α1. Much previous work, designed for panmictic populations, has defined additive
genotypic value as the frequency of allele A in a genotype (Li 1967; Price 1970). Here,
we use the definition of Fisher (1941), under which the additive effects αi are obtained by
minimizing the mean squared deviation (MSD) of the phenotype from the additive genotypic
value across genotypes:

MSD = u0[P0 − P̄ − 2α0]
2 + u1[P1 − P̄ − (α0 + α1)]

2 + u2[P2 − P̄ − 2α1]
2. (20)

For general systems of mating, the average effect of substitution (Fisher 1941), the expected
effect on the trait of substituting allele A for allele a, corresponds to

α0 − α1 =
2u0(P0 − P̄ ) + u1(P1 − P̄ )

4p(1− p)− u1

=
F (P0 − P2) + (1− F )[p(P0 − P1) + (1− p)(P1 − P2)]

1 + F
,

(21)

for p representing the frequency of allele A (p = u0 +u1/2) and F the fixation index (Wright
1933). In the additive case, in which

(P0 − P2) = 2(P1 − P2),

the average effect reduces to
α0 − α1 = (P1 − P2),

irrespective of the magnitude of F or intensity of any selection.

Using the definitions summarized in Table 1, we obtain the covariance across genotypes
between fitness W (19) and additive genotypic value Gα with respect to the trait:

Cov(WGα) = u0
T (u′0 − u0)

u0
2α0 + u1

T (u′1 − u1)
u1

(α0 + α1) + u2
T (u′2 − u2)

u2
2α2

= 2(α0 − α1)T∆p,

(22)

in which ∆p represents the change in frequency of allele A over a single generation. This
expression indicates that the frequency of the A allele increases (∆p > 0) if either (1) its
average effect of substitution on the trait is positive ((α0−α1) > 0) and the trait is positively
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correlated with fitness (Cov(WGα) > 0) or (2) its average effect of substitution on the trait is
negative ((α0−α1) < 0) and the trait is negatively correlated with fitness (Cov(WGα) < 0).
To address Fisher’s (1958) fundamental theorem of natural selection, Li (1967) and Price
(1970, 1971) considered the trait of fitness itself, in which case the covariance Cov(WGα)
reduces to the additive variance in fitness.

For all its heuristic appeal, expression (22) provides a one-dimensional description of
evolutionary change across a single generation. In the present context, the trait of interest
corresponds to the long-term evolution of sex expression in a multi-dimensional state space.
Unless sex expression is uncorrelated with fitness (Cov(WGα) = 0) or the focal modifier
locus has no additive variance with respect to this trait ((α0 − α1) = 0), natural selection
will induce genetic change. Because both the average effect of substitution (21) and the
covariance Cov(WGα) depend on the genotypic frequencies, the relationship between the
one-generation description provided by (22) and the outcome of the evolution process needs
clarification.

Key to the application of the Li-Price framework to the evolution of sex expression is
the elucidation of the component of the population to which the genotypic frequencies (ui)
in Table 1 correspond. In the present context, populations may comprise both gonochores
and hermaphrodites, and sex expression in a zygote depends on either its own genotype or
the genotype of its maternal parent. As the average effect of substitution (21) is determined
with respect to this genotypic distribution (ui), it defines heritability for the evolutionary
process under study.

2.3 Dynamic models of sex ratio evolution

We address two genetic mechanisms for the determination of sex expression. In the zygote
control models, zygotes of genotypes AA, Aa, and aa respectively develop into hermaphro-
dites at rates h0, h1, and h2 (0 ≤ hi ≤ 1, i = 0, 1, 2). In the maternal control models, it is
the genotype of the maternal parent of the zygotes that determines sex expression rates.

Hermaphrodites set a proportion s̃ of seeds by self-fertilization. Uniparental offspring
survive to reproduction at rate τ relative to biparental offspring, with this differential survival
occurring immediately upon zygote formation, even before sex expression.

2.3.1 Zygotic control of sex expression

Following differential survival of uniparental and biparental offspring (but before sex expres-
sion and reproduction by the offspring), genotypes AA, Aa, and aa occur in proportions z0,
z1, and z2 (z0 + z1 + z2 = 1).

Androdioecy: In the next generation forward in time, genotypic frequencies correspond
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to

z′0 ∝ s̃τ(z0h0 + z1h1/4) + (1− s̃)(z0h0 + z1h1/2)q

z′1 ∝ s̃τz1h1/2 + (1− s̃)[(z0h0 + z1h1/2)(1− q) + (z1h1/2 + z2h2)q]

z′2 ∝ s̃τ(z1h1/4 + z2h2) + (1− s̃)(z1h1/2 + z2h2)(1− q),

for q denoting the frequency of the A allele in the pollen pool:

q =
h0z0 + h1z1/2 + ωZ[(1− h0)z0 + (1− h1)z1/2]

h0z0 + h1z1 + h2z2 + ωZ[(1− h0)z0 + (1− h1)z1 + (1− h2)z2]
. (23a)

These expressions imply

Tz′0 =sA(z0h0 + z1h1/4) + (1− sA)(z0h0 + z1h1/2)q

Tz′1 =sAz1h1/2 + (1− sA)[(z0h0 + z1h1/2)(1− q) + (z1h1/2 + z2h2)q]

Tz′2 =sA(z1h1/4 + z2h2) + (1− sA)(z1h1/2 + z2h2)(1− q),
(23b)

for sA given in (8) and the normalizer by

T = h0z0 + h1z1 + h2z2. (23c)

In the absence of selection on the modifier locus (h0 = h1 = h2), recursion system (23)
indicates that allele frequency in seeds and pollen (z0 +z1/2 = q) remains at its initial value,
with asymptotic convergence at rate sA/2 of the frequency of heterozygotes (z1) to

2q(1− q)(1− Fneut),

for Fneut the fixation index (Wright 1933):

Fneut =
s

2− s
, (24)

with sA substituted for s.

Gynodioecy: Genotypic frequencies in the next generation forward in time correspond
to

z′0 ∝ s̃τ(z0h0 + z1h1/4)

+ {(1− s̃)(z0h0 + z1h1/2) + σ̃Z[z0(1− h0) + z1(1− h1)/2]}q
z′1 ∝ s̃τz1h1/2

+ {(1− s̃)(z0h0 + z1h1/2) + σ̃Z[z0(1− h0) + z1(1− h1)/2]}(1− q)
+ {(1− s̃)(z1h1/2 + z2h2) + σ̃Z[z1(1− h1)/2 + z2(1− h2)]}q

z′2 ∝ s̃τ(z1h1/4 + z2h2)

+ {(1− s̃)(z1h1/2 + z2h2) + σ̃Z[z1(1− h1)/2 + z2(1− h2)]}(1− q),

in which q represents the frequency of the A allele in the pollen pool (which derives entirely
from hermaphrodites),

q =
h0z0 + h1z1/2

h0z0 + h1z1 + h2z2
. (25a)
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After division by (s̃τ + 1− s̃), we obtain

Tz′0 = s(z0h0 + z1h1/4)

+ {(1− s)(z0h0 + z1h1/2) + σZ[z0(1− h0) + z1(1− h1)/2]}q
Tz′1 = sz1h1/2

+ {(1− s)(z0h0 + z1h1/2) + σZ[z0(1− h0) + z1(1− h1)/2]}(1− q)
+ {(1− s)(z1h1/2 + z2h2) + σZ[z1(1− h1)/2 + z2(1− h2)]}q

Tz′2 = s(z1h1/4 + z2h2)

+ {(1− s)(z1h1/2 + z2h2) + σZ[z1(1− h1)/2 + z2(1− h2)]}(1− q),

(25b)

for the normalizer corresponding to

T =
2∑
i=0

zi[hi + σZ(1− hi)]. (25c)

In the absence of selection on the modifier locus (h0 = h1 = h2 = h), allele frequency in
seeds and pollen (z0 + z1/2 = q) remains at its initial value. Unlike the uniparental fraction
sA (8) under androdioecy, sG (13) depends on the population sex ratio. The frequency of
heterozygotes (z1) converges asymptotically at rate sG/2 (13) to

2q(1− q)(1− Fneut),

for Fneut given in (24) but with sG (13) substituted for s. Selective neutrality at the modifier
locus entails that the transformation (25) has an eigenvalue of unity (reflecting no changes in
allele frequency) and an eigenvalue of sG/2 (reflecting convergence of z1 under inbreeding).

