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1 Abstract

2 Vocal communication evokes robust responses in primary auditory cortex (A1) of songbirds, and
3 single neurons from superficial and deep regions of A1l have been shown to respond selectively to
4 songs over complex, synthetic sounds. However, little is known about how this song selectivity arises
5 and manifests itself on the level of networks of neurons in songbird Al. Here, we examined the
6 network-level coding of song and synthetic sounds in Al by simultaneously recording the responses
7 of multiple neurons in unanesthetized zebra finches. We developed a latent factor model of the
8 joint simultaneous activity of these neural populations, and found that the shared variability in the
9 activity has a surprisingly simple structure; it is dominated by an unobserved latent source with
10 one degree-of-freedom. This simple model captures the structure of the correlated activity in these
11 populations in both spontaneous and stimulus-driven conditions, and given both song and synthetic
12 stimuli. The inferred latent variability is strongly suppressed under stimulation, consistent with
13 similar observations in a range of mammalian cortical regions.
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« 1 Introduction

15 Vocal communicators depend on auditory perception for survival and reproduction. Songbirds rely on
16 auditory processing to learn song, recognize individuals, and judge the fitness of potential mates (Catch-
v pole and Slater, 2004). Electrophysiological studies on the firing properties of neurons (recorded in brain
s regions that involve song perception) have typically recorded from one neuron at a time (Theunissen
v et al., 2004, Margoliash, 1997, Doupe and Konishi, 1991). Using this approach, auditory neurons that
2 respond more strongly to vocalizations than to similarly complex, non-natural sounds have been found
2 (Leppelsack, 1978, Leppelsack and Vogt, 1976, Leppelsack, 1983, Grace et al., 2003), and changes in
» single-neuron representations of songs versus other complex sounds are well documented (Woolley et al.,
s 2005, Schneider and Woolley, 2011, Jeanne et al., 2011, Meliza and Margoliash, 2012).

2 While a great deal has been discovered with single-neuron recordings, these studies cannot elucidate
»  the structure of correlated dynamics in neuronal networks. Recent studies have demonstrated the im-
s portance of neuronal network properties in gaining a better understanding of how the brain transforms
z sensory signals into information-bearing percepts (Schneidman et al., 2006, Jones et al., 2007, Pillow
s et al., 2008, Yu et al., 2009, Paninski et al., 2010, Berkes et al., 2011, Macke et al., 2011, Buesing et al.,
20 2014, Cunningham and Yu, 2014, Okun et al., 2015). These studies make use of the fact that simultane-
2 ously recorded cells generically show dependent trial-to-trial and/or temporal activity fluctuations, called
a shared variability (Sakata and Harris, 2009, Churchland et al., 2010, 2012, Smith et al., 2013, Hansen
» et al., 2012). Shared variability is shaped by a large number of phenomena, such as common, unob-
1 served inputs originating from presynaptic neurons (Zohary et al., 1994, Shadlen and Newsome, 1998) or
3 by modulatory states generated internally, like attention, arousal, or adaptation (Cohen and Newsome,
55 2008, Nienborg and Cumming, 2009, Ecker et al., 2010, 2014, Harris and Thiele, 2011). Shared variability
s has been shown in some cases to reflect the anatomical connectivity of the underlying circuitry (Gerhard
w et al., 2013, Okun et al., 2015). A detailed characterization of shared variability is crucial for understand-
3 ing of neural coding as it can dramatically influence the fidelity of a population code (Averbeck et al.,
» 2006, Cohen and Kohn, 2011). Analyzing and modeling shared variability therefore holds promise for
w0 uncovering potential mechanisms of stimulus selectivity in sensory areas such as the avian Al.

a When analyzing multi-dimensional activity recordings, we would ideally characterize and quantify

2 shared variability and decompose it into separate sources, corresponding to distinct physiological mech-


https://doi.org/10.1101/113670
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/113670; this version posted March 4, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4 anisms, which are superimposed in the raw data. These desiderata cannot be met by simple analyses
« exclusively based on noise correlations, highlighting the need for improved data analysis techniques.
s Factor models, which are generalizations of Principal Component Analysis and classical Factor Analy-
s sis (PCA and FA; see (Cunningham and Ghahramani, 2015) for a review), have proven very useful in
« this context, allowing one to identify anatomically defined cell types (Buesing et al., 2014), to identify
s task-related processing stages of network activity (Petreska et al., 2011), to characterize the effect of
w0 anesthesia or attention on population firing (Ecker et al., 2014, Rabinowitz et al., 2015), and to show
so that the relative contribution of different sources of variability can vary across brain regions (Goris et al.,
s 2014).

52 Here we study the multi-dimensional structure of neural activity in the zebra finch primary auditory
53 cortex observed with multi-electrode extra-cellular recordings. By applying a latent factor model, we
s« perform a detailed analysis of the shared variability and show that it has (to good approximation) only
s one degree-of-freedom, suggesting that trial-to-trial variability in the recordings can be interpreted as
ss generated by an unobserved network state that influences simultaneously recorded neurons in a highly

57 coordinated way.

» 2 Materials and Methods

s 2.1 Stimuli

o0 Two classes of sound stimuli were used: the songs of 20 adult male zebra finches and 10 unique samples
s of modulation-limited (ML) noise. ML noise is correlated Gaussian noise designed to match song stimuli
e in power, frequency range (250-8000 Hz), and maximum spectral and temporal modulation frequencies
s (Schneider and Woolley, 2011). Each ML noise stimulus was 2 seconds in duration. Stimuli were delivered
e free-field through a flat frequency response speaker positioned 20 cm in front of the bird, at a mean
s intensity of 65dB sound pressure level (SPL). Between 30 and 40 response trials were obtained for each
s of the 10 ML noise stimuli. Between 15 and 20 trials were obtained for each of the 20 songs. Trials
o7 for different stimuli were presented in pseudo-random order. Inter-trial intervals were determined by

s randomly sampling from a uniform distribution between 2s and 3s.
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o 2.2 Electrophysiology

