
A Statistical Model of Shared Variability in the Songbird

Auditory System

Lars Buesing
Grossman Center for the Statistics of Mind

Ana Calabrese
Center for Theoretical Neuroscience

Program in Neurobiology and Behavior

John P. Cunningham
Department of Statistics

Grossman Center for the Statistics of Mind
Center for Theoretical Neuroscience

Sarah M. N. Woolley
Department of Psychology

Kavli Institute

Liam Paninski
Departments of Statistics and Neuroscience
Grossman Center for the Statistics of Mind

Center for Theoretical Neuroscience
Columbia University, New York, NY

Abstract1

Vocal communication evokes robust responses in primary auditory cortex (A1) of songbirds, and2

single neurons from superficial and deep regions of A1 have been shown to respond selectively to3

songs over complex, synthetic sounds. However, little is known about how this song selectivity arises4

and manifests itself on the level of networks of neurons in songbird A1. Here, we examined the5

network-level coding of song and synthetic sounds in A1 by simultaneously recording the responses6

of multiple neurons in unanesthetized zebra finches. We developed a latent factor model of the7

joint simultaneous activity of these neural populations, and found that the shared variability in the8

activity has a surprisingly simple structure; it is dominated by an unobserved latent source with9

one degree-of-freedom. This simple model captures the structure of the correlated activity in these10

populations in both spontaneous and stimulus-driven conditions, and given both song and synthetic11

stimuli. The inferred latent variability is strongly suppressed under stimulation, consistent with12

similar observations in a range of mammalian cortical regions.13
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1 Introduction14

Vocal communicators depend on auditory perception for survival and reproduction. Songbirds rely on15

auditory processing to learn song, recognize individuals, and judge the fitness of potential mates (Catch-16

pole and Slater, 2004). Electrophysiological studies on the firing properties of neurons (recorded in brain17

regions that involve song perception) have typically recorded from one neuron at a time (Theunissen18

et al., 2004, Margoliash, 1997, Doupe and Konishi, 1991). Using this approach, auditory neurons that19

respond more strongly to vocalizations than to similarly complex, non-natural sounds have been found20

(Leppelsack, 1978, Leppelsack and Vogt, 1976, Leppelsack, 1983, Grace et al., 2003), and changes in21

single-neuron representations of songs versus other complex sounds are well documented (Woolley et al.,22

2005, Schneider and Woolley, 2011, Jeanne et al., 2011, Meliza and Margoliash, 2012).23

While a great deal has been discovered with single-neuron recordings, these studies cannot elucidate24

the structure of correlated dynamics in neuronal networks. Recent studies have demonstrated the im-25

portance of neuronal network properties in gaining a better understanding of how the brain transforms26

sensory signals into information-bearing percepts (Schneidman et al., 2006, Jones et al., 2007, Pillow27

et al., 2008, Yu et al., 2009, Paninski et al., 2010, Berkes et al., 2011, Macke et al., 2011, Buesing et al.,28

2014, Cunningham and Yu, 2014, Okun et al., 2015). These studies make use of the fact that simultane-29

ously recorded cells generically show dependent trial-to-trial and/or temporal activity fluctuations, called30

shared variability (Sakata and Harris, 2009, Churchland et al., 2010, 2012, Smith et al., 2013, Hansen31

et al., 2012). Shared variability is shaped by a large number of phenomena, such as common, unob-32

served inputs originating from presynaptic neurons (Zohary et al., 1994, Shadlen and Newsome, 1998) or33

by modulatory states generated internally, like attention, arousal, or adaptation (Cohen and Newsome,34

2008, Nienborg and Cumming, 2009, Ecker et al., 2010, 2014, Harris and Thiele, 2011). Shared variability35

has been shown in some cases to reflect the anatomical connectivity of the underlying circuitry (Gerhard36

et al., 2013, Okun et al., 2015). A detailed characterization of shared variability is crucial for understand-37

ing of neural coding as it can dramatically influence the fidelity of a population code (Averbeck et al.,38

2006, Cohen and Kohn, 2011). Analyzing and modeling shared variability therefore holds promise for39

uncovering potential mechanisms of stimulus selectivity in sensory areas such as the avian A1.40

When analyzing multi-dimensional activity recordings, we would ideally characterize and quantify41

shared variability and decompose it into separate sources, corresponding to distinct physiological mech-42

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2017. ; https://doi.org/10.1101/113670doi: bioRxiv preprint 

https://doi.org/10.1101/113670
http://creativecommons.org/licenses/by-nc-nd/4.0/


anisms, which are superimposed in the raw data. These desiderata cannot be met by simple analyses43

exclusively based on noise correlations, highlighting the need for improved data analysis techniques.44

Factor models, which are generalizations of Principal Component Analysis and classical Factor Analy-45

sis (PCA and FA; see (Cunningham and Ghahramani, 2015) for a review), have proven very useful in46

this context, allowing one to identify anatomically defined cell types (Buesing et al., 2014), to identify47

task-related processing stages of network activity (Petreska et al., 2011), to characterize the effect of48

anesthesia or attention on population firing (Ecker et al., 2014, Rabinowitz et al., 2015), and to show49

that the relative contribution of different sources of variability can vary across brain regions (Goris et al.,50

2014).51

Here we study the multi-dimensional structure of neural activity in the zebra finch primary auditory52

cortex observed with multi-electrode extra-cellular recordings. By applying a latent factor model, we53

perform a detailed analysis of the shared variability and show that it has (to good approximation) only54

one degree-of-freedom, suggesting that trial-to-trial variability in the recordings can be interpreted as55

generated by an unobserved network state that influences simultaneously recorded neurons in a highly56

coordinated way.57

2 Materials and Methods58

2.1 Stimuli59

Two classes of sound stimuli were used: the songs of 20 adult male zebra finches and 10 unique samples60

of modulation-limited (ML) noise. ML noise is correlated Gaussian noise designed to match song stimuli61

in power, frequency range (250-8000 Hz), and maximum spectral and temporal modulation frequencies62