2.3.2 Maternal control of sex expression

Under the maternal control model, the genotype of the maternal parent determines sex ex-
pression in zygotes. We describe recursions in genotypic frequencies at the point of reproduc-
tion (rather than zygote formation), with genotypes AA, Aa, and aa occurring in proportions
x0, x1, and x2 in hermaphrodites and y0, y1, and y2 in gonochores (x0+x1+x2+y0+y1+y2 =
1).

Androdioecy: At the point of reproduction, genotypic frequencies among hermaphro-
dites correspond to

Tx′0 = sA(x0h0 + x1h1/4) + (1− sA)(x0h0 + x1h1/2)q

Tx′1 = sAx1h1/2 + (1− sA)[(x0h0 + x1h1/2)(1− q) + (x1h1/2 + x2h2)q]

Tx′2 = sA(x1h1/4 + x2h2) + (1− sA)(x1h1/2 + x2h2)(1− q),
(26a)

for q the frequency of the A allele in the pollen cloud,

q =
x0 + x1/2 + ω(y0 + y1/2)

x0 + x1 + x2 + ω(y0 + y1 + y2)
, (26b)
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and sA given in (8). Substitution of Z(1 − hi) for hi in the hermaphrodite recursion Tx′i
produces the male recursion Ty′i, which implies the normalizer

T =
2∑
i=0

xi[hi + Z(1− hi)]. (26c)

Because male genotypic frequencies (yi) affect transmission only through the pollen cloud
(26b), description of the transformation requires a smaller set of variables, including x0, x1,
x2, (y0 + y1/2), and (y1/2 + y2).

In the absence of selection on the modifier locus (h0 = h1 = h2 = h), the population
ratio of hermaphrodites to males converges in a single generation to∑

i x
′
i∑

i y
′
i

=
h

h+ Z(1− h)
(27a)

and the genotypic frequencies in hermaphrodites and males are proportional:

x′i
y′i

=
h

Z(1− h)
. (27b)

Accordingly, the frequencies of allele A among hermaphrodites (x0+x1/2), males (y0+y1/2),
and pollen (q) converge to equality in a single generation,

q′ =
x′0 + x′1/2∑

i x
′
i

=
y′0 + y′1/2∑

i y
′
i

,

and attain their common equilibrium value in two generations,

p =
x0 + x1/2∑

i xi
(1 + sA)/2 + q(1− sA)/2, (28)

in which the uniparental proportion sA is given in (8) and xi and q represent the initial
values of those variables. The frequency of heterozygotes converges asymptotically, at rate
sA/2, to

x1 + y1 = 2p(1− p)(1− Fneut),

for p given in (28) and Fneut in (24), with sA (8) substituted for s.

Near the state of fixation of the a allele, the neutral transformation has a single eigenvalue
of unity (corresponding to allele frequency), a single eigenvalue of sA/2 (governing conver-
gence of the frequency of heterozygotes to the value dictated by Fneut and allele frequency),
and two eigenvalues of zero (representing the near-instantaneous convergence to equality of
allele frequencies in hermaphrodites, males, and pollen).

Gynodioecy: Genotypic frequencies in the next generation forward in time correspond
to

Tx′0 = s(h0x0 + h1x1/4) + q[(1− s)(h0x0 + h1x1/2) + σ(h0y0 + h1y1/2)]

Tx′1 = sh1x1/2 + (1− s)[(1− q)(h0x0 + h1x1/2) + q(h1x1/2 + h2x2)]

+ σ[(1− q)(h0y0 + h1y1/2) + q(h1y1/2 + h2y2)]

Tx′2 = s(h1x1/4 + h2x2) + (1− q)[(1− s)(h1x1/2 + h2x2) + σ(h1y1/2 + h2y2)]

(29a)
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for q the frequency of A in the pollen cloud (to which hermaphrodites alone contribute):

q =
x0 + x1/2

x0 + x1 + x2
. (29b)

Similar to the androdioecy model, the Ty′i have the same form as Tx′i, but with hi replaced
by Z(1− hi), which implies

T =
2∑
i=0

(xi + σyi)[hi + Z(1− hi)]. (29c)

In the absence of selection on the modifier locus (h0 = h1 = h2 = h), the population
converges in a single generation to the state (27), with the yi now representing genotypic
frequencies in females. Frequencies of allele A among hermaphrodites, females, and pollen
in the first generation correspond to

q′ =
x′0 + x′1/2∑

i x
′
i

=
y′0 + y′1/2∑

i y
′
i

=
(x0 + x1/2) + (y0 + y1/2)σ + σ

∑
i yi

(
x0+x1/2∑

i xi
− y0+y1/2∑

i yi

)
/2∑

i(xi + yiσ)
,

for the xi and yi representing genotypic frequencies at initialization, and attain their common
equilibrium value in two generations. The frequency of heterozygotes converges asymptoti-
cally, at rate sG/2 (13), to

x1 + y1 = 2q(1− q)(1− Fneut),

for Fneut given by (24), with sG (13) substituted for s.

Near the state of fixation of the a allele, the neutral transformation has a single eigen-
value of unity (corresponding to allele frequency), a single eigenvalue of sG/2 (governing
convergence of the frequency of heterozygotes to the value dictated by Fneut and allele fre-
quency), and two eigenvalues of zero (representing the convergence in two generations of
allele frequencies in hermaphrodites and females to their common equilibrium value).

2.4 Weak selection

To explore the nature of selection on the sex ratio, we restrict most of the remaining analysis
to weak selection on the modifier of the sex ratio, viewed as a perturbation from selective
neutrality. Selective neutrality of the variation segregating at the focal locus entails that all
genotypes induce identical hermaphrodite fractions:

h0 = h1 = h2. (30)
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Weak selection implies that differences among genotypes,

d0 = h0 − h2
d1 = h1 − h2,

(31)

are sufficiently small to justify treating as negligible quantities of the second order in the di
or smaller. This assumption of weak selection at the modifier locus implies no restriction
on the magnitude of differences viability or fertility between inbred and outbred offspring or
between the sexes.

For each of the four models under study, we determine the conditions for local stability
of the fixation of the a allele against the introduction of the A allele in small frequencies.
In the preceding section, we have shown that in the absence of selection on the modifier lo-
cus (30), all systems show rapid convergence to a state in which associations between genes
within genotypes reflect inbreeding and associations between allele frequency and sex are ab-
sent. For each model, we enumerated the eigenvalues of the neutral transformation: a single
eigenvalue of unity (representing allele frequency) and a single eigenvalue of s/2 (reflecting
asymptotic convergence of the frequency of heterozygotes), with any additional eigenvalues
corresponding to zero. Because eigenvalues are continuous in complex space (e.g., Serre 2010,
Chapter 5), the eigenvalues of the perturbed (weak-selection) transformation depart contin-
uously in the di (31) from those of the neutral transformation. Accordingly, the dominant
eigenvalue of the weak-selection transformation lies near unity, with the moduli of the other
eigenvalues remaining strictly less than unity. Because the maternal control models have
two eigenvalues of zero under neutrality, the perturbed transformation may have conjugate
pairs of imaginary eigenvalues. Even so, any imaginary eigenvalues do not determine asymp-
totic local stability because the dominant eigenvalue of a non-negative matrix corresponds
to a simple, real root of the characteristic polynomial (Gantmacher 1959). Accordingly, the
dominant eigenvalue of the perturbed transformation lies near unity, with the moduli of the
other eigenvalues remaining strictly less than unity. These properties of the weak-selection
transformation imply that examination of the sign of the characteristic polynomial of the
local stability matrix evaluated at unity is sufficient to determine local stability.