n Two days before recordings, birds were anesthetized with a single intramuscular injection of 0.04 ml of
n  Equithesin and placed in a custom-designed stereotaxic holder. Craniotomies were made 1.3 mm lateral
2 and 1.3mm anterior from the bifurcation of the midsagittal sinus (stereotactic coordinates). For each
7z bird, a small metal post was then affixed to the skull using dental acrylic, and a grounding wire was
7 cemented in place with its end just beneath the skull, approximately 5 — 10 mm lateral to the junction of
7 the midsagittal sinus. Birds recovered from surgery for two days. Recordings were made in Al regions
7 CLM and Field L subregions L1, L, L2a, L.2b, and L3 in head-fixed, unanesthetized, male zebra finches
7 (Taeniopygia guttata, n = 6). Recordings were made using a planar multichannel silicon polytrode
s (4x4 electrode layout, 177 um? contact surface area, 100 ym inter-contact distance in the dorsal-ventral
79 direction and 125 pm inter-contact distance in the anterior-posterior direction; NeuroNexus Technologies).
so  Each region was recorded in 4, 5 or 6 out of 6 birds (CLM: birds 1, 3, 4, and 5; L1: birds 1, 2, 4, and 5;
s L2a: birds 1 to 5; L2b: birds 1 to 6; L: birds 2 to 6; L3: birds 1 to 5), yielding 219 single units recorded
22 from superficial regions CLM and L1 (CLM: 153, L1: 66), 377 from intermediate regions L2a, L2b and L
&3 (L2a: 47, L2b: 47, L: 283), and 237 from the deep region L3. For each animal, recordings were performed
s daily over approximately one week, and each recording session was approximately 6 hrs long. Signals
ss  were amplified and band-pass filtered between 300 and 5000 Hz, digitized at 25 kHz (RZ5; Tucker-Davis

ss  Technologies), and stored for off-line processing.

e« 2.3 Data Analysis

s 2.3.1 Spike sorting

& Data analysis was carried out in MATLAB (Mathworks). Spikes were sorted offline with the automated
o sorting algorithm WaveClus (Quiroga et al., 2004). First, a nonlinear filter that increases the signal-to-
o noise ratio (by emphasizing voltage deflections that are both large in amplitude and high in frequency
» content) was applied to the bandpass filtered voltage trace of each channel (Kim and Kim, 2000, Hill
i et al., 2011). Second, spikes were detected and sorted in an unsupervised manner by WaveClus. Third,
w the output of this algorithm was refined by hand for each electrode, taking into account the waveform
s shape and interspike interval distribution. To quantify the quality of the recording we computed the

o signal-to-noise (SNR) of each candidate unit as the ratio of the average waveform amplitude to the SD of
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o the waveform noise (Hill et al., 2011, Kelly et al., 2007). Only candidate units that had an SNR greater
s than 3.5 were considered single units and were included in the analyses (median SNR across all included

oo units = 7.47). This procedure yielded a total of 833 units recorded during 96 recording sessions from 6

100 birds.

w 2.4 Poisson linear dynamical system model

12 Here we give the detailed definition of the Poisson Linear Dynamical System model (Fig. 1) and describe
w3 the associated inference and parameter estimation methods. For the sake of simplicity, we break the
s exposition into two parts. We first describe the peristimulus time histogram (PSTH) model that captures
s the average evoked neural activity. Second, we discuss the full Poisson linear dynamical system model
s (PLDS, Macke et al. (2011)) that also captures trial-to-trial variability around the average responses.

107 To begin, we need to define some notation. For each of the 30 different stimuli (song and ML noise), we
s here considered 15 trials. Each data set also included 450 trials consisting of 500 ms of spontaneous neural

wo  activity without auditory stimulation. We binned the recorded data into spike counts in windows of size

o 50ms. For a given data set, we denote with y}}™ the spike count of neuron k = 1,..., K (where K ranged
w from 5 to 29 across data sets) during the presentation of stimulus m =1,..., M (where m = 1,...,20 are
w2 song, m = 21,...,30 are ML noise stimuli and m = 31 for spontaneous activity in time bint =1,...,T},

us  (where 52 < T, < 69 for song/ML noise stimuli and T5; = 10) on trial n = 1,..., N (with N = 15 for

us  song and ML noise stimuli and N = 450 for silence).

s 2.4.1 PSTH model

us  First, we fitted a simple model to capture average evoked responses across trials as well as slowly varying

u7 aspects of the data. For each data set, we modeled the spike count ;" as a Poisson random variable

us  with rate f(A7}"):

yi" ~ Poisson(f(\E") (M)
B s

us  The signal drive terms s7} are the same (i.e. constant) for all across trials n and capture the trial-
mn

120 independent influence of the stimulus on the recorded activity. The gain modulation g;*" is constant

21 during each stimulus presentation, i.e. independent of time bin ¢, and therefore captures slowly varying
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122 aspects of the data. These signal and slow gain modulation terms together constitute the PSTH model.
123 The non-negative function f is termed the transfer function. In the context of generalized linear models

14 it is generally referred to as the inverse link function. In the following we will use:

f(x) = log(l + exp(z)).

s In section 2.4.11 we discuss the choice of transfer function in greater detail.
126 We use the notation s}' = (5?,1» .. .,stTm)T e RT" and g = (g7, .. ,glfan)T c RN. We fitted
127 the parameters to the data using l>-regularized maximum likelihood estimation. For each neuron k and

s stimulus m we optimized the penalized log-likelihood log p(y) =: LpsTh of the data under the model:

g besmi= 3 B los S + 01 — S5 + 1) + 2 s — sl + 22 g3

129 where || - ||2 is the Euclidean norm, sy = 1/T™ %", s7% and 1 is the T"-dimensional vector with all
1 entries equal to 1. We optimized the cost function using the I-BFGS pseudo-Newton method (Boyd and
1w Vandenberghe, 2004). The cost function is concave, as the transfer function f is convex, log-concave, and
12 monotonically increasing, guaranteeing that standard optimization methods will find the unique global
113 maximum (Paninski, 2004).

134 We determined the penalty parameters A; and Ay by a grid search on the five-fold cross-validated data

s likelihood, yielding A; = 1.5 and Ay, = 10. Given the optimal \s, A, we re-fitted s;*, g;" to the complete

135 data set. We denote the PSTH model parameters by 0pstn = (8, 8).
o 2.4.2 PLDS model

s The PSTH model described above captures average neural evoked responses as well as slow response
139 variability on time scales larger than a trial. To also capture neural response variability around the

uo  PSTH on shorter time scales we added an additional term z};™ to the model described in eqn. (1):

mn .__ m mn mn
At = St gn 2 (2)

11 If no restrictions are placed on z, this model would overfit: each 2}}" could be chosen to explain each cor-

1z responding observed spike count y;}". As we were interested in analyzing variability that is shared across

s neurons, we restricted the vector z"" := (277", ..., 2%") T by modeling it as a linear function of a smaller
s number d of shared latent factors 2" for j = 1,...,d. Using the notation xj"" = (m{"t”, e ,x?”;)—r, we
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us  write:
mn o mn
zZ; = Ox™". (3)

us  Eqn. (3) models the variability as being low-rank or low-dimensional, i.e. the variability has support on
w  a d-dimensional subspace spanned by the columns of the loading matrix C' € RE*?. The vector x"" was
us  modeled as a multivariate gaussian random vector. Because each component of x in general influences all
1o neurons (to the extent determined by C), this term imparts the shared portion of the data variability; as
150 such we will hereafter refer to z as the shared variability term. From now on we will drop the superscript
s n for x and z, as we modeled trials as independent and identically distributed (i.i.d.). Further, we also
152 drop the superscript m as the stimulus dependence will become apparent below.