(Schneider and Woolley, 2011). Each ML noise stimulus was 2 seconds in duration. Stimuli were delivered63

free-field through a flat frequency response speaker positioned 20 cm in front of the bird, at a mean64

intensity of 65 dB sound pressure level (SPL). Between 30 and 40 response trials were obtained for each65

of the 10 ML noise stimuli. Between 15 and 20 trials were obtained for each of the 20 songs. Trials66

for different stimuli were presented in pseudo-random order. Inter-trial intervals were determined by67

randomly sampling from a uniform distribution between 2 s and 3 s.68
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2.2 Electrophysiology69

Two days before recordings, birds were anesthetized with a single intramuscular injection of 0.04 ml of70

Equithesin and placed in a custom-designed stereotaxic holder. Craniotomies were made 1.3 mm lateral71

and 1.3 mm anterior from the bifurcation of the midsagittal sinus (stereotactic coordinates). For each72

bird, a small metal post was then affixed to the skull using dental acrylic, and a grounding wire was73

cemented in place with its end just beneath the skull, approximately 5− 10 mm lateral to the junction of74

the midsagittal sinus. Birds recovered from surgery for two days. Recordings were made in A1 regions75

CLM and Field L subregions L1, L, L2a, L2b, and L3 in head-fixed, unanesthetized, male zebra finches76

(Taeniopygia guttata, n = 6). Recordings were made using a planar multichannel silicon polytrode77

(4x4 electrode layout, 177µm2 contact surface area, 100µm inter-contact distance in the dorsal-ventral78

direction and 125µm inter-contact distance in the anterior-posterior direction; NeuroNexus Technologies).79

Each region was recorded in 4, 5 or 6 out of 6 birds (CLM: birds 1, 3, 4, and 5; L1: birds 1, 2, 4, and 5;80

L2a: birds 1 to 5; L2b: birds 1 to 6; L: birds 2 to 6; L3: birds 1 to 5), yielding 219 single units recorded81

from superficial regions CLM and L1 (CLM: 153, L1: 66), 377 from intermediate regions L2a, L2b and L82

(L2a: 47, L2b: 47, L: 283), and 237 from the deep region L3. For each animal, recordings were performed83

daily over approximately one week, and each recording session was approximately 6 hrs long. Signals84

were amplified and band-pass filtered between 300 and 5000 Hz, digitized at 25 kHz (RZ5; Tucker-Davis85

Technologies), and stored for off-line processing.86

2.3 Data Analysis87

2.3.1 Spike sorting88

Data analysis was carried out in MATLAB (Mathworks). Spikes were sorted offline with the automated89

sorting algorithm WaveClus (Quiroga et al., 2004). First, a nonlinear filter that increases the signal-to-90

noise ratio (by emphasizing voltage deflections that are both large in amplitude and high in frequency91

content) was applied to the bandpass filtered voltage trace of each channel (Kim and Kim, 2000, Hill92

et al., 2011). Second, spikes were detected and sorted in an unsupervised manner by WaveClus. Third,93

the output of this algorithm was refined by hand for each electrode, taking into account the waveform94

shape and interspike interval distribution. To quantify the quality of the recording we computed the95

signal-to-noise (SNR) of each candidate unit as the ratio of the average waveform amplitude to the SD of96
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the waveform noise (Hill et al., 2011, Kelly et al., 2007). Only candidate units that had an SNR greater97

than 3.5 were considered single units and were included in the analyses (median SNR across all included98

units = 7.47). This procedure yielded a total of 833 units recorded during 96 recording sessions from 699

birds.100

2.4 Poisson linear dynamical system model101

Here we give the detailed definition of the Poisson Linear Dynamical System model (Fig. 1) and describe102

the associated inference and parameter estimation methods. For the sake of simplicity, we break the103

exposition into two parts. We first describe the peristimulus time histogram (PSTH) model that captures104

the average evoked neural activity. Second, we discuss the full Poisson linear dynamical system model105

(PLDS, Macke et al. (2011)) that also captures trial-to-trial variability around the average responses.106

To begin, we need to define some notation. For each of the 30 different stimuli (song and ML noise), we107

here considered 15 trials. Each data set also included 450 trials consisting of 500 ms of spontaneous neural108

activity without auditory stimulation. We binned the recorded data into spike counts in windows of size109

50 ms. For a given data set, we denote with ymnkt the spike count of neuron k = 1, . . . ,K (where K ranged110

from 5 to 29 across data sets) during the presentation of stimulus m = 1, . . . ,M (where m = 1, . . . , 20 are111

song, m = 21, . . . , 30 are ML noise stimuli and m = 31 for spontaneous activity in time bin t = 1, . . . , Tm112

(where 52 ≤ Tm ≤ 69 for song/ML noise stimuli and T31 = 10) on trial n = 1, . . . , N (with N = 15 for113

song and ML noise stimuli and N = 450 for silence).114

2.4.1 PSTH model115

First, we fitted a simple model to capture average evoked responses across trials as well as slowly varying116

aspects of the data. For each data set, we modeled the spike count ymnkt as a Poisson random variable117

with rate f(λmnkt ):118

ymnkt ∼ Poisson(f(λmnkt )) (1)

λmnkt := smkt + gmnk ,

The signal drive terms smkt are the same (i.e. constant) for all across trials n and capture the trial-119

independent influence of the stimulus on the recorded activity. The gain modulation gmnk is constant120

during each stimulus presentation, i.e. independent of time bin t, and therefore captures slowly varying121
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aspects of the data. These signal and slow gain modulation terms together constitute the PSTH model.122

The non-negative function f is termed the transfer function. In the context of generalized linear models123

it is generally referred to as the inverse link function. In the following we will use:124

f(x) := log(1 + exp(x)).