While a conventional local stability analysis provides a full determination of the fate of
modifiers with weak effects on sex expression, we further undertake to elucidate the process
of evolution by interpreting the results of our local stability analysis in terms of the Li-
Price equation (Li 1967; Price 1970). Appendix A describes this method, which modifies an
approach developed previously (Uyenoyama 1988, 1991).

3 Analysis

We perform local stability analyses for each of the four multidimensional models of the
evolutionary modification of sex expression in androdioecious and gynodioecious populations
(Section 2.3). We first determine the change of basis used in local stability analysis for our
models of androdioecy and gynodioecy, under zygote and maternal control of sex expression.
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We then show that the candidate ESS sex ratios (Section 2.1) do in fact correspond to
continuously stable strategies.

3.1 Evolution of androdioecy

3.1.1 Zygote control of sex expression

Under zygote control of sex expression (23), genotype i occurs with frequency zi, of which a
proportion hi develop into hermaphrodites and the complement into males.

Local stability condition: A necessary condition for the exclusion of allele A in-
troduced in low frequency into a population monomorphic for the a allele, which induces
hermaphroditism at rate h2, is positivity of the characteristic polynomial of the local stability
matrix evaluated at unity. Under zygote control (23), this condition corresponds to

(h2 − ĥ)[d0h2s/2 + d1h2(1− s)− d0d1s/2] > 0, (32)

in which the uniparental proportion s corresponds to sA (8), ĥ to the ESS candidate (10c),
h2 the proportion of the common aa genotype that develop into hermaphrodites, and the di
(31) the phenotypic deviations of genotypes bearing the rare A allele. Under weak selection
(small di), this condition reduces to

(h2 − ĥ)[d0s/2 + d1(1− s)] > 0, (33)

and is also sufficient for local stability. For the Kryptolebias model, in which males alone
fertilize outcrossed eggs (ω = ∞), we show in Appendix B that the sole condition for local
stability corresponds to

(ĥ− h2)(h2 − rL) > 0, (34)

in which rL denotes the larger root of the bracketed term in (32), viewed as a quadratic
in h2, under arbitrary dominance levels and intensities of selection on the modifier of sex
expression (di).

Average effect of substitution: A fundamental notion of heritability of sex expression
is that hermaphrodites and gonochores differ in the frequencies of alleles that modify sex
expression. In any generation, the difference in frequency of the A allele between herma-
phrodites and gonochores corresponds to

z0h0 + z1h1/2∑
i zihi

− z0(1− h0) + z1(1− h1)/2∑
i zi(1− hi)

=
z0(h0 − h̄) + z1(h1 − h̄)/2

h̄(1− h̄)
, (35)

for
h̄ =

∑
i

zihi.

This expression corresponds to the average effect of substitution (21), with the genotypic
frequencies at the point of sex expression (zi) assuming the role of the ui in Table 1.
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New basis system: In accordance with (35), we designate as the new basis vectors near
the fixation of the a allele (small z0 and z1)

t0 = z0 + z1/2

t1 = z0 − (z0 + z1/2)Fneut,
(36a)

for Fneut corresponding to (24) with the uniparental fraction sA (8) substituted for s. To the
first order in the frequencies of rare genotypes, the genotypic frequencies correspond to

z0 = t0Fsel

z1 = 2t0(1− Fsel),
(36b)

for Fsel the fixation index under weak selection. From (36) we obtain

Fsel = Fneut +
t1
t0
. (37)

Near the fixation of the a allele, the average effect of substitution (21) corresponds to

z0d0 + z1d1/2

4(z0 + z1/2)− z1
=
d0Fsel + d1(1− Fsel)

1 + Fsel

. (38)

For Fsel determined at the key vector (A.1) defined in Appendix A, this expression (38) for
the average effect of substitution corresponds to the bracketed factor in (32).

Under weak selection (31), t1 is O(di) (Appendix A), implying that the departure between
Fsel and Fneut is also O(di). To the first order in the intensity of selection on the modifier
locus (O(di)), the average effect of substitution (38) corresponds to

d0Fneut + d1(1− Fneut)

1 + Fneut

= d0s/2 + d1(1− s),

in agreement with (33).

3.1.2 Maternal control of sex expression

Under maternal control of sex expression (26), genotype i occurs with frequency xi among
maternal parents, all of which are hermaphrodites, and with frequency yi among reproductive
males.

Local stability condition: The conditions for local stability under maternal control
mirror those under zygote control. The characteristic polynomial evaluated at unity is posi-
tive (necessary for local stability) only if (32) holds. Under weak selection (31), (33) provides
the necessary and sufficient condition for local stability.

Average effect of substitution: To address heritability, we again address differences
between hermaphrodites and gonochores in the frequency of a modifier of sex expression.

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2017. ; https://doi.org/10.1101/113605doi: bioRxiv preprint 

https://doi.org/10.1101/113605
http://creativecommons.org/licenses/by-nc-nd/4.0/


In the next generation forward in time, the difference in frequency of the A allele between
hermaphrodites and gonochores corresponds to

x′0 + x′1/2∑
i x
′
i

− y′0 + y′1/2∑
i y
′
i

= (1 + sA)/2

[
x0h0 + x1h1/2∑

i xihi
− x0(1− h0) + x1(1− h1)/2∑

i xi(1− hi)

]
= (1 + sA)/2

[
x0(h0 − h̄) + x1(h1 − h̄)/2

h̄(1− h̄)

]
, (39)

for
h̄ =

∑
i

xihi.

This expression suggests that the average effect of substitution corresponds to (21) with the
ui replaced by

xi(1 + sA)/2∑
i xi(1 + sA)/2

=
xi[s̃τ + (1− s̃)/2]∑
i xi[s̃τ + (1− s̃)/2]

. (40)

Under maternal control model of androdioecy, the maternal genotypic frequencies (xi) are
weighted by the production of uniparental offspring, at rate

s̃τ

s̃τ + (1− s̃)/2
,

and of biparental offspring, at rate

(1− s̃)/2
s̃τ + (1− s̃)/2

,

in which the 1/2 appears to represent the relatedness of biparental offspring to their maternal
parent relative to the relatedness of uniparental offspring.

New basis system: We use (40) to specify the change in basis. Under androdioecy,
males contribute to future generations only through pollen or sperm. In populations fixed
for the a allele, the ratio of hermaphrodites to males at reproductive age corresponds to

x2
y2

=
h2

Z(1− h2)
. (41)

Near this fixation state, we designate as the new basis vectors

t0 = x0 + x1/2

t1 = x0 − (x0 + x1/2)Fneut

t2 =
x0 + x1/2

h2
− y0 + y1/2

Z(1− h2)
,

(42)

for Fneut corresponding to (24) with the uniparental fraction sA (8) substituted for s.
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At the key vector (A.1) defined in Appendix A, t2 (42), representing the difference in
allele frequency between hermaphrodites and males, is proportional to the average effect of
substitution (38). Also at this key vector, the fixation index under selection Fsel corresponds
to (37) and the average effect of substitution (38) again corresponds to the bracketed factor
in (32).

3.2 Evolution of gynodioecy

3.2.1 Zygote control of sex expression

For the zygote control model of gynodioecy (25), the condition for positivity of the charac-
teristic polynomial of the local stability matrix evaluated at unity is identical to (32), with
the uniparental proportion s now corresponding to sG (13) and ĥ to the ESS candidate (17).
Under weak selection (31), (33) provides the necessary condition for local stability of the
fixation state.

Also identical to the expressions under zygote control of androdioecy are the average
effect of substitution (35) and the definition of the new basis system (36), but with sG (13)
substituted for s in Fneut (24).