153 To model temporal structure in the data, we put a first-order auto-regressive prior — also known as

15« a linear dynamical system prior — on xy:

Xip1 = Axp €4 (4)
e ~ N(0,QM) (5)
x1 ~ N(0,Q7"). (6)

155 To allow for different levels of variability under the three experimental conditions m = 1,2, 3 (correspond-
15 ing to song, ML noise, and no stimulus, respectively), we introduce different covariance matrices Q™ for
157 the zero-mean innovations e;. The factors in the first time step x; have zero mean and covariance Qg’.
155 We denote the PLDS model parameters as fprps = (4,Q,C) with Q = (Q', Q?, Q3,Q}, Q%,Q3).

150 Empirically, we found that the magnitude of the gain modulation g is small compared to the variability
w0 z. However, fitting PLDS models without the slow gain g to the same data resulted in the variability z
11 to model slow non-stationarities in the data with time constants > 1s. Therefore we included the g-term

12 in the model to prevent these slow contributions from leaking into the fast variability z.
13 2.4.3 Inference in the PLDS model

e Given data y and the model parameters 6 := (6psTh, OprLps) we are interested in inferring the latent
165 variables x. For the PLDS model with transfer function f(z) := log(1 + exp(x)), exact inference is
w6 intractable, and we therefore utilize Laplace inference, a general and widely used approximate inference

17 method. For Laplace inference we determine the maximum a posteriori (MAP) value x:

X = argmax, logp(x|y,¥6). (7)
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s We optimize eqn. (7) by Newton’s method, which can be carried out efficiently in the PLDS model as
160 the Hessian of the objective function is block tri-diagonal, and matrix equations involving the Hessian
o can therefore be inverted with computational time scaling linearly in 7. The Laplace approximation
i q(x) = p(x|y,0) is then defined as a normal distribution NV (x|%X, —H (X) ') centered at X with a covariance
1> matrix given by the negative inverse Hessian —H (%) ™! of log p(x|y, #) evaluated at %X. Further details on

w3 Laplace inference in dynamical system models are given e.g. by Paninski et al. (2010).
s 2.4.4 Model selection on number of latent factors

s For each data set, we chose the dimension d of the PLDS model in the following way. We fitted model
we parameters 6 for each latent dimension d = 1, ..., 10 as described below and picked the dimension d which
17 maximized the five-fold cross-validated log-likelihood log p(ytest) on held-out test data under the model.
s Calculating this quantity for the PLDS model is intractable, so we replaced the marginal log-likelihood
wo by the following “variational” lower bound which can be evaluated more easily (dropping the subscript

10 Of Yiest for simplicity):

Lpips(q,0) < logp(yl|6) (8)

Lpips(q,0) = —Drrla(x)|p(x)] + Eq[log p(y[x)], (9)

w where E4[-] denotes the expected value under a distribution ¢. This bound holds for any distribution
w2 ¢ (Emtiyaz Khan et al., 2013), but we seek to evaluate it using the Laplace approximation for q. The
13 first term of eqn. (9) is given by the Kullback-Leibler divergence between ¢(x) and the linear dynamical
e system prior p(x). As both distributions are normal, one can evaluate this term analytically as a function
155 of the model parameters 6 as well as the mean and covariance matrix of ¢q. The second term of eqn. (9) is
186 the expected value of the log-likelihood under the Laplace approximation. For our choice of the transfer
17 function f, we cannot evaluate this term analytically. We therefore resort to numerical integration using

188 the fact that the likelihood decomposes into a sum over stimuli, trials, neurons and time steps:

E logp(ylx)] = > Egllogp(yii"[x)] (10)
m,n,k,t

= > W Egllog FOE")] = Eq[f(AF)]) + const. (11)
m,n,k,t

1o Under the approximate posterior g, the A} are normally distributed. Therefore, it is sufficient to evaluate

w  the Gaussian integrals En(aju,02)[f(a)] and Epr(q|u,02)[log f(a)] for different means o and variances o2.
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w1 We tabulated these two functions on a two-dimensional grid over (u,c?) and approximated the actual

12 values by linear interpolation.
13 2.4.5 Estimation of PLDS model parameters

s Given the collected spike count data y, we estimated the parameters § = (pgTH, fpLps) in the follow-
15 ing way. For simplicity, we first estimated the PSTH model parameters fpsty as described in section
ws  2.4.1. Then, keeping OpsTy fixed, we estimated the PLDS parameters 6pr,ps, using the following slightly

w7 modified model. We add a stimulus dependent bias parameter b7 to eqn. (2):

k= Sk R+ zp bR (12)

s The rationale behind these additional parameters is the following. By construction, for different stimulus
o types (song vs. ML noise vs. silence) the Gaussian variables 2} have different variances. Due to the
20 non-linear transfer function f, changes in variance of z;}" will also cause changes in the mean of y;}", and
20 not only its variability. Hence, we add biases b]* to compensate for such changes in mean of y;}" caused
22 by variance of zj;". After estimation of the model parameters fpr,ps and b = (b7")s k, we eliminate the
23 latter by absorbing it into the signal component s, i.e. 57} < s} +b;". In general, this two-stage procedure
2 might lead to sub-optimal estimates compared to jointly estimating fpsty and fprps. However, given
205 its simplicity and the good model fits, this approach is well justified.