In section 2.4.11 we discuss the choice of transfer function in greater detail.125

We use the notation smk = (smk,1, . . . , s
m
k,Tm)> ∈ RTm

and gmk = (gm1
k , . . . , gmNk )> ∈ RN . We fitted126

the parameters to the data using l2-regularized maximum likelihood estimation. For each neuron k and127

stimulus m we optimized the penalized log-likelihood log p(y) =: LPSTH of the data under the model:128

max
smk ,g

m
k

LPSTH :=
∑
n,t

(
ymnkt log f(smkt + gmnk )− f(smkt + gmnk )

)
+
λs
2
‖smk − smk01‖22 +

λg
2
‖gmk ‖22,

where ‖ · ‖2 is the Euclidean norm, smk0 = 1/Tm
∑
t s
m
kt and 1 is the Tm-dimensional vector with all129

entries equal to 1. We optimized the cost function using the l-BFGS pseudo-Newton method (Boyd and130

Vandenberghe, 2004). The cost function is concave, as the transfer function f is convex, log-concave, and131

monotonically increasing, guaranteeing that standard optimization methods will find the unique global132

maximum (Paninski, 2004).133

We determined the penalty parameters λs and λg by a grid search on the five-fold cross-validated data134

likelihood, yielding λs = 1.5 and λg = 10. Given the optimal λs, λg we re-fitted smk ,g
m
k to the complete135

data set. We denote the PSTH model parameters by θPSTH = (s,g).136

2.4.2 PLDS model137

The PSTH model described above captures average neural evoked responses as well as slow response138

variability on time scales larger than a trial. To also capture neural response variability around the139

PSTH on shorter time scales we added an additional term zmnkt to the model described in eqn. (1):140

λmnkt := smkt + gmnk + zmnkt . (2)

If no restrictions are placed on z, this model would overfit: each zmnkt could be chosen to explain each cor-141

responding observed spike count ymnkt . As we were interested in analyzing variability that is shared across142

neurons, we restricted the vector zmnt := (zmn1t , . . . , z
mn
Kt )> by modeling it as a linear function of a smaller143

number d of shared latent factors xmnjt for j = 1, . . . , d. Using the notation xmnt = (xmn1,t , . . . , x
mn
K,t)

>, we144
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write:145

zmnt := Cxmnt . (3)

Eqn. (3) models the variability as being low-rank or low-dimensional, i.e. the variability has support on146

a d-dimensional subspace spanned by the columns of the loading matrix C ∈ RK×d. The vector xmnt was147

modeled as a multivariate gaussian random vector. Because each component of x in general influences all148

neurons (to the extent determined by C), this term imparts the shared portion of the data variability; as149

such we will hereafter refer to z as the shared variability term. From now on we will drop the superscript150

n for x and z, as we modeled trials as independent and identically distributed (i.i.d.). Further, we also151

drop the superscript m as the stimulus dependence will become apparent below.152

To model temporal structure in the data, we put a first-order auto-regressive prior — also known as153

a linear dynamical system prior — on xt:154

xt+1 = Axt + εt+1 (4)

εt ∼ N (0, Qm) (5)

x1 ∼ N (0, Qm0 ). (6)

To allow for different levels of variability under the three experimental conditions m = 1, 2, 3 (correspond-155

ing to song, ML noise, and no stimulus, respectively), we introduce different covariance matrices Qm for156

the zero-mean innovations εt. The factors in the first time step x1 have zero mean and covariance Qm0 .157

We denote the PLDS model parameters as θPLDS = (A,Q,C) with Q = (Q1, Q2, Q3, Q1
0, Q

2
0, Q

3
0).158

Empirically, we found that the magnitude of the gain modulation g is small compared to the variability159

z. However, fitting PLDS models without the slow gain g to the same data resulted in the variability z160

to model slow non-stationarities in the data with time constants ≥ 1 s. Therefore we included the g-term161

in the model to prevent these slow contributions from leaking into the fast variability z.162

2.4.3 Inference in the PLDS model163

Given data y and the model parameters θ := (θPSTH, θPLDS) we are interested in inferring the latent164

variables x. For the PLDS model with transfer function f(x) := log(1 + exp(x)), exact inference is165

intractable, and we therefore utilize Laplace inference, a general and widely used approximate inference166

method. For Laplace inference we determine the maximum a posteriori (MAP) value x̂:167

x̂ := argmaxx log p(x|y, θ). (7)
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We optimize eqn. (7) by Newton’s method, which can be carried out efficiently in the PLDS model as168

the Hessian of the objective function is block tri-diagonal, and matrix equations involving the Hessian169

can therefore be inverted with computational time scaling linearly in T . The Laplace approximation170

q(x) ≈ p(x|y, θ) is then defined as a normal distributionN (x|x̂,−H(x̂)−1) centered at x̂ with a covariance171

matrix given by the negative inverse Hessian −H(x̂)−1 of log p(x|y, θ) evaluated at x̂. Further details on172

Laplace inference in dynamical system models are given e.g. by Paninski et al. (2010).173

2.4.4 Model selection on number of latent factors174

For each data set, we chose the dimension d of the PLDS model in the following way. We fitted model175

parameters θ for each latent dimension d = 1, . . . , 10 as described below and picked the dimension d which176

maximized the five-fold cross-validated log-likelihood log p(ytest) on held-out test data under the model.177

Calculating this quantity for the PLDS model is intractable, so we replaced the marginal log-likelihood178

by the following “variational” lower bound which can be evaluated more easily (dropping the subscript179

of ytest for simplicity):180

LPLDS(q, θ) ≤ log p(y|θ) (8)

LPLDS(q, θ) := −DKL[q(x)|p(x)] + Eq[log p(y|x)], (9)

where Eq[·] denotes the expected value under a distribution q. This bound holds for any distribution181

q (Emtiyaz Khan et al., 2013), but we seek to evaluate it using the Laplace approximation for q. The182

first term of eqn. (9) is given by the Kullback-Leibler divergence between q(x) and the linear dynamical183

system prior p(x). As both distributions are normal, one can evaluate this term analytically as a function184

of the model parameters θ as well as the mean and covariance matrix of q. The second term of eqn. (9) is185

the expected value of the log-likelihood under the Laplace approximation. For our choice of the transfer186

function f , we cannot evaluate this term analytically. We therefore resort to numerical integration using187

the fact that the likelihood decomposes into a sum over stimuli, trials, neurons and time steps:188