3.2.2 Maternal control of sex expression

Local stability condition: For the maternal control model (29), the condition for local
stability under weak selection corresponds to

(h2 − ĥ){B[h2 + (1− h2)Zσ](1 + sG)− (d0 − d1)[d0sG + d1(1− sG)]sGZσ/2} > 0, (43)

in which sG corresponds to the uniparental proportion (13), ĥ to the ESS candidate (17),
and B the bracketed factor in (32):

B = d0h2sG/2 + d1h2(1− sG)− d0d1sG/2. (44)

Under weak selection (31), (43) reduces to (33), which provides the necessary and sufficient
condition for local stability of the fixation state.

Average effect of substitution: To address heritability, we return to (39). From the
full system of recursions for maternal control of sex expression (29), we obtain

x′0 + x′1/2∑
i x
′
i

− y′0 + y′1/2∑
i y
′
i

= Γ1

(
x0 + x1/2∑

i xi
− y0 + y1/2∑

i yi

)
+ Γ2{(1− s)[x0(h0 − h̄) + x1(h1 − h̄)/2]

+ σ[y0(h0 − h̄) + y1(h1 − h̄)/2]}
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in which

Γ1 =
σs
∑

i yi
∑

i xi(hi − h̄)

2
∑

i(xi + σyi)hi
∑

i(xi + yiσ)(1− hi)

Γ2 =

∑
i(xi + yiσ)

2
∑

i(xi + σyi)hi
∑

i(xi + yiσ)(1− hi)

and

h̄ =

∑
i{xi(1 + s) + yiσ}hi∑
i{xi(1 + s) + yiσ}

.

Under weak selection, for which terms of the form (hi−hj) are small, the difference in allele
frequency between the sexes are also small, with the difference converging rapidly to

x′0 + x′1/2∑
i x
′
i

− y′0 + y′1/2∑
i y
′
i

=
E

2h(1− h)
∑

i(xi + yiσ)
+ o(d) (45a)

in which

E = (1 + s)[x0(h0 − h̄) + x1(h1 − h̄)/2] + σ[y0(h0 − h̄) + y1(h1 − h̄)/2], (45b)

h represents any of the hi, and o(d) comprises quantities smaller than terms of the form
(hi − hj).

Expression (45b) suggests that the average effect of substitution corresponds to (21) with
the ui replaced by

xi[s̃τ + (1− s̃)/2] + yiσ̃/2∑
i{xi[s̃τ + (1− s̃)/2] + yiσ̃/2}

. (46)

A major feature that distinguishes this gynodioecy model from the corresponding androdi-
oecy model (39) is that gonochores (females) as well as hermaphrodites may serve as maternal
parents, the individuals that control sex expression. Comparison of (40) and (46) indicates
that the weighting of the contributions to the offspring generation of hermaphroditic to
female maternal parents corresponds to

s̃τ + (1− s̃)/2
σ̃/2

=
(1 + s)

σ
, (47)

implying a twofold weighting of uniparental offspring relative to biparental offspring.

New basis system: In defining the new basis system, we adopt the weighted average
of allele frequencies in hermaphrodites and females described in (47):

t0 =
(x0 + x1/2)(1 + s) + (y0 + y1/2)σ

h2(1 + s) + Z(1− h2)σ

t1 =
[x0 − (x0 + x1/2)Fneut](1 + s) + [y0 − (y0 + y1/2)Fneut]σ

h2(1 + s) + Z(1− h2)σ

t2 =
x0 + x1/2

h2
− y0 + y1/2

Z(1− h2)
t3 =

x0
h2
− y0
Z(1− h2)

(48)
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for Fneut corresponding to (24) with the uniparental fraction sG (13) substituted for s. These
expressions reflect that near the fixation state, the ratio of hermaphrodites to gonochores in
the population (x/y) lies close to (41).

At the key vector (A.1) defined in Appendix A, both t2 (48), representing the difference
in allele frequency between hermaphrodites and males, and the factor of (h2 − ĥ) in local
stability condition (43) are proportional to the average effect of substitution (45b).

4 Data analysis

Redelings et al. (2015) developed a Bayesian method for the analysis of multilocus data
sampled from populations reproducing through pure hermaphroditism, androdioecy, or gyn-
odioecy. Using an explicitly coalescent-based framework, it generates posterior distributions
for the uniparental fraction (probability that a random individual is uniparental), the ana-
logue to estimates of selfing rates generated by earlier methods (e.g., Ritland 2002; Enjalbert
and David 2000; David et al. 2007).

In any empirical investigation, modifiers of the sex ratio may have not yet evolved to the
ESS even if the model is appropriate. Subject to this caveat, we use our new theoretical
results to infer the viability of gonochores (males or females) relative to hermaphrodites in
the natural populations analyzed by Redelings et al. (2015).

Using microsatellite data derived from natural populations of the androdioecious killifish
Kryptolebias marmoratus (Tatarenkov et al. 2012) and the gynodioecious Hawaiian endemic
Schiedea salicaria (Wallace et al. 2011), Redelings et al. (2015) generated posterior distri-
butions of the basic parameters of the models, including the population sex ratio among
reproductives (7a). Those estimates imply posterior distributions of C, the collective contri-
bution of hermaphrodites to the next generation (Fig. 1), from which we infer the sex ratio
at the juvenile stage (7b). Under the assumption that the natural populations under study
have converged on the attracting ESS sex ratio, we use the departure between the sex ratios
at the two points in the life cycle ((7a) and (7b)) to obtain the posterior distribution of Z.

Figure 4 presents posterior distributions of Z in the Schiedea and Kryptolebias popula-
tions. We find little evidence of a difference in viability between females and hermaphro-
dites in the gynodioecious S. salicaria (median=1.08, 95% BCI=(0.34, 1.78)), in which the
Bayesian Credible Interval (BCI) denotes the interval comprising the highest posterior den-
sity. In contrast, male K. marmoratus appear to have substantially lower viability than
hermaphrodites in both the BP population (median=0.45, 95% BCI=(0.20, 0.81)) and the
TC population (median=0.48, 95% BCI=(0.25, 0.77)), even though the frequency of males
is several-fold higher in the TC population (0.17 versus 0.01; Turner et al. 1992; Tatarenkov
et al. 2012; Mackiewicz et al. 2006).
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Figure 4: Posterior distributions of the viability of gonochores relative to hermaphrodites
(Z).

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2017. ; https://doi.org/10.1101/113605doi: bioRxiv preprint 

https://doi.org/10.1101/113605
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 Discussion

We here explore the evolution of androdioecy and gynodioecy under the influence of autoso-
mal modifiers of weak effect. Our study unifies full multi-dimensional local stability analysis
with the heuristically-appealing Li-Price equation (Li 1967; Price 1970) by identifying a
point in the neighborhood of a fixation state from which a single-generation step indicates
the asymptotic behavior of a rare, introduced allele initiated at an arbitrary location near the
fixation state. In addition, we use our theoretical analysis to infer the viability of gonochores
(males or females) relative to hermaphrodites in the gynodioecious plant Schiedea salicaria
and the the androdioecious killifish Kryptolebias marmoratus. We find that female and her-
maphrodite Schiedea salicaria appear to have similar viabilities, but that male Kryptolebias
marmoratus survive to reproductive age at rates significantly lower than do hermaphrodites.