206 We estimated 0pr,ps and b using a variant of the expectation-maximization algorithm (Dempster et al.,
27 1977), an iterative algorithm consting of an expectation (E-step) and a maximization (M-step) (Smith
28 and Brown, 2003, Kulkarni and Paninski, 2007). In the E-step, we need to infer moments of the posterior
200 distribution p(x|y) over the latent factors x; as the exact computation of these moments is intractable for
20 the PLDS, we used the Laplace approximation described in section 2.4.3. The M-step for the PLDS model
an - decomposes into two separate problems: first, updating the parameters A, @, Qo of the linear dynamical
22 system prior, and second, estimating the loading C' and biases b of the observation model eqn. (3). The
23 former updates are essentially the same as described e.g. in Macke et al. (2011), Buesing et al. (2012),
2 only slightly generalized to account for the different covariance matrices for different stimulus conditions.
25 For updating the observation parameters, we need to find the new loading C' and biases b that maximize

26 the lower bound Lpppg defined in eqn. (8) given the Laplace posterior approximation ¢(x) on the training
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a7 data:

max Lpips(q,0) = > Eg[L"(x,C,b)] + const (13)
218
L(x,C,b) = > logp(yi"[x,C,b). (14)
m,k,t

20 To circumvent the intractability of this problem, we used stochastic gradient ascent on L to update C, b
20 (Bottou, 2010). We detail this approach for the loading matrix C'; updates for b were analogous. Instead
a1 of exactly evaluating the cost function L and its gradient V, L at each optimization iteration, stochastic
2 gradients use a cheap stochastic approximation to these quantities, and perform well in practice. Let C!
23 (and analogously bﬁﬂm) denote the estimate of C at iteration [ of the inner loop of the M-step. We update

24 the estimate in the following way:

cHt = Cl+al-ZV£"(5<l,Cl,bl)
\v/ En =l Cl bl ) _ fl lmn o )\lmn ~lmn 15
(LG OBy = S EGE i - o) o (15)
m,t
A = s L

!is a sample from the Laplace approximation to the posterior X! ~ ¢(-|y), with component xlm”

225 Here, X
»s  for stimulus m on trial n in time bin ¢ for factor j. As can be seen from eqn. (15), it is straightforward

27 to evaluate the gradient V. L", in contrast to V. L. The gradient with respect to b} reads:

(W L%, C', b)) Z ﬁnkw4%my
Ak
2 The decreasing learning rate o! is given by:
0
l a
= —. 16
“ 1+17-a0 (16)

20 In each M-step we did 100 passes through the data set, i.e. I =1,...,100. We set o to depend on the

)—1.5

x0 iteration number a of the outer EM-loop according to a® = (102 + a . Parameters were initialized

a1 using Exponential Family PCA (Collins et al., 2002).
2 2.4.6 Decomposition of variability

213 Here we outline how we quantified the magnitude of the three model contributions to the hidden rate
2 A as in eqn. (2). We denote with E,[-] the empirical average ZnN:1() over trials n = 1,..., N and

o analogously Ei, E,,, Ex; let B[] = En[En[]], and E denote the expectation over x and z. Using this

10
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notation, we can write the total covariance between A of neuron k& and neuron j averaged over stimuli,

trials and time as:

S = EnnB[O" = M) AJ" = A)] (17)

from which the following identity can be derived:

B = BadGh S -3)  Ewl - g+ EnBlg]

=: Zj + Ei y + ij,
where 5, = E,;[s}4] (and analogously g,). According to eqn. (19), the variability of the pre-intensities
can be decomposed into a stimulus contribution ?, a contribution %9 due to the slow gain modulation
and the shared noise contribution %* modeled by the PLDS. »¢ and ¥¢ can directly be computed from

eqn. (19) using the model parameters §. The PLDS contribution can be computed from the parameters

Op1,ps in the following way:

2 Emt B[22 ] = By [CTICT] (20)

Iy = Ex'x'], (21)

where II}" is the prior covariance of the factors x}* during presentation of stimulus m at time step ¢. The

latter can be calculated using the standard recursion:
" = Qg (22)
mo= APAT + Q™. (23)
We define the magnitude of the stimulus drive for a neuron k as X3, , and analogously X7, and X7,. We
quantified the overall magnitude of the stimulus drive as the trace norm of ¥° (scaled by the number of
neurons K), i.e. K~ !trace[X®] = Ex[X5,] (analogously for magnitudes of gain and shared variability).

We also computed these magnitudes for the three experimental conditions individually by not taking the

average [E,,.
2.4.7 Coordinate transformation of PLDS model

It is known that many latent factor and state-space models (such as the PLDS) are non-identifiable, i.e.

different model parameters can generate the same distribution over observed variables. For example,
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we can arbitrarily scale up the latent factors x by a scalar « if we scale down the loading matrix C
by a1 at the same time, leaving p(y|fprps) unchanged. Buesing et al. (2012) shows that an arbitrary
invertible linear transformation can be chosen to transform the latent factors, effectively choosing different
coordinate systems to represent the latent factors. Here we make the following choice for the latent
coordinate system to resolve this non-identifiability. We transform x such that the loading matrix C' is
orthogonal (CTC = I) and the averaged prior covariance matrix E,,;[IT"] is diagonal with decreasing
entries on the diagonal. Furthermore, without loss of any generality we invert the signs of each latent
factor j such that its corresponding column C'; of the loading matrix has at least as many positive entries
as negative ones. This convention guarantees that different factors project to orthogonal subspaces (as
CTC = I) and that factors are sorted with respect to their magnitude, i.e. the amount of variance of A

they capture. Using this convention, the latent factors are uniquely defined.

2.4.8 Sign of loading matrices

For each PLDS model, we report the fraction of neurons which have a positive loading coefficient Cj
onto the first latent factor x1;. By definition, this factor captures the largest fraction of shared variability
of the pre-intensity A, and therefore neurons that have loading coefficients Cy; with the same sign are
highly likely to have a positive noise correlation. We do a similar analysis for the signal and slow gain
contributions ¥¥, v € {s,g}. To this end, we compute the first principal component PC¥ € R¥ of ¥V

and report the largest fraction of neurons that have the same sign onto PC".
2.4.9 Quantifying dissimilarity between model contributions

We quantify the dissimilarity between two variance contributions vy and vy for vy, 15 € {s, 2z, g} using the

angle p(v1, 2) between their corresponding covariance matrices:

tr(zv1pve )
v, V = acos| —=—>——=—"71, 24
p(v1, o) <||EU1|F||EVQF> (24)

where || - || is the Frobenius norm. We compare p to the null distribution of angles between randomly
oriented covariance matrices with the same eigenvalue spectra as ¥ and X*2. We can sample from
this null by doing an eigenvalue decomposition of ¥** = USU " and generating a surrogate covariance
matrix £¥* = USU T, where U is a random matrix sampled from the uniform distribution over orthogonal

matrices and computing the resulting angle j(11, 1) between ¥ and ¥2.
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2.4.10 Autocorrelation functions and time constants

To quantify temporal continuity in the variance contributions, we computed their temporal autocorre-
lation functions R. For the signal component, we first computed for each neuron k the time-lagged

covariance Ii}:

Ri(7) = Emnl(s¥4r — 58" (s — 5] (25)

3 = Eyfsigl-

Normalizing R (1) by Ry (0)~! yields R; (7). We report R*(r) averaged over all neurons from all data sets.
For the PLDS model, we computed the autocorrelation on the posterior distribution over the variability
term z. We first computed the posterior mean z};” = E[2}}"|y]. Based on this we compute R*(7) in
analogy to eqn. (25). This definition of R* also ignores the contribution of the posterior uncertainty.
We found empirically that this contribution is small compared to the contribution of the posterior mean.
We also qualitatively compared the posterior to the prior autocorrelation functions, finding only small
differences.