Eq[log p(y|x)] =
∑

m,n,k,t

Eq[log p(ymnkt |x)] (10)

=
∑

m,n,k,t

(ymnkt Eq[log f(λmnkt )]− Eq[f(λmnkt )]) + const. (11)

Under the approximate posterior q, the λmnkt are normally distributed. Therefore, it is sufficient to evaluate189

the Gaussian integrals EN (a|µ,σ2)[f(a)] and EN (a|µ,σ2)[log f(a)] for different means µ and variances σ2.190

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2017. ; https://doi.org/10.1101/113670doi: bioRxiv preprint 

https://doi.org/10.1101/113670
http://creativecommons.org/licenses/by-nc-nd/4.0/


We tabulated these two functions on a two-dimensional grid over (µ, σ2) and approximated the actual191

values by linear interpolation.192

2.4.5 Estimation of PLDS model parameters193

Given the collected spike count data y, we estimated the parameters θ = (θPSTH, θPLDS) in the follow-194

ing way. For simplicity, we first estimated the PSTH model parameters θPSTH as described in section195

2.4.1. Then, keeping θPSTH fixed, we estimated the PLDS parameters θPLDS, using the following slightly196

modified model. We add a stimulus dependent bias parameter bmk to eqn. (2):197

λmnkt := smkt + gmnk + zmnkt + bmk . (12)

The rationale behind these additional parameters is the following. By construction, for different stimulus198

types (song vs. ML noise vs. silence) the Gaussian variables zmnkt have different variances. Due to the199

non-linear transfer function f , changes in variance of zmnkt will also cause changes in the mean of ymnkt , and200

not only its variability. Hence, we add biases bmk to compensate for such changes in mean of ymnkt caused201

by variance of zmnkt . After estimation of the model parameters θPLDS and b = (bmk )m,k, we eliminate the202

latter by absorbing it into the signal component s, i.e. smkt ← smkt+b
m
k . In general, this two-stage procedure203

might lead to sub-optimal estimates compared to jointly estimating θPSTH and θPLDS. However, given204

its simplicity and the good model fits, this approach is well justified.205

We estimated θPLDS and b using a variant of the expectation-maximization algorithm (Dempster et al.,206

1977), an iterative algorithm consting of an expectation (E-step) and a maximization (M-step) (Smith207

and Brown, 2003, Kulkarni and Paninski, 2007). In the E-step, we need to infer moments of the posterior208

distribution p(x|y) over the latent factors x; as the exact computation of these moments is intractable for209

the PLDS, we used the Laplace approximation described in section 2.4.3. The M-step for the PLDS model210

decomposes into two separate problems: first, updating the parameters A,Q,Q0 of the linear dynamical211

system prior, and second, estimating the loading C and biases b of the observation model eqn. (3). The212

former updates are essentially the same as described e.g. in Macke et al. (2011), Buesing et al. (2012),213

only slightly generalized to account for the different covariance matrices for different stimulus conditions.214

For updating the observation parameters, we need to find the new loading C and biases b that maximize215

the lower bound LPLDS defined in eqn. (8) given the Laplace posterior approximation q(x) on the training216

9
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data:217

max
C,b

LPLDS(q, θ) =
∑
n

Eq[Ln(x, C,b)] + const (13)

218

Ln(x, C,b) :=
∑
m,k,t

log p(ymnkt |x, C,b). (14)

To circumvent the intractability of this problem, we used stochastic gradient ascent on L to update C, b219

(Bottou, 2010). We detail this approach for the loading matrix C; updates for b were analogous. Instead220

of exactly evaluating the cost function L and its gradient ∇cL at each optimization iteration, stochastic221

gradients use a cheap stochastic approximation to these quantities, and perform well in practice. Let Cl222

(and analogously blmk ) denote the estimate of C at iteration l of the inner loop of the M-step. We update223

the estimate in the following way:224

Cl+1 = Cl + αl ·
∑
n

∇cLn(x̃l, Cl,bl)

(∇cLn(x̃l, Cl,bl))kj =
∑
m,t

f ′(λlmnkt )

f(λlmnkt )

(
ymnkt − f(λlmnkt )

)
x̃lmnjt (15)

λlmnkt := smkt + gmnk +
∑
j

Clkj x̃
lmn
jt + blmk .

Here, x̃l is a sample from the Laplace approximation to the posterior x̃l ∼ q(·|y), with component x̃lmnjt225

for stimulus m on trial n in time bin t for factor j. As can be seen from eqn. (15), it is straightforward226

to evaluate the gradient ∇cLn, in contrast to ∇cL. The gradient with respect to bmk reads:227

(∇bm Ln(x̃l, Cl,bl))k =
∑
t′

f ′(λlmnkt′ )

f(λlmnkt′ )

(
ymnkt′ − f(λlmnkt′ )

)
.

The decreasing learning rate αl is given by:228

αl =
α0

1 + l · α0
. (16)

In each M-step we did 100 passes through the data set, i.e. l = 1, . . . , 100. We set α0 to depend on the229

iteration number a of the outer EM-loop according to α0 = (102 + a)−1.5. Parameters were initialized230

using Exponential Family PCA (Collins et al., 2002).231

2.4.6 Decomposition of variability232

Here we outline how we quantified the magnitude of the three model contributions to the hidden rate233

λ as in eqn. (2). We denote with En[·] the empirical average 1
N

∑N
n=1(·) over trials n = 1, . . . , N and234

analogously Et,Em,Ek; let Enm[·] = En[Em[·]], and E denote the expectation over x and z. Using this235
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notation, we can write the total covariance between λ of neuron k and neuron j averaged over stimuli,236

trials and time as:237

Σtot
kj = EmntE[(λmnkt − λk)(λmnjt − λj)] (17)

λk = EmntE[λmnkt ], (18)

from which the following identity can be derived:238

Σtot
kj = Emt[(smkt − sk)(smjt − sj)] + Emn[(gmnk − gk)(gmnj − gj)] + EmtE[zmktz

m
jt ]