5.1 Relative viability of gonochores

We have explored the evolution of modifiers of the expression of zygote sex under the control
of the zygotes themselves or of their maternal parents in androdioecious and gynodioecious
systems. Our analysis shows that the central determinant of the evolutionary modification
of the sex ratio corresponds to C (1), the collective contribution of hermaphroditic parents
to autosomal genes transmitted to offspring (Fisher 1930). Natural selection on modifiers of
weak effect promotes convergence to the evolutionarily stable sex ratio among juveniles of

ĥ

1− ĥ
=

C

1− C

(7b), for ĥ the ESS proportion of hermaphrodites. In the absence of sex-specific differences
in rate of survival to reproductive age (Z = 1), this sex ratio holds at reproductive age at
well, implying maximization (R = 1) of relative effective number (2). Here, we interpret
a departure of relative effective number R from unity as an indication of a change in the
population sex ratio from the juvenile stage to reproductive age, at which point the ESS
corresponds to

h∗

1− h∗
=

C

Z(1− C)

(7a), for h∗ the proportion of hermaphrodites among offspring of reproductive age and Z
the relative rate of survival of gonochores from the juvenile to the adult stages. As the
Bayesian MCMC method of Redelings et al. (2015) permits inference of h∗ and C, it also
yields posterior distributions for Z, the relative viability of gonochores (Fig. 4).

Inference of near-maximal relative effective number (Fig. 2) for a natural population of
the gynodioecious Schiedea salicaria (Wallace et al. 2011) suggests close convergence to the
ESS (7b). In agreement, the posterior distribution of Z (Fig. 4) provides little evidence of
differential viability between the sexes. In contrast, Figure 4 indicates that males of the
androdioecious killifish Kryptolebias marmoratus (Kelley et al. 2016) appear to have about
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twofold lower viability than hermaphrodites. Our analysis suggests similar male viabilities
in the highly inbred BP population, in which reproductively mature males are very rare
(posterior median = 1%), and the more outbred TC population, in which they are more
abundant (posterior median = 17%, Redelings et al. 2015).

Turner et al. (2006) conducted common garden experiments to address male development
in the killifish K. marmoratus, an emerging model system for environmental sex determi-
nation (Kelley et al. 2016). Lines derived from the progeny of individual hermaphrodites
derived from natural populations in Belize that showed marked differences in the proportion
of adult males were reared in the laboratory under identical conditions. While fewer males
appeared in broods derived from the rare-male population, both sets of broods showed sub-
stantially higher frequencies of males than observed in the natural populations from which
they were derived. Turner et al. (2006) proposed the novel hypothesis that outcrossing or
high heterozygosity may directly induce male development. Our inference that the rate of
survival to reproductive age of males is less than half the rate of hermaphrodites (Fig. 4) is
consistent with the discrepancies in sex ratio between the laboratory and the wild. Turner
et al. (2006) described the orange-hued mature males as “highly conspicuous.” The consid-
erable body of work on guppies indicates that predation can generate intense selection, with
various indices of crypsis responding rapidly to predator abundance under both laboratory
and field conditions (Endler 1980; Reznick et al. 1996).

Turner et al. (2006) suggested that under current theoretical models of androdioecy,
maintenance of males in highly inbred populations of K. marmoratus, would require “im-
plausibly large” male fertility. Low viability of males would further increase the stringency
of the condition (10b). However, our analysis indicates that the existence of any viable
biparental offspring (1 > sA) is sufficient to favor the maintenance of males if males alone
fertilize eggs that are not self-fertilized (ω =∞, Furness et al. 2015).

5.2 Evolution by means of major and minor genes

Previous studies have shown that complete dominance of a major gene inducing gonochorous
development in a zygote implies the direct convergence of the sex ratio to the ESS (7a) under
both androdioecy (Ross and Weir 1976; Wolf and Takebayashi 2004) and gynodioecy (Ross
and Weir 1975). The proportion of offspring that have a gonochorous parent corresponds
to 2(1 − C), for (1 − C) the probability that an autosomal gene randomly sampled from
the offspring that survive inbreeding depression derive from a gonochorous parent (1). We
now restrict consideration to complete dominance of the gonochore allele (h0 = 0) and
determination of zygote sex by its own genotype. Because gonochorous parents transmit
the dominant allele to half their offspring, the sex ratio among offspring of reproductive age
corresponds to

h′

1− h′
=

C

Z2(1− C)/2
,

for h′ the proportion of hermaphrodites among offspring. Accordingly, the ESS (7a) repre-
sents the equilibrium population sex ratio among reproductives. This property holds neither
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under other dominance schemes (e.g., recessive gynodioecy, Ross and Weir 1975) nor under
maternal determination of zygote sex, even with complete dominance.

Upon the direct evolution of a major nuclear gene to the ESS, any selective pressure on
minor genes for sex expression to modify the sex ratio toward the ESS ceases. In all other
cases, natural selection favors modifier genes across with genome that reduce the disparity
between the population sex ratio and the ESS, even in the face of opposing selection against
such pleiotropic effects on the sex ratio.

In their analysis of sex within broods generated by controlled crosses between females and
hermaphrodites of the gynodioecious Schiedea salicaria, Weller and Sakai (1991) recognized
two major groups of hermaphroditic pollen donors: those that generated hermaphroditic
offspring almost exclusively and those that generated the two sexes in approximately equal
proportions. Weller and Sakai (1991) proposed that male sterility derives from a recessive
allele at a single locus. The analysis of Ross and Weir (1975) shows that recessivity of a
major allele for male sterility implies an equilibrium population sex ratio that departs from
the ESS (7b). Even so, Weller and Sakai (2005) found approximate agreement between the
population sex ratio and the predicted ESS, and our inference of near-maximal values of
relative effective number (R near unity in Fig. 2) suggests that the ESS (7b) has in fact
been attained, provided that females and hermaphrodites have equal viability (Z = 1).
Reconciliation between the proposed genetic basis of male sterility in S. salicaria and the
apparent attainment of the ESS (7b) suggests that modifier loci distinct from the major gene
may have induced the convergence of the population sex ratio to the evolutionarily stable
strategy.

5.3 Evolutionarily stable strategies

Our analysis shows that the sex ratios proposed by Lloyd (1975) correspond to attracting
evolutionarily stable strategies (ESSs) under arbitrary schemes for dominance of rare alleles
introduced at a monomorphic locus that modifies sex expression. Fully-specified models of
sex expression with inbreeding are inherently multi-dimensional, reflecting multiple geno-
types in both gonochores and hermaphrodites in our studies. Imposition of restrictions on
dominance can reduce the dimensionality of the system, permitting specification of equilib-
rium states on the basis of allele frequency alone (Ross and Weir 1975, 1976; Charlesworth
and Charlesworth 1978; Wolf and Takebayashi 2004). We regard the removal of restrictions
on dominance as essential to the spirit of an ESS analysis, under which the attainment of
the ESS reflects the filtering of newly-arisen modifier alleles throughout the genome.

The conceptual origins of the Li-Price equation (Li 1967; Price 1970) lie in Robertson’s
(1966) exploration of the effects of culling, on the basis of informal criteria, on the genetic
variance of a desired trait (high milk yield in dairy cattle). With respect to the evolution
of mating systems, sex may influence various components of transmission of genes to future
generations, possibly including relatedness (Lloyd 1975). Here, the focal trait corresponds to
the propensity of a zygote to develop into a gonochore or a hermaphrodite under the control
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of the genotype at a modifier locus of its maternal parent (maternal control models) or its
own genotype (zygote control models).

The heuristically-appealing Li-Price equation (22) provides a condition for the change
over a single generation in the frequency of an allele at a locus modifying the focal trait.
Our analysis relates this one-dimensional, one-generational description of the evolutionary
process to the asymptotic conditions for invasion of a rare modifier allele in multi-dimensional
models of sex expression with inbreeding under the assumption of weak selection. Weak
selection entails that alleles segregating at modifier loci have small effects on the prevailing
rate of sex expression. This assumption permits selection of any intensity on relative viability
or fertility of uniparentals or gonochores relative to hermaphrodites. We define a key initial
state (A.1) in the full multi-dimensional space such that the change in frequency of the rare
allele over a single generation starting from this state indicates its asymptotic fate (invasion or
extinction) starting from arbitrary states in a sufficiently small neighborhood of the fixation
state (Appendix A). We show that the change in frequency of the rare allele is proportional
to the value of the characteristic polynomial of the full transformation evaluated at unity.
While this criterion provides necessary and sufficient conditions for local stability, strong
selection (introduction of genes with major effects on sex expression) may cause the sign
of the characteristic polynomial evaluated at unity to become insufficient as an indicator of
local stability, with the key initial state (A.1) invalid or undefined (Fig. 5).