We also characterize the temporal properties of the data by computing the time constant of the
dynamical system prior that was learned when fitting the PLDS model parameters 6. The time constants
7; are related to the eigenvalues e; of the dynamics matrix A as:

1
T = ——

|loge;|

2.4.11 Choice of transfer function

In most previous studies which applied latent variable models with Poisson observations to neural record-
ings, the transfer function was assumed to be f(z) = exp(x), as this choice offers multiple algorithmic
advantages (Macke et al., 2011, Vidne et al., 2012, Paninski et al., 2010, Buesing et al., 2014). From a
scientific viewpoint, it has been argued that neural response variability, especially in the visual system,
can be modeled as a multiplicative gain modulation (Goris et al., 2014). Such a multiplicative noise model
is equivalent to an additive noise source in the log-domain, and hence multiplicative gain modulation nat-
urally falls within the class of PLDS models with exponential transfer function. For the data considered
here, we found that the PLDS model with exponential transfer function could model the activity dur-
ing stimulus presentation accurately. However, the model failed to capture the statistics of spontaneous

activity: the variances and cross-covariances of the neural activities were substantially over-estimated
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(data not shown). We found that a PLDS with the transfer function f(x) = log(1+ exp(z)) did not have
the same shortcoming and that it also improved the test log-likelihood significantly over a model with
f(x) = exp(z) when trained exclusively on spontaneous activity. (Recently-developed methods (Gao
et al., 2016) permit the nonlinearity to be estimated directly from data on a neuron-by-neuron basis; we

leave this extension for future work.)

3 Results
3.1 Latent factor model captures shared variability

We fitted the PLDS model separately to each of the ten recording sessions from the deep region of the
songbird Al. One example fit for a data set with 29 simultaneously recorded neurons is shown in Figure
1B. A first observation that can be made from this example is that, in contrast to the stimulus drive
s¢, the shared variability z; has a simple structure. Namely, z; is highly coordinated across neurons, to
the effect that the firing rate fluctuations of most neurons increase (or decrease) at the same time. This
is a result of the fitted models being “low-rank”, i.e. a large fraction of the variance of z; is captured
by the first latent factor x1 ; (analogous to the first principal component in a PCA analysis). This can
also be seen from Figure 1C: the time series of the dominant first factor z;; is highly similar to that
of the summed population noise; we defined the latter as the total number of spikes summed across the
recorded population minus the total number of spikes predicted by the PSTH (Macke et al., 2011, Okun
et al., 2015). Furthermore, x ; summarizes the trial-to-trial variability across the population for repeated
presentations of the same stimulus (see Figure 1D).

The low-rank nature of the shared variability z; in the example data set of Figure 1B was found in
all of the ten datasets we analyzed (Figure 2A). Although the optimal number of latent factors (chosen
to maximize the likelihood evaluated on held-out test data) ranged from 1 to 7 for different data sets, at
least 88% of the variance in z; is captured by the first latent factor ;1 ; in all data sets. Averaged over all
data sets, the first component captures more than 96% of the shared variability of the full model. This
means that shared variability in our recordings is dominated by a single, unobserved noise contribution,
and not e.g. by independent noise terms for pairs of neurons. In contrast to z;, the stimulus drive s; is not
low-rank: its variance is distributed across many dimensions (Figure 2A), resulting in the first principal

component capturing on average only 31%, and at most 53% across all data sets. We also found that the
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parsimonious description of the the population variability provided by the model crucially depended on
the nonlinearity of the transfer function f: linear factor models failed to discover the low-rank structure
of the data. We show the results of directly applying PCA to the raw population spike count variability,
which we computed by subtracting the population PSTH from the spike counts y; (Figure 2A).

In spite of the simple structure of the fitted PLDS models, they capture the recorded data well. We
compared various summary statistics computed from the raw data with those computed from surrogate
data generated by the models. We find that the sampled surrogate data reproduces average single cell
properties (mean firing rate and PSTH, data not shown). The PLDS model also captures the variability in
evoked responses faithfully (Figure 2B-E), such as single cell noise variances (Figure 2B). Furthermore, the
model explains 81% of all pairwise noise correlations computed from both stimulus conditions together,
while also matching noise correlations under the two different stimulus conditions separately (Figure
2C). Figure 2E shows the noise correlation matrix under the song condition for an example data set
together with the corresponding signal correlation matrix, illustrating the match between experimental
and model surrogate data. Beyond single cell and pairwise noise statistics, the model also captures the
statistics of the overall population activity; for example, Figure 2D shows that the model matches the
observed empirical distribution over the summed population spike count defined above, also capturing
rare events with relative frequency of 107* (which occur at most 2-3 times in the recorded data). On
held-out test data, we find that averaged across all data sets, the PLDS model provides 4.5 - 1072 more
bits of information per spike compared to a model without the variability term z;. This performance is
comparable to the highest values previously reported for population variability models applied to data
from primate motor cortex (Pachitariu et al., 2013, Gao et al., 2015). Taken together these findings
establish that a large fraction of the population shared variability in the deep region of the songbird Al

is explained by a single latent factor.