=: Σskj + Σgkj + Σz
kj ,

(19)

where sk = Emt[smkt] (and analogously gk). According to eqn. (19), the variability of the pre-intensities239

can be decomposed into a stimulus contribution Σs, a contribution Σg due to the slow gain modulation240

and the shared noise contribution Σz modeled by the PLDS. Σs and Σg can directly be computed from241

eqn. (19) using the model parameters θ. The PLDS contribution can be computed from the parameters242

θPLDS in the following way:243

Σz = EmtE[zmt zmt
>] = Emt[CΠm

t C
>] (20)

Πm
t = E[xmt xmt

>], (21)

where Πm
t is the prior covariance of the factors xmt during presentation of stimulus m at time step t. The244

latter can be calculated using the standard recursion:245

Πm
1 = Qm0 (22)

Πm
t+1 = AΠm

t A
> +Qm. (23)

We define the magnitude of the stimulus drive for a neuron k as Σskk, and analogously Σzkk and Σgkk. We246

quantified the overall magnitude of the stimulus drive as the trace norm of Σs (scaled by the number of247

neurons K), i.e. K−1 trace[Σs] = Ek[Σskk] (analogously for magnitudes of gain and shared variability).248

We also computed these magnitudes for the three experimental conditions individually by not taking the249

average Em.250

2.4.7 Coordinate transformation of PLDS model251

It is known that many latent factor and state-space models (such as the PLDS) are non-identifiable, i.e.252

different model parameters can generate the same distribution over observed variables. For example,253
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we can arbitrarily scale up the latent factors x by a scalar α if we scale down the loading matrix C254

by α−1 at the same time, leaving p(y|θPLDS) unchanged. Buesing et al. (2012) shows that an arbitrary255

invertible linear transformation can be chosen to transform the latent factors, effectively choosing different256

coordinate systems to represent the latent factors. Here we make the following choice for the latent257

coordinate system to resolve this non-identifiability. We transform x such that the loading matrix C is258

orthogonal (C>C = I) and the averaged prior covariance matrix Emt[Πm
t ] is diagonal with decreasing259

entries on the diagonal. Furthermore, without loss of any generality we invert the signs of each latent260

factor j such that its corresponding column C:j of the loading matrix has at least as many positive entries261

as negative ones. This convention guarantees that different factors project to orthogonal subspaces (as262

C>C = I) and that factors are sorted with respect to their magnitude, i.e. the amount of variance of λ263

they capture. Using this convention, the latent factors are uniquely defined.264

2.4.8 Sign of loading matrices265

For each PLDS model, we report the fraction of neurons which have a positive loading coefficient Ck1266

onto the first latent factor x1t. By definition, this factor captures the largest fraction of shared variability267

of the pre-intensity λ, and therefore neurons that have loading coefficients Ck1 with the same sign are268

highly likely to have a positive noise correlation. We do a similar analysis for the signal and slow gain269

contributions Σν , ν ∈ {s, g}. To this end, we compute the first principal component PCν ∈ RK of Σν270

and report the largest fraction of neurons that have the same sign onto PCν .271

2.4.9 Quantifying dissimilarity between model contributions272

We quantify the dissimilarity between two variance contributions ν1 and ν2 for ν1, ν2 ∈ {s, z, g} using the273

angle ρ(ν1, ν2) between their corresponding covariance matrices:274

ρ(ν1, ν2) = acos

(
tr(Σν1Σν2>)

‖Σν1‖F ‖Σν2‖F

)
, (24)

where ‖ · ‖F is the Frobenius norm. We compare ρ to the null distribution of angles between randomly275

oriented covariance matrices with the same eigenvalue spectra as Σν1 and Σν2 . We can sample from276

this null by doing an eigenvalue decomposition of Σν1 = USU> and generating a surrogate covariance277

matrix Σ̃ν1 = ŨSŨ>, where Ũ is a random matrix sampled from the uniform distribution over orthogonal278

matrices and computing the resulting angle ρ̃(ν1, ν2) between Σ̃ν1 and Σν2 .279
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2.4.10 Autocorrelation functions and time constants280

To quantify temporal continuity in the variance contributions, we computed their temporal autocorre-281

lation functions R. For the signal component, we first computed for each neuron k the time-lagged282

covariance R̃sk:283

R̃sk(τ) = Emnt[(smk,t+τ − smk )(smkt − smk )] (25)

smk = Et[smkt].

Normalizing R̃sk(τ) by R̃k(0)−1 yields Rsk(τ). We report Rs(τ) averaged over all neurons from all data sets.284

For the PLDS model, we computed the autocorrelation on the posterior distribution over the variability285

term z. We first computed the posterior mean zmnkt = E[zmnkt |y]. Based on this we compute Rz(τ) in286

analogy to eqn. (25). This definition of Rz also ignores the contribution of the posterior uncertainty.287

We found empirically that this contribution is small compared to the contribution of the posterior mean.288

We also qualitatively compared the posterior to the prior autocorrelation functions, finding only small289

differences.290

We also characterize the temporal properties of the data by computing the time constant of the291

dynamical system prior that was learned when fitting the PLDS model parameters θ. The time constants292

τi are related to the eigenvalues ei of the dynamics matrix A as:293

τi = − 1

| log ei|
.