Central to the Li-Price equation (22), which relates the focal trait to fitness, is the average
effect of substitution (Fisher 1941), an index of the influence of segregating variation on the
trait. In our models, comprising two sex forms and either zygote or maternal control of sex
expression, the average effect may be determined with respect to the genotypic distribution
(ui in Table 1) in more than one component of the population. An additional question
concerns the relevance of relatedness of the controlling genotype to the two sex forms. Our
approach entails permitting the answers to these questions emerge naturally from the models
themselves. We adopt a notion of heritability that reflects associations between sex and
allele frequency. This approach indicates that under zygote control of androdioecy (23) and
gynodioecy (25), the average effect is defined with respect to genotypic frequencies among
zygotes at the point of sex expression (35). In this case, the controlling entities (zygotes)
are equally related to themselves regardless of sex.

In contrast, relatedness plays a role under maternal control of sex expression in offspring.
For the androdioecy model (26), hermaphrodites alone determine offspring number, with
gonochores (males) serving only as pollen or sperm donors. Under our notion of heritability,
the average effect is defined with respect to genotypic frequencies among maternal parents
(hermaphrodites) at reproductive age (39). Uniparental offspring bear twofold higher relat-
edness to their maternal parents than do biparental offspring, irrespective of the sex of the
offspring (39).

Among the unique features of maternal control of gynodioecy (29) is that gonochores
(females) as well as hermaphrodites contribute to offspring number. Accordingly, the average
effect of substitution depends on both sexes, with the offspring of females weighted by a factor
of 1/2, reflecting their biparental derivation, and the biparental and uniparental offspring of
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hermaphrodites weighted by 1/2 and 1, respectively (47). Our analysis confirms that under
this definition, the asymptotic local stability conditions agree with the Li-Price equation
(22).

5.4 Heritability

In populations in which modifiers of sex expression segregate, the average effect of substi-
tution (21) at a modifier locus is proportional to the difference in allele frequency between
gonochores and hermaphrodites. This property holds in all models studied: both zygote and
maternal control of androdioecy and gynodioecy ((35), (39), (45)). Because only hermaphro-
dites can self-fertilize in our models, heritability of sex may induce heritability of level of
inbreeding. For example, hermaphroditic offspring may have a higher chance both of having
descended from hermaphroditic parents and of being uniparental. Consistent with this ex-
pectation is the observation that gonochorous adults are more outbred than hermaphroditic
adults (Wolff et al. 1988; Collin and Shykoff 2003) in some gynodioecious species, including
Schiedea salicaria (Weller and Sakai 2005).

The uniparental proportion under androdioecy (8) or gynodioecy (13) corresponds to
the fraction of juveniles that are uniparental (Fig. 3). Among the key parameters of the
coalescent process that underlies the determination of the likelihood in the Bayesian sampler
of Redelings et al. (2015) is the uniparental proportion among adults. In the absence of
sex-specific viability selection (Z = 1), the uniparental proportion is identical between the
juvenile and adult stages. Alternatively (Z 6= 1), the uniparental proportions at the juvenile
and adult stages may differ if sex expression is heritable. As a consequence, our estimates
of the relative viability of gonochores (Z) are subject to the assumption that the population
has attained the ESS level of sex expression as a genetically monomorphic state: the out-
come of filtering of newly-arisen mutations of minor effect, for example. In particular, the
segregation of modifiers of sex expression in S. salicaria (Weller and Sakai 2005) may violate
this assumption.
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Appendix A Change of basis

Here, we describe the relationship between the one-generational, one-dimensional description
of evolution given by the Li-Price equation (22) and a full asymptotic, multi-dimensional local
stability analysis. We describe a state of the population from which the change in allele
frequency over a single generation does in fact correctly reflect the asymptotic condition for
initial increase in the full multi-dimensional system under weak selection.

A.1 Weak selection

Under selective neutrality of variation at the modifier locus, the genotypic frequencies ini-
tiated at any state comprising both alleles rapidly converge to a configuration character-
ized by equality between sex forms of genotypic frequencies (xi = yi) and fixation index
(Wright 1933) given by (24). In the absence of differences among genotypes in sex expres-
sion (30), the multi-dimensional transformations we address (Section (2.3)) have a dominant
eigenvalue of unity, reflecting preservation of allele frequency, with all remaining eigenval-
ues, corresponding to classical measures of disequilibrium, having moduli strictly less than
unity. Weak-selection systems (31) represent perturbations in parameter space of such neu-
tral transformations. For cases, including the maternal control model of gynodioecy (29),
in which the neutral transformation has repeated eigenvalues, the perturbed transformation
may have conjugate pairs of imaginary eigenvalues. Even so, any imaginary eigenvalues do
not determine asymptotic local stability because the dominant eigenvalue of a non-negative
matrix corresponds to a simple, real root of the characteristic polynomial (Gantmacher 1959).
Because eigenvalues are continuous in complex space (e.g., Serre 2010, Chapter 5), the eigen-
values of the weak-selection transformation depart continuously in the di = (hi − h2) (31)
from those of the neutral transformation. In particular, the dominant eigenvalue of the local
stability matrix under weak selection lies near unity, with the moduli of the other eigenval-
ues remaining strictly less than unity. As a consequence, examination of the value of the
characteristic polynomial of the local stability matrix under weak selection is sufficient to
establish local stability.
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A.2 Elucidating the Li-Price equation

To relate the Li-Price equation (22) to the full multi-dimensional local stability analysis, we
introduce a change of basis from the genotypic frequencies of the rare genotypes (AA and Aa)
in hermaphrodites and gonochores to allele frequency and disequilibrium measures. Here,
measures of disequilibrium reflect any departures of variables other than allele frequency
from their equilibrium values under the mating system in the absence of selection on the
modifier locus (h0 = h1 = h2). In particular, disequilibrium corresponds to the departure of
the frequency of heterozygotes (Aa) from the frequency associated with Fneut (24) and not,
in particular, from Hardy-Weinberg proportions (F = 0).

Change of basis: We determine a key vector such that the direction of change in allele
frequency over a single generation starting from this vector reflects the asymptotic behavior
of the system starting from an arbitrary position in the neighborhood of the fixation state.
Let M denote the local stability matrix under the original basis system. Because M is a
non-negative matrix, its dominant eigenvalue is non-negative and corresponds to a simple
root of its characteristic polynomial (Gantmacher 1959). Under the new basis, the local
stability matrix corresponds to

N = AMB,

for A translating from the old basis to the new basis and B translating from the new basis
to the old basis (AB = I). For z an arbitrary vector in the neighborhood of the fixation
state,

(I −N )z

describes change over a single generation. We define key vector z̃ such that change may occur
only in the first dimension (allele frequency), irrespective of the magnitude of disequilibria
in other dimensions:

(I −N )z̃ =


−∆z

0
...
0

 , (A.1)

in which ∆z denotes the change in allele frequency over a single generation. For M and N
n-dimensional matrices, z̃ is determined by the last (n− 1) rows of (I −N )z̃.

Asymptotic behavior: Here, we show that under weak selection (31), a one-generation
step from key vector z̃ (A.1) indicates the asymptotic behavior of the system initiated from
an arbitrary location in the neighborhood of the fixation state.

Let X represent the matrix obtained by replacing the first column of an n-dimensional
identity matrix by z̃. Multiplication of (I −N ) by X on the right produces

(I −N )X =

(
−∆z R2

R1 (I −N )n−1

)
, (A.2)

in which R1 is an (n− 1)-dimensional column vector of zeros, R2 is an (n− 1)-dimensional
row vector with elements equal to the corresponding elements of the first row of (I −N ),
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and (I −N )n−1 is the matrix obtained by removing the first row and column from (I −N ).
Taking the determinant of both sides of (A.2) produces

Det[I −N ]Det[X] = −∆zDet[(I −N )n−1], (A.3a)

for Det[(I −N )n−1] the principal minor obtained by deleting the first row and column of
(I −N ).