3.2 Shared variability is stimulus dependent in the deep region of avian A1l

Having established that the PLDS model provides a faithful statistical description of the recorded data,
we quantified and characterized the three contributions to the population response in the model, i.e. the
signal drive s;, gain modulation g and variability z;. First, we used the model to investigate population
aspects of song selectivity, by comparing the magnitude of the model contributions between the song and

ML noise stimulus conditions. We quantified the magnitudes of the individual terms by the trace norm
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of their respective covariance matrices normalized by population size K, e.g. for the stimulus drive by
tr[Cov(s)]/K; this can be conveniently interpreted as the average power of the signal drive per neuron.
We found that in the deep region of avian A1l the stimulus drive is larger for song than for ML noise
stimuli (Figure 3A). In addition to the signal drive, the model captures a considerable contribution of
shared variability in the data, which for ML noise is on the same order of magnitude as the stimulus
drive, indicating strong, shared fluctuations in this neural population. Notably, the population variability
is substantially larger (by roughly a factor of 2) under the ML noise compared to the song stimuli,
showing that the stimulus class has a large influence on the shared variability of local populations of
simultaneously recorded neurons. Finally, we find that the slow gain modulation g only captures a small
amount of variance in the data and is of roughly the same magnitude under song and ML noise stimuli.
In Figure 3A the lighter shaded areas of the bars represent the fractions of variance of each term that
are captured by a one dimensional approximation, i.e. the first principal component or the first factor
x1,: respectively. For the signal drive s; as well as the gain modulation g, less than half of the variance is
captured by the first component, indicating that these two effects are heterogeneous, with a much larger
effective dimensionality than the shared variability z; (c.f. Figure 2A).

In addition to the magnitude and effective dimensionality of the terms s;, g and z;, we analyzed
their similarity by comparing the directions they spanned in the firing rate space (or more precisely in
the K-dimensional pre-intensity space). We quantified this by computing the subspace angle, which lies
between 0 (perfect alignment) and /2 (orthogonality, for details see Materials and Methods). Figure
3B shows that the angle between the dominant subspace of the shared variability term z; under song
stimuli and under ML noise stimuli is small: for all data sets the angle was less than 0.1, indicating that
the shared variability z; is highly aligned across stimulus classes when compared to the null hypothesis
of random orientation with the same spectra (p < 107°,Wilcoxon rank sum test). In comparison, the
median angle between shared variability z; and stimulus drive s; was 0.90. (Although substantially
larger than that for z; across stimulus classes, the contributions z; and s; to the population response are
still significantly more aligned than expected under the null hypothesis; p < 107, Wilcoxon rank sum
test.) Hence, shared variability is much more similar across stimulus conditions than it is to stimulus
drive within the same condition. This implies that the stimulus class largely changes the magnitude of

shared variability and not its direction in the K-dimensional pre-intensity space. We verified that this

16


https://doi.org/10.1101/113670
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/113670; this version posted March 4, 2017. The copyright holder for this preprint (which was

391

392

393

394

395

396

397

398

399

400

401

403

404

405

406

408

409

410

413

414

415

416

418

419

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

surprisingly simple interpretation derived from the model is indeed an accurate description of the raw
data. Figure 3C shows the difference of all elements of the noise covariance matrices under song and
ML noise stimuli. The PLDS model prediction, consisting of a simple change of magnitude of shared
variability and not its direction, matches the data to a large extent (R% = 0.87).

We next analyzed the temporal properties of the essentially one-dimensional shared variability term
z;, by computing the autocorrelation of z; ; for each neuron £ and averaging over the population. Figure
3D shows that the autocorrelation of the shared variability decays after roughly 200 ms. This is consistent
with the time constants of the dynamical system prior of the latent factors x; learned by fitting the PLDS
to the data: the average time constant (pooled across data sets) is 105+ 114 ms (mean =+ std. deviation).
Taken together with the above finding that the gain modulation g is small, we concluded that most
network-level variability in these recordings takes place on fast time scales below 200 ms.

Although largely temporally unstructured, the shared variability term z; seems to be highly structured
with respect to its influence on the recorded neurons (see Figure 1B). Indeed, we found that almost all
neurons k have a positive loading coefficient Cj; onto the first factor z1; of z; (see Figure 3E). This
means that the network activity fluctuations captured by 1 ; cause a temporally coherent activation and
deactivation of the majority of recorded neurons. This finding is also in accordance with the fact that
most noise correlations in the data are positive (see Figure 2C). For comparison, we also analyzed the
signs of loadings onto the first principal components of the stimulus drive s; and gain modulation g. We
found a similar if less pronounced effect for the stimulus drive, indicating that s; also induces mostly
positive signal correlation, whereas the gain modulation influence is largely unstructured.

Taken together, the PLDS model-based analysis presents the following parsimonious description of
the shared population variability: the stimulus identity modulates the magnitude of variability of a
very simple (i.e., approximately one-dimensional) network state, modeled by the first latent factor. The
activity of most neurons are simultaneously increased and decreased, reflecting the fact that observed

noise-correlations are positive to large extent.

3.3 Latent shared variability is spatially structured in the deep region of
songbird Al

As discussed above, we found a strong stimulus effect on the level of shared variability in the deep region

(Figure 3), whereas the same analysis discovered little shared variability in the intermediate regions for
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either stimulus class (data not shown). Going beyond this spatially coarse description by region, we were
interested in the detailed spatial organization of the latent variability in the deep region L3, in particular
close to the anatomical boundary between the intermediate and deep regions.

We histologically determined the approximate location of the polytrode recording sites, yielding an
estimate of the spatial location for each recorded neuron (see Figure 4A). A first hint at a corresponding,
fine-grained spatial structure of shared variability can be observed in Figure 1B (bottom panel) and
Figure 2E. For these plots we sorted the neurons with respect to spatial location. This sorting uncovered
a clear spatial gradient in the strength of shared variability in the data as well as in the corresponding
model fit. To characterize this effect in greater detail, we quantified the strength of shared variability
for each cell k by computing the variance Var(zy ) that the variability term z; captures in the firing
of cell k. We call this quantity the magnitude of the shared variability in cell k. In Figure 4B we
pooled neurons across all data sets and plotted the magnitude of shared variability as a function of
recording location. A clear, monotonic increase in shared variability as a function of spatial location
can be observed, and both stimulus conditions exhibit significantly increased shared variability at 0.5 mm
distance from the intermediate regions (p < 3-10~%, Wilcoxon rank sum test). Consistent with the results
above, shared variability was larger for ML noise stimuli compared to song stimuli across the whole spatial
range. However, the difference was significantly larger deep in L3 compared to the intermediate region
(p < 2-10~*, Wilcoxon rank sum test). Hence, we see a gradual increase in song selectivity, i.e. a relative
increase of shared variability under ML noise compared to song stimuli. In contrast to these results, we
did not find a clear spatial trend for the signal drive s (Figure 4C), i.e. the median magnitude of s at
0.5mm depth is not significantly different from that in the input region (p > 0.2, Wilcoxon rank sum
test). For the gain g; we observed a small but significant increase of the median magnitude from the
intermediate region to deep L3 by about 30% (p < 0.02, Wilcoxon rank sum test; data not shown).