2.4.11 Choice of transfer function294

In most previous studies which applied latent variable models with Poisson observations to neural record-295

ings, the transfer function was assumed to be f(x) = exp(x), as this choice offers multiple algorithmic296

advantages (Macke et al., 2011, Vidne et al., 2012, Paninski et al., 2010, Buesing et al., 2014). From a297

scientific viewpoint, it has been argued that neural response variability, especially in the visual system,298

can be modeled as a multiplicative gain modulation (Goris et al., 2014). Such a multiplicative noise model299

is equivalent to an additive noise source in the log-domain, and hence multiplicative gain modulation nat-300

urally falls within the class of PLDS models with exponential transfer function. For the data considered301

here, we found that the PLDS model with exponential transfer function could model the activity dur-302

ing stimulus presentation accurately. However, the model failed to capture the statistics of spontaneous303

activity: the variances and cross-covariances of the neural activities were substantially over-estimated304
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(data not shown). We found that a PLDS with the transfer function f(x) = log(1 + exp(x)) did not have305

the same shortcoming and that it also improved the test log-likelihood significantly over a model with306

f(x) = exp(x) when trained exclusively on spontaneous activity. (Recently-developed methods (Gao307

et al., 2016) permit the nonlinearity to be estimated directly from data on a neuron-by-neuron basis; we308

leave this extension for future work.)309

3 Results310

3.1 Latent factor model captures shared variability311

We fitted the PLDS model separately to each of the ten recording sessions from the deep region of the312

songbird A1. One example fit for a data set with 29 simultaneously recorded neurons is shown in Figure313

1B. A first observation that can be made from this example is that, in contrast to the stimulus drive314

st, the shared variability zt has a simple structure. Namely, zt is highly coordinated across neurons, to315

the effect that the firing rate fluctuations of most neurons increase (or decrease) at the same time. This316

is a result of the fitted models being “low-rank”, i.e. a large fraction of the variance of zt is captured317

by the first latent factor x1,t (analogous to the first principal component in a PCA analysis). This can318

also be seen from Figure 1C: the time series of the dominant first factor x1,t is highly similar to that319

of the summed population noise; we defined the latter as the total number of spikes summed across the320

recorded population minus the total number of spikes predicted by the PSTH (Macke et al., 2011, Okun321

et al., 2015). Furthermore, x1,t summarizes the trial-to-trial variability across the population for repeated322

presentations of the same stimulus (see Figure 1D).323

The low-rank nature of the shared variability zt in the example data set of Figure 1B was found in324

all of the ten datasets we analyzed (Figure 2A). Although the optimal number of latent factors (chosen325

to maximize the likelihood evaluated on held-out test data) ranged from 1 to 7 for different data sets, at326

least 88% of the variance in zt is captured by the first latent factor x1,t in all data sets. Averaged over all327

data sets, the first component captures more than 96% of the shared variability of the full model. This328

means that shared variability in our recordings is dominated by a single, unobserved noise contribution,329

and not e.g. by independent noise terms for pairs of neurons. In contrast to zt, the stimulus drive st is not330

low-rank: its variance is distributed across many dimensions (Figure 2A), resulting in the first principal331

component capturing on average only 31%, and at most 53% across all data sets. We also found that the332
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parsimonious description of the the population variability provided by the model crucially depended on333

the nonlinearity of the transfer function f : linear factor models failed to discover the low-rank structure334

of the data. We show the results of directly applying PCA to the raw population spike count variability,335

which we computed by subtracting the population PSTH from the spike counts yt (Figure 2A).336

In spite of the simple structure of the fitted PLDS models, they capture the recorded data well. We337

compared various summary statistics computed from the raw data with those computed from surrogate338

data generated by the models. We find that the sampled surrogate data reproduces average single cell339

properties (mean firing rate and PSTH, data not shown). The PLDS model also captures the variability in340

evoked responses faithfully (Figure 2B-E), such as single cell noise variances (Figure 2B). Furthermore, the341

model explains 81% of all pairwise noise correlations computed from both stimulus conditions together,342

while also matching noise correlations under the two different stimulus conditions separately (Figure343

2C). Figure 2E shows the noise correlation matrix under the song condition for an example data set344

together with the corresponding signal correlation matrix, illustrating the match between experimental345

and model surrogate data. Beyond single cell and pairwise noise statistics, the model also captures the346

statistics of the overall population activity; for example, Figure 2D shows that the model matches the347

observed empirical distribution over the summed population spike count defined above, also capturing348

rare events with relative frequency of 10−4 (which occur at most 2-3 times in the recorded data). On349

held-out test data, we find that averaged across all data sets, the PLDS model provides 4.5 · 10−2 more350

bits of information per spike compared to a model without the variability term zt. This performance is351

comparable to the highest values previously reported for population variability models applied to data352

from primate motor cortex (Pachitariu et al., 2013, Gao et al., 2015). Taken together these findings353

establish that a large fraction of the population shared variability in the deep region of the songbird A1354

is explained by a single latent factor.355

3.2 Shared variability is stimulus dependent in the deep region of avian A1356

Having established that the PLDS model provides a faithful statistical description of the recorded data,357

we quantified and characterized the three contributions to the population response in the model, i.e. the358

signal drive st, gain modulation g and variability zt. First, we used the model to investigate population359

aspects of song selectivity, by comparing the magnitude of the model contributions between the song and360

ML noise stimulus conditions. We quantified the magnitudes of the individual terms by the trace norm361
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of their respective covariance matrices normalized by population size K, e.g. for the stimulus drive by362

tr[Cov(s)]/K; this can be conveniently interpreted as the average power of the signal drive per neuron.363

We found that in the deep region of avian A1 the stimulus drive is larger for song than for ML noise364

stimuli (Figure 3A). In addition to the signal drive, the model captures a considerable contribution of365

shared variability in the data, which for ML noise is on the same order of magnitude as the stimulus366

drive, indicating strong, shared fluctuations in this neural population. Notably, the population variability367

is substantially larger (by roughly a factor of 2) under the ML noise compared to the song stimuli,368

showing that the stimulus class has a large influence on the shared variability of local populations of369

simultaneously recorded neurons. Finally, we find that the slow gain modulation g only captures a small370

amount of variance in the data and is of roughly the same magnitude under song and ML noise stimuli.371

In Figure 3A the lighter shaded areas of the bars represent the fractions of variance of each term that372

are captured by a one dimensional approximation, i.e. the first principal component or the first factor373

x1,t respectively. For the signal drive st as well as the gain modulation g, less than half of the variance is374

captured by the first component, indicating that these two effects are heterogeneous, with a much larger375

effective dimensionality than the shared variability zt (c.f. Figure 2A).376

In addition to the magnitude and effective dimensionality of the terms st, g and zt, we analyzed377

their similarity by comparing the directions they spanned in the firing rate space (or more precisely in378

the K-dimensional pre-intensity space). We quantified this by computing the subspace angle, which lies379

between 0 (perfect alignment) and π/2 (orthogonality, for details see Materials and Methods). Figure380