To achieve our objective of relating the Li-Price equation (22) to a full multi-dimensional
local stability analysis, we demonstrate that

Det[I −N ] ∝ −∆z

under weak selection (di near zero). This expression implies that the direction of change
over a single generation of the system initiated at z̃ (A.1) corresponds to the sign of the
characteristic polynomial of the multi-dimensional stability matrix evaluated at unity. Weak
selection (31) entails small differences among genotypes in sex expression (small di = hi−h2).
Because ∆z is O(di), (A.3a) implies

Det[I −N ]Det[X] = −∆zDet[(I −N∗)n−1] + o(di), (A.3b)

for N∗ the linearized transition matrix under neutrality (di = 0). To show that

Det[(I −N∗)n−1] > 0, (A.4)

we note that under neutrality, the absence of all disequilibria implies invariant gene frequency
in all models studied here (Section 2.3). Accordingly,

(I −N∗)e = 0,

in which N∗ denotes the linearized transition matrix under neutrality and e the unit vector
with first element equal to 1 and zeros elsewhere. This expression implies that the element
in the first column and row of N∗ corresponds to unity. Further, that the neutral system
converges to the state in which all disequilibria are absent implies that all elements in the
first column of N∗ other than the first are zero. As a result, N∗ has the form

N∗ =

(
1 . . .
R1 (N∗)n−1

)
,

in which (N∗)n−1 denotes the submatrix obtained by removing the first row and column
from N∗ and R1 is again an (n− 1)-dimensional column vector of zeros. The characteristic
polynomial of N∗,

Det[λI −N∗] = (λ− 1)Det[(λI −N∗)n−1] = 0,

has a unit eigenvalue (corresponding to allele frequency), with the remaining eigenvalues
(corresponding to disequilibria) given by the roots of Det[(λI−N∗)n−1]. That all eigenvalues
associated with disequilibria are strictly less than unity in absolute value implies (A.4).
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Appendix B Local stability analysis of Kryptolebias

model under zygote control of sex

We address the local stability of recursion system (23) near the state of fixation of the a
allele at the modifier locus. Under Kryptolebias model, sex expression is determined by the
genotype of the zygote itself and only males fertilize outcrossed eggs (ω = ∞ and Z > 0).
In the absence of males prior to the introduction of genetic variation at the modifier locus
(h2 = 1), eggs that are not self-fertilized fail to become zygotes. As a consequence, any allele
that induces the development of males (h0 > 0 or h1 > 0) derives an enormous selective
advantage from the fertilization of the proportion (1−sA) of all eggs produced. Accordingly,
we restrict further consideration to cases in which the common genotype produces some
males (h2 < 1).

We demonstrate that the sole condition for local stability corresponds to (34):

(ĥ− h2)(h2 − rL) > 0, (B.1)

for rL the larger root of the bracketed term in (32), viewed as a quadratic in h2:

qAZ(h2) = h2[d0sA/2 + d1(1− sA)]− d0d1sA/2, (B.2)

in which

d0 = h0 − h2
d1 = h1 − h2.

These results imply that the proposed ESS (10c) corresponds to an attracting evolutionarily
stable strategy under arbitrary dominance levels and intensities of selection on the modifier
of sex expression.

B.1 Linearized recursion system

At the fixation of the a allele, the population comprises only aa individuals (z2 = 1), with
normalizer

T = h2.

Upon the introduction of the rare alternative allele A, genotypes AA and Aa arise in low
frequencies (δ0 and δ1). Linearization of the full recursion system (23) by ignoring terms of
the second order in the δi produces

δ′0 =
sA(δ0h0 + δ1h1/4)

h2

δ′1 =
[δ1sAh1/2 + (1− sA)(δ0h0 + δ1h1/2)]

h2

+
(1− sA)[δ0(1− h0) + δ1(1− h1)/2]

1− h2
,
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with local stability determined by the dominant eigenvalue of

M =

(
sAh0
h2

sAh1
4h2

(1− sA)
(
h0
h2

+ 1−h0
1−h2

) [
sA

h1
h2

+ (1− sA)
(
h1
h2

+ 1−h1
1−h2

)]
/2

)
. (B.3)

Because this matrix is non-negative, its dominant eigenvalue is real and non-negative
(Gantmacher 1959, Chapter XIII). Its characteristic polynomial is proportional to

CAZ(λ) = [(λ−1)(1−h2)− (h2− ĥ)]

[
λ− sA(h0 − h1/2)

h2

]
+ (h2− ĥ)

h1
h2

[
λ− sAh0

2h2

]
, (B.4)

in which the proposed ESS proportion of hermaphrodites at birth corresponds to (10c), with
all biparental offspring derived from male parents (ω =∞):

ĥ = (1 + sA)/2. (B.5)

Setting the resident hermaphrodite fraction to the proposed ESS (h2 = ĥ), we find that
CAZ(λ) (B.4) reduces to

(λ− 1)(1− h2)
[
λ− sA(h0 − h1/2)

h2

]
= 0,

confirming a dominant eigenvalue of unity near the fixation of an allele that induces the
candidate ESS, as required for an ESS. Further, we show that ESS is evolutionarily attracting:
in a population fixed for an allele that specifies a sex ratio different from the ESS (h2 6= ĥ),
only alleles that locally bring the sex ratio closer to the ESS increase when rare (B.1).

A necessary condition for local stability is positivity of the characteristic polynomial
CAZ(λ) (B.4) evaluated at unity. In addition, we determine the sign of CAZ(λ) at two
values:

λ0 = 1 +
(ĥ− h2)(h0 − h2)

h2(1− h2)
≥ 0

λ1 = 1 +
(ĥ− h2)(h1 − h2)

h2(1− h2)
≥ 0.

(B.6a)

We find that CAZ(λ) changes sign between these values:

CAZ(λ0) ∝ (ĥ− h2)(h0 − h1)
CAZ(λ1) ∝ (ĥ− h2)(h1 − h0).

(B.6b)

B.2 Special cases

Under random mating (sA = 0), the ESS ĥ (B.5) reduces to 1/2 and the dominant eigenvalue
of local stability matrix M (B.3) corresponds to

1

2

(
h1
h2

+
1− h1
1− h2

)
.
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This condition implies that the fixation state is locally stable only if

(1/2− h2)(h2 − h1) > 0,

confirming both (B.1) and the classical results of Fisher (1930, Chapter VI): an equal sex
ratio at birth corresponds to an attracting ESS under random mating.

Under complete selfing (sA = 1), the ESS ĥ (B.5) is equal to unity. Matrix M(B.3) is
triangular, with the fixation state locally stable to the introduction of the A allele only if

(1− h2)[h2 −max(h0, h1/2)] > 0,

again confirming (B.1).

Under complete dominance of the rare allele (h0 = h1), characteristic polynomial (B.4)
reduces to

[(λ− 1)(1− h2)− (h2 − ĥ)(h2 − h0)/h2][λ− sAh0/(2h2)],

and the larger (rL) and smaller (rS) roots of (B.2) correspond to

rL = h0

rS = h0sA/2.

Local stability requires that both

(ĥ− h2)(h2 − rL) > 0

h2 > rS.
(B.7)

Because
ĥ > rS,

the necessary and sufficient condition for local stability under complete dominance corre-
sponds to the first inequality in (B.7), in accordance with (B.1).

B.3 General dominance and selection intensity

In the remainder of this section, we assume partial inbreeding (1 > sA > 0) and h0 6= h1.
We first demonstrate that (B.1) implies positivity of the characteristic polynomial (B.4)
evaluated at unity for all h0 and h1. We then show that this necessary condition for local
stability is in fact sufficient: the (non-negative) dominant eigenvalue of M (B.3) is less than
unity under (B.1).