It is worth noting that the latent factors in the PLDS model allowed us to construct these spatial maps
of shared variability. Instead of looking at pairwise correlations (which would yield pairs of locations),
the PLDS allowed us to define a magnitude of shared variability per neuron, which can be thought of as

a coupling strength of each neuron to an unobserved network state.
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3.4 Stimulus onset quenches shared variability

Having established that population response variability of evoked activity is spatially structured and has
an essentially one-dimensional form, we next sought to characterize its relation to spontaneous activity.
To this end, we focused on the recorded neural activity in time windows of 500 ms preceding the onset
of each stimulus presentation; these epochs of spontaneous activity were included in the data sets to
which the PLDS models were fitted. We found that the PLDS model could account for the statistics of
spontaneous activity reasonably well: the model was able to capture R? = 73% of the noise correlations
during spontaneous activity, although a tendency to slightly over-estimate their magnitude is visible (see
Figure 5A). We found that spontaneous activity has a simple statistical structure: As the signal drive term
is zero by definition, spontaneous activity is exclusively captured by z; (and gain modulation g), which
again was found to be essentially one-dimensional (see Figure 5C). Furthermore, in the pre-intensity
domain spontaneous activity is highly aligned to the shared variability during stimulus presentation
(Figure 5D). Previous theoretical as well as experimental studies have argued that the distribution of
spontaneous activity patterns should equal the distribution of activity patterns evoked by sensory stimuli,
when averaging the latter over stimulus ensembles occurring under natural conditions (Ackley et al., 1985,
Berkes et al., 2011, Buesing et al., 2011). However, we found spontaneous activity to be substantially
different from evoked activity. Evoked activity induces activity patterns with high effective dimensionality
(Figure 2A), whereas spontaneous activity in our data was approximately one-dimensional (Figure 5C).
Furthermore, the latter was much closer to shared variability during evoked activity in terms of subspace
angle, as can be seen from Figure 5D. Finally, note that the stimulus ensemble used in this study was
highly limited compared to the diversity of auditory stimuli to which the birds are generically exposed.
The observed dissimilarity of spontaneous activity from evoked activity would presumably further increase
if compared to evoked patterns under richer stimuli.

The above analysis shows that spontaneous activity is highly similar to shared noise variability during
stimulus presentation, but with larger magnitude. This finding is in agreement with previous findings
that variability of single cell activity is in general substantially reduced by the onset of a stimulus or a
task (Churchland et al., 2010). However, this effect has been mostly studied on the level of single cells,
whereas the PLDS model allowed us to investigate the network structure as well as the temporal dynamics

of the effect. We can visualize the shared network variability on single trials by plotting the first latent
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factor z1 ¢+ as a function of time. The results are shown in Figure 5E around the time of stimulus onset for
all 15 presentations of one song stimulus in one recording session. It can be seen that the large variability
of the latent factor is rapidly suppressed after stimulus onset, with the effect of “quenching variability”
acting on a time scale of 50ms or faster in this data set. This is also clearly visible when aggregating
data across all stimuli (Figure 5F) from the same recording session. We observed similar results in all
other data sets (not shown). Furthermore, we can show that the PLDS model correctly accounts for the
changes of single cell noise variability following stimulus onset (R? = 0.88, Figure 5G). Hence, using the
PLDS model, quenching of single cell noise variability in this data can be explained to large extent as a

result of reduced shared variability around stimulus onset.

4 Discussion

Using a latent factor model of population responses, we found that shared variability in populations of
neurons in the songbird auditory cortex is fast (time-scale &~ 100 ms) and that it modulates neural activity
in a highly coordinated way, to the effect of synchronously increasing and decreasing the activity of most
cells. Our main finding is that that a large fraction of this effect can be captured by a single degree-of-
freedom latent factor, which can be interpreted as a shared mode of network activity, whose magnitude is
strongly reduced by the onset of auditory stimulation, with greater reductions for conspecific song stimuli
compared to artificial noise stimuli.

Cohen and Maunsell (2009) have shown that visual attention, widely believed to be a top-down phe-
nomenon, reduces noise correlation in primate V4. Analogously, selective attention of birds to conspecific
songs compared to artificial noise stimuli could be responsible for the observed reduction in shared vari-
ability; however, further experiments would be necessary to explore this hypothesis. It has recently been
suggested that the reduction of pairwise correlations observed by Cohen and Maunsell (2009) can be
accounted for by a low-dimensional latent factor model comparable to ours (Rabinowitz et al., 2015).

Using another approach similar in spirit to ours, Okun et al. (2015) studied the relation of single cell
activity to the average activity of a population of simultaneously recorded, nearby neurons (the so-called
population activity). They quantified this relation with a parameter for each cell termed population
coupling (PC), which is essentially given by the cross-correlation coefficient between single cell and pop-

ulation activity. It was pointed out that PCs and loading coefficients of a Poisson factor model (Pfau
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et al., 2013) (similar to the one studied here) are conceptually related and show high degrees of numerical
agreement. One major difference between our approach and that of Okun et al. (2015) is that we develop
an explicit generative model of the unobserved influences which cause shared variability; this allows us
to characterize their complexity (i.e. the number of latent factors), time scales, and magnitudes relative
to the signal drive. Nonetheless, our finding that the correlation structure in this songbird auditory
structure has an essentially one-dimensional structure is consistent with the finding in Okun et al. (2015)
that a one-dimensional signal dominates the correlation structure in mammalian visual cortex (though
see Lin et al. (2015) for an elaboration of this model).