3B shows that the angle between the dominant subspace of the shared variability term zt under song381

stimuli and under ML noise stimuli is small: for all data sets the angle was less than 0.1, indicating that382

the shared variability zt is highly aligned across stimulus classes when compared to the null hypothesis383

of random orientation with the same spectra (p < 10−10,Wilcoxon rank sum test). In comparison, the384

median angle between shared variability zt and stimulus drive st was 0.90. (Although substantially385

larger than that for zt across stimulus classes, the contributions zt and st to the population response are386

still significantly more aligned than expected under the null hypothesis; p < 10−10,Wilcoxon rank sum387

test.) Hence, shared variability is much more similar across stimulus conditions than it is to stimulus388

drive within the same condition. This implies that the stimulus class largely changes the magnitude of389

shared variability and not its direction in the K-dimensional pre-intensity space. We verified that this390
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surprisingly simple interpretation derived from the model is indeed an accurate description of the raw391

data. Figure 3C shows the difference of all elements of the noise covariance matrices under song and392

ML noise stimuli. The PLDS model prediction, consisting of a simple change of magnitude of shared393

variability and not its direction, matches the data to a large extent (R2 = 0.87).394

We next analyzed the temporal properties of the essentially one-dimensional shared variability term395

zt, by computing the autocorrelation of zk,t for each neuron k and averaging over the population. Figure396

3D shows that the autocorrelation of the shared variability decays after roughly 200 ms. This is consistent397

with the time constants of the dynamical system prior of the latent factors xt learned by fitting the PLDS398

to the data: the average time constant (pooled across data sets) is 105± 114 ms (mean ± std. deviation).399

Taken together with the above finding that the gain modulation g is small, we concluded that most400

network-level variability in these recordings takes place on fast time scales below 200 ms.401

Although largely temporally unstructured, the shared variability term zt seems to be highly structured402

with respect to its influence on the recorded neurons (see Figure 1B). Indeed, we found that almost all403

neurons k have a positive loading coefficient Ck1 onto the first factor x1,t of zt (see Figure 3E). This404

means that the network activity fluctuations captured by x1,t cause a temporally coherent activation and405

deactivation of the majority of recorded neurons. This finding is also in accordance with the fact that406

most noise correlations in the data are positive (see Figure 2C). For comparison, we also analyzed the407

signs of loadings onto the first principal components of the stimulus drive st and gain modulation g. We408

found a similar if less pronounced effect for the stimulus drive, indicating that st also induces mostly409

positive signal correlation, whereas the gain modulation influence is largely unstructured.410

Taken together, the PLDS model-based analysis presents the following parsimonious description of411

the shared population variability: the stimulus identity modulates the magnitude of variability of a412

very simple (i.e., approximately one-dimensional) network state, modeled by the first latent factor. The413

activity of most neurons are simultaneously increased and decreased, reflecting the fact that observed414

noise-correlations are positive to large extent.415

3.3 Latent shared variability is spatially structured in the deep region of416

songbird A1417

As discussed above, we found a strong stimulus effect on the level of shared variability in the deep region418

(Figure 3), whereas the same analysis discovered little shared variability in the intermediate regions for419
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either stimulus class (data not shown). Going beyond this spatially coarse description by region, we were420

interested in the detailed spatial organization of the latent variability in the deep region L3, in particular421

close to the anatomical boundary between the intermediate and deep regions.422

We histologically determined the approximate location of the polytrode recording sites, yielding an423

estimate of the spatial location for each recorded neuron (see Figure 4A). A first hint at a corresponding,424

fine-grained spatial structure of shared variability can be observed in Figure 1B (bottom panel) and425

Figure 2E. For these plots we sorted the neurons with respect to spatial location. This sorting uncovered426

a clear spatial gradient in the strength of shared variability in the data as well as in the corresponding427

model fit. To characterize this effect in greater detail, we quantified the strength of shared variability428

for each cell k by computing the variance Var(zk,t) that the variability term zt captures in the firing429

of cell k. We call this quantity the magnitude of the shared variability in cell k. In Figure 4B we430

pooled neurons across all data sets and plotted the magnitude of shared variability as a function of431

recording location. A clear, monotonic increase in shared variability as a function of spatial location432

can be observed, and both stimulus conditions exhibit significantly increased shared variability at 0.5 mm433

distance from the intermediate regions (p < 3·10−4, Wilcoxon rank sum test). Consistent with the results434

above, shared variability was larger for ML noise stimuli compared to song stimuli across the whole spatial435

range. However, the difference was significantly larger deep in L3 compared to the intermediate region436

(p < 2 ·10−4, Wilcoxon rank sum test). Hence, we see a gradual increase in song selectivity, i.e. a relative437

increase of shared variability under ML noise compared to song stimuli. In contrast to these results, we438

did not find a clear spatial trend for the signal drive s (Figure 4C), i.e. the median magnitude of s at439

0.5 mm depth is not significantly different from that in the input region (p > 0.2, Wilcoxon rank sum440

test). For the gain gt we observed a small but significant increase of the median magnitude from the441

intermediate region to deep L3 by about 30% (p < 0.02, Wilcoxon rank sum test; data not shown).442

It is worth noting that the latent factors in the PLDS model allowed us to construct these spatial maps443

of shared variability. Instead of looking at pairwise correlations (which would yield pairs of locations),444

the PLDS allowed us to define a magnitude of shared variability per neuron, which can be thought of as445

a coupling strength of each neuron to an unobserved network state.446
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3.4 Stimulus onset quenches shared variability447

Having established that population response variability of evoked activity is spatially structured and has448

an essentially one-dimensional form, we next sought to characterize its relation to spontaneous activity.449

To this end, we focused on the recorded neural activity in time windows of 500 ms preceding the onset450

of each stimulus presentation; these epochs of spontaneous activity were included in the data sets to451

which the PLDS models were fitted. We found that the PLDS model could account for the statistics of452

spontaneous activity reasonably well: the model was able to capture R2 = 73% of the noise correlations453

during spontaneous activity, although a tendency to slightly over-estimate their magnitude is visible (see454

Figure 5A). We found that spontaneous activity has a simple statistical structure: As the signal drive term455

is zero by definition, spontaneous activity is exclusively captured by zt (and gain modulation g), which456

again was found to be essentially one-dimensional (see Figure 5C). Furthermore, in the pre-intensity457

domain spontaneous activity is highly aligned to the shared variability during stimulus presentation458

(Figure 5D). Previous theoretical as well as experimental studies have argued that the distribution of459

spontaneous activity patterns should equal the distribution of activity patterns evoked by sensory stimuli,460

when averaging the latter over stimulus ensembles occurring under natural conditions (Ackley et al., 1985,461

Berkes et al., 2011, Buesing et al., 2011). However, we found spontaneous activity to be substantially462

different from evoked activity. Evoked activity induces activity patterns with high effective dimensionality463

(Figure 2A), whereas spontaneous activity in our data was approximately one-dimensional (Figure 5C).464

Furthermore, the latter was much closer to shared variability during evoked activity in terms of subspace465

angle, as can be seen from Figure 5D. Finally, note that the stimulus ensemble used in this study was466

highly limited compared to the diversity of auditory stimuli to which the birds are generically exposed.467

The observed dissimilarity of spontaneous activity from evoked activity would presumably further increase468

if compared to evoked patterns under richer stimuli.469

The above analysis shows that spontaneous activity is highly similar to shared noise variability during470

stimulus presentation, but with larger magnitude. This finding is in agreement with previous findings471

that variability of single cell activity is in general substantially reduced by the onset of a stimulus or a472

task (Churchland et al., 2010). However, this effect has been mostly studied on the level of single cells,473

whereas the PLDS model allowed us to investigate the network structure as well as the temporal dynamics474

of the effect. We can visualize the shared network variability on single trials by plotting the first latent475
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factor x1,t as a function of time. The results are shown in Figure 5E around the time of stimulus onset for476

all 15 presentations of one song stimulus in one recording session. It can be seen that the large variability477

of the latent factor is rapidly suppressed after stimulus onset, with the effect of “quenching variability”478

acting on a time scale of 50 ms or faster in this data set. This is also clearly visible when aggregating479

data across all stimuli (Figure 5F) from the same recording session. We observed similar results in all480

other data sets (not shown). Furthermore, we can show that the PLDS model correctly accounts for the481

changes of single cell noise variability following stimulus onset (R2 = 0.88, Figure 5G). Hence, using the482

PLDS model, quenching of single cell noise variability in this data can be explained to large extent as a483

result of reduced shared variability around stimulus onset.484

4 Discussion485

Using a latent factor model of population responses, we found that shared variability in populations of486

neurons in the songbird auditory cortex is fast (time-scale ≈ 100 ms) and that it modulates neural activity487

in a highly coordinated way, to the effect of synchronously increasing and decreasing the activity of most488

cells. Our main finding is that that a large fraction of this effect can be captured by a single degree-of-489

freedom latent factor, which can be interpreted as a shared mode of network activity, whose magnitude is490

strongly reduced by the onset of auditory stimulation, with greater reductions for conspecific song stimuli491

compared to artificial noise stimuli.492

Cohen and Maunsell (2009) have shown that visual attention, widely believed to be a top-down phe-493

nomenon, reduces noise correlation in primate V4. Analogously, selective attention of birds to conspecific494

songs compared to artificial noise stimuli could be responsible for the observed reduction in shared vari-495

ability; however, further experiments would be necessary to explore this hypothesis. It has recently been496

suggested that the reduction of pairwise correlations observed by Cohen and Maunsell (2009) can be497

accounted for by a low-dimensional latent factor model comparable to ours (Rabinowitz et al., 2015).498

Using another approach similar in spirit to ours, Okun et al. (2015) studied the relation of single cell499

activity to the average activity of a population of simultaneously recorded, nearby neurons (the so-called500

population activity). They quantified this relation with a parameter for each cell termed population501

coupling (PC), which is essentially given by the cross-correlation coefficient between single cell and pop-502

ulation activity. It was pointed out that PCs and loading coefficients of a Poisson factor model (Pfau503
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et al., 2013) (similar to the one studied here) are conceptually related and show high degrees of numerical504

agreement. One major difference between our approach and that of Okun et al. (2015) is that we develop505

an explicit generative model of the unobserved influences which cause shared variability; this allows us506

to characterize their complexity (i.e. the number of latent factors), time scales, and magnitudes relative507

to the signal drive. Nonetheless, our finding that the correlation structure in this songbird auditory508

structure has an essentially one-dimensional structure is consistent with the finding in Okun et al. (2015)509

that a one-dimensional signal dominates the correlation structure in mammalian visual cortex (though510

see Lin et al. (2015) for an elaboration of this model).511

More generally, there is rapidly increasing interest in investigating and characterizing latent structures512

from multi-cell data — e.g. estimating correlation patterns from partially observed populations or inferring513

common inputs from high-dimensional spike recordings — by applying sophisticated models similar to514

the PLDS model used here (Paninski et al., 2010, Macke et al., 2011, Buesing et al., 2014, Köster et al.,515

2014, Ecker et al., 2014, Gao et al., 2015, 2016), and we anticipate continued further development and516

applications of this modeling technology in the years to come.517
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Figure 1 (preceding page): Latent factor model for analyzing shared variability. (A) Schematic

of the PLDS model. Single-trial population spike count responses yt (in 50 ms) are modeled as Poisson

distributed with a rate that depends on three contributions: I) an external stimulus drive st, II) a slowly

varying gain-modulation g, and III) a shared variability term zt, which models fast shared variability in

the neural responses caused by unobserved processes. We model the variability zt across the population

using a latent state vector xt, which compactly summarizes activity variability shared across neurons. xt

evolves in time according to linear Gaussian dynamics. (B) Results