Substitution of λ = 1 into the characteristic polynomial (B.4) indicates

CAZ(1) ∝ −(ĥ− h2)qAZ(h2), (B.8)

for qAZ(h2) given in (B.2). In accordance with our earlier exposition of the full recursion
system (23), neutrality (d0 = d1 = 0) implies that the eigenvalue associated with allele
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frequency corresponds to unity, with the frequency of Aa heterozygotes converging to the
state corresponding to Fneut (24) at rate sA/2.

We now assume that d0 or d1 is non-zero (h0 6= h2 or h1 6= h2). Because only hermaphro-
dites produce egg cells, the existence of the population monomorphic for the a allele implies
h2 > 0. If the rare allele determines complete male development (h0 = 0 or h1 = 0), then
smaller root rS = 0 and

CAZ(1) ∝

{
(ĥ− h2)[h2 − h1(1− sA/2)] if h0 = 0

(ĥ− h2)(h2 − h0sA) if h1 = 0.
(B.9)

If h0 = 0 and CAZ(1) > 0, then (B.6) indicates that

h2 < ĥ⇒ λ0 < 1 and CAZ(λ0) < 0

ĥ < h2 ⇒ λ1 < 1 and CAZ(λ1) < 0,

Similarly, under h1 = 0 and CAZ(1) > 0,

h2 < ĥ⇒ λ1 < 1 and CAZ(λ1) < 0

ĥ < h2 ⇒ λ0 < 1 and CAZ(λ0) < 0.

These relationships indicate the existence of a root of characteristic polynomial CAZ(λ) in
(0, 1), which confirms (34) and (B.1): CAZ(1) > 0 is both necessary and sufficient for local
stability under h0 = 0 or h1 = 0.

Restricting consideration to the remaining case (h0, h1, h2 > 0), we find that qAZ(h2)
(B.2) corresponds to a quadratic in h2 with a negative leading term with

qAZ(0), qAZ(max(h0, h1)) < 0 < qAZ(min(h0, h1)),

which implies that the larger (rL) and smaller (rS) roots of this quadratic lie in

rL ∈ (min(h0, h1),max(h0, h1))

rS ∈ (0,min(h0, h1)).
(B.10)

We first establish that
rS < 1/2 ≤ ĥ (B.11)

for all h0 and h1 in (0, 1]. In cases satisfying

min(h0, h1) < 1/2,

the smaller root rS (B.10) lies below 1/2 and consequently ĥ. If

1/2 < min(h0, h1),

both d0 and d1 are positive for h2 = 1/2, which implies

qAZ(1/2) = [d1(1− sA) + d0sA(1− h1)]/2 > 0
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and confirms (B.11).

For small h2, satisfying
h2 < rS < ĥ,min(h0, h1), (B.12)

CAZ(1) > 0 (B.8) and both λ0 and λ1 exceed unity (B.6). That the quadratic characteristic
polynomial (B.4) is negative at one of these values (CAZ(λ1) < 0 or CAZ(λ0) < 0) implies that
an eigenvalue in excess of unity exists. We conclude that under (B.12), alleles that increase
the proportion of hermaphrodites beyond the level specified by the resident homozygote (h2)
increase when rare, confirming (B.1).

We now consider higher hermaphroditic frequencies at the fixation,

rS < h2, (B.13)

under which (B.8) indicates

CAZ(1) ∝ (ĥ− h2)(h2 − rL),

the left side of (B.1). Accordingly, (B.1) (CAZ(1) > 0) is a necessary condition for local
stability. We now demonstrate that it is in fact sufficient for local stability under (B.13).
For

rS < h2 < ĥ,

CAZ(1) > 0 implies
rS < min(h0, h1) < rL < h2 < ĥ.

Expressions (B.6) indicate that if h1 > h0, λ0 < 1 and CAZ(λ0) < 0 If h0 > h1, λ1 < 1 and
CAZ(λ1) < 0. We conclude that quadratic characteristic polynomial (B.4) is negative at a
value (λ0 or λ1) less than unity, which implies that that CAZ(1) > 0 (B.1) is sufficient for
local stability. We now restrict consideration to

ĥ < h2,

which together with CAZ(1) > 0 implies

ĥ < h2 < rL < max(h0, h1).

Similar to the preceding case, h1 > h0 implies λ1 < 1 and CAZ(λ1) < 0, while h0 > h1
implies λ0 < 1 and CAZ(λ0) < 0 (B.6). We again conclude that the quadratic characteristic
polynomial (B.4) has a root less than unity, which implies that (B.1) is indeed necessary and
sufficient for local stability.

B.4 Limits of the Li-Price equation

Here, we illustrate that the weak-selection assumption is essential to the heuristically-
appealing Li-Price equation (22) and the change of basis that relates it to a full local stability
analysis. We provide an example showing that under strong selection on the modifier locus,
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the key vector z̃ (A.1) can become invalid and the sign of the characteristic polynomial
evaluated at unity insufficient to determine the asymptotic fate of a rare allele introduced
into a population monomorphic at the modifier locus.

Local stability matrix M (B.3) represents the linearized transformation with respect to
a basis comprising the frequencies of rare genotypes AA (δ0) and Aa (δ1). We adopt the
new basis described in Appendix A, which comprises the frequency of the rare allele (A) and
the departure of the heterozygote frequency from the proportion expected under neutrality
(h0 = h1 = h2):

t0 = δ0 + δ1/2

t1 = δ0 − (δ0 + δ1/2)Fneut,
(B.14)

for
Fneut = sA/(2− sA),

the fixation index under uniparental fraction sA (8). Matrix A,

A =

(
1 1/2

1− Fneut −Fneut/2

)
, (B.15)

translates points from the original to the new coordinate system. In the original coordinate
system, the key vector (A.1) z̃ corresponds to

Bz̃ =

(
δ̃0
δ̃1

)
, (B.16)

for B = A−1.

For illustrative purposes, we assume additivity in sex expression,

h1 = (h0 + h2)/2, (B.17a)

and set

h2 = 1/4

sA = 3/4.
(B.17b)

Under these assignments, the ESS ĥ corresponds to 7/8 and the characteristic polynomial
evaluated at unity (B.8) reduces to

CAZ(1) ∝ (ĥ− h2)(h2 − h0)[h2(2 + sA)− h0sA].

The sole condition for local stability (B.1), which reduces to

(ĥ− h2)(h2 − h0) > 0,

indicates that the fixation of the a allele resists the invasion of the rare A allele only for

h0 < h2 = 1/4. (B.18)
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Figure 5: Relative magnitudes of the frequencies of rare homozygotes (δ̃0, increasing curve)
and heterozygotes (δ̃1, declining curve) at the key vector (B.16) as a function of h0, the
sex expression parameter associated with the rare homozygote. At the vertical bar (h0 =
3/4), both elements have a discontinuity, which corresponds to the passage through zero of
Det[(I −N )n−1] in (A.3).

Indeed, the characteristic polynomial evaluated at unity CAZ(1) is positive in this range and
changes sign at h0 = 1/4. However, under intense selection,

h0 > h2(2 + sA)/sA = 11/12, (B.19)

CAZ(1) is positive in spite of the local instability of the fixation state.

Key vector (A.1), which connects the local stability criterion to the Li-Price equation
(22), remains valid only in the range

h0 < 1/2.

Figure 5 plots δ̃0 and δ̃1, elements of key vector (B.16), as a function of the value of h0.
The relative frequency of heterozygotes (δ̃1) becomes non-positive for h0 ≥ 1/2. In addition,
at h0 = 3/4, the principal minor Det[(I −N )n−1] in (A.3) passes through zero, inducing a
discontinuity in the key vector (vertical line in Fig. 5).

This simple example illustrates that the connection between the Li-Price equation (22)
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and the full local stability analysis holds only for weak selection, which corresponds under
(B.17) to the range 0 < h0 < 1/2 under additivity of sex expression.
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