More generally, there is rapidly increasing interest in investigating and characterizing latent structures
from multi-cell data — e.g. estimating correlation patterns from partially observed populations or inferring
common inputs from high-dimensional spike recordings — by applying sophisticated models similar to
the PLDS model used here (Paninski et al., 2010, Macke et al., 2011, Buesing et al., 2014, Késter et al.,
2014, Ecker et al., 2014, Gao et al., 2015, 2016), and we anticipate continued further development and

applications of this modeling technology in the years to come.
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Figure 1 (preceding page): Latent factor model for analyzing shared variability. (A) Schematic
of the PLDS model. Single-trial population spike count responses y; (in 50 ms) are modeled as Poisson
distributed with a rate that depends on three contributions: I) an external stimulus drive s, IT) a slowly
varying gain-modulation g, and III) a shared variability term z;, which models fast shared variability in
the neural responses caused by unobserved processes. We model the variability z; across the population
using a latent state vector x;, which compactly summarizes activity variability shared across neurons. x;
evolves in time according to linear Gaussian dynamics. (B) Results of applying the PLDS model to an
example data set from the deep region of avian Al. (Top) Spectrogram of a zebra finch song that was
used as auditory stimulus. (Second from top) Spike count responses of all simultaneously recorded cells to
one presentation of the song stimulus. (Bottom) Estimated stimulus drive s; and inferred posterior mean
of shared variability z;. (C) Population response summed across neurons for the same trial as in (B).
Shown is the deviation (black line) on the example single trial from the (time-dependent) trial average.
It is highly similar to the first latent factor z;; (brown, scaled for comparison, shaded envelope is the
posterior standard deviation). (D) Top: The spike count vector y; at a fixed time bin ¢ (¢ = 3 in this
example) is shown for all 15 presentations of the song stimulus from (B), illustrating population response
variability across trials. For comparison, the trial average (boxed) is shown on the right. Bottom: Inferred
first factor z1, (posterior mean, errorbars are posterior standard deviation) for the corresponding spike
count vectors y; shown above. For both panels (top and bottom) trials were sorted with respect to the

magnitude of z; 4.
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Figure 2 (preceding page): Low-rank latent factor model faithfully captures songbird A1l pop-
ulation recordings. (A) Eigenvalues of the covariance matrices of the stimulus drive s; (black) and the
population variability z; (red) of the PLDS model ordered with respect to their magnitude, pooled over
all data sets from deep region L3 (scaled such that largest eigenvalue for each data set is 1). This shows
that variance of the signal drive s; is distributed over many dimensions, whereas the shared variability
z; is low-rank. PCA on the raw population spike count variability (y; minus population PSTH) fails
to uncover the low-dimensional structure in population variability. (B) Noise variances of all recorded
cells from deep region L3 (double logarithmic plot) computed from raw data (horizontal axis) and PLDS
model fits (vertical axis). Each marker represents a neuron under one corresponding stimulus condition
(ML noise: black, song: red). Black line indicates the diagonal. (C) Same as (B) but for all pairwise noise
correlations. Each marker represents a pair of simultaneously recorded neurons under the corresponding
stimulus condition. (D) Empirical distributions of summed population spike count (number of spikes
in 50 ms windows averaged across population) computed from raw data (black dashed) are matched by
that from surrogate data sampled from the PLDS model (red dashed). Solid lines are distributions of
the population spike count after subtracting the PSTH for each cell; this shows that the PLDS model
faithfully captures the statistics of the summed population response variability. (E) Example signal and
noise correlation matrices computed from raw data and PLDS surrogate data for the same recording

session as shown in Figure 1.
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Figure 3: Shared variability is stimulus dependent in the deep region of avian Al. (A) Mag-
nitude of stimulus drive s;, population variability z; and gain modulation g for both stimulus conditions
quantified by the trace norm of their respective covariance matrices and normalized by the number of
neurons. While the stimulus drive is larger for conspecific song stimuli, the corresponding population
variability is substantially reduced compared to ML noise stimuli. Lower part (light region) of each bar
indicates share of variance that is captured by a one-dimensional approximation, highlighting that the
shared variability but neither stimulus drive nor gain modulation are low-rank. (B) Angle between pop-
ulation variability z; under song and ML noise conditions is close to zero, while angle between population
variability z; and stimulus drive s; within a condition is substantially larger. (C) Difference of the noise
covariances (including variances) between song and ML noise conditions for all simultaneously recorded
pairs of neurons from L3; computed from data (horizontal axis) and from PLDS model fit (vertical axis).
Black line indicates diagonal. (D) Autocorrelation functions of signal drive s; and shared variability z;
averaged over all data sets. Error bars for (A) and (E) are given by standard deviation of mean over
five-fold cross-validation. (E) Fraction of cells that have the same sign of loading coefficient onto a one-
dimensional approximation to the terms s;, g; and z; respectively. Each cross represents one model fit

on one data set. This illustrates that the population variability z; increases (and reduces) the firing of

almost all cells together, whereas this is less the case for s; and g;.
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Figure 4: Shared variability is spatially structured in the deep region of songbird Al. (A)
Parasagittal section of the avian auditory cortex. The border between the intermediate and deep regions
is indicated in yellow and the blue dot indicates the location of an example recording site. The distance
between a recording site and the intermediate region was defined as the minimum distance to the yellow
contour. Purple arrows indicate electrode tracks (CSt: Caudal striatum). (B) Magnitude of shared
variability increases with distance from the intermediate region, and the rate of increase is larger for ML
noise stimuli. This implies increasing song selectivity in shared variability as a function of distance from
the anatomical boundary. Each data point shows the average across units located at the same distance
(binned at 0.1 mm) and error bars indicate standard deviation across cells. (C) Same as (B) but for
magnitude of signal drive s;. In contrast to shared variability, a clear relationship with distance is not

evident.
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Figure 5 (preceding page): Shared variability of evoked activity is highly similar to spontaneous
activity. (A) Noise correlations during spontaneous activity for all pairs of simultaneously recorded neu-
rons from region L3, computed from raw data (horizontal axis) and PLDS model fits (vertical axis). Black
line indicates diagonal. (B) Example noise correlation matrices during spontaneous activity computed
from raw data and PLDS model fit for same data set as shown in Figure 1. (C) Magnitude of shared
variability z; during spontaneous activity. Lower, brighter part of the bar indicates variance captured
by first latent factor x;, indicating that shared variability during spontaneous activity is low-rank. For
comparison the magnitudes during ML noise and song stimuli are also shown (same data as in Figure 3A).
(D) Left: Angle between shared variability z; during spontaneous activity and during evoked activity.
Right: Angle between shared variability z; during spontaneous activity s; and stimulus drive. (E) Top:
Inferred first factor x;; (posterior mean) around stimulus onset for all 15 presentations for one song
stimulus (same example data set as B). Bottom: Magnitude of first factor x1 ; (square root of posterior
second moment) around stimulus onset, pooled over all song and ML noise stimuli for same example data
set. (F) Differences in single cell noise variance between spontaneous and evoked activity (logarithmic
scale) for all recorded neurons from L3, computed from data (horizontal axis) and PLDS model (vertical

axis). Black line indicates diagonal.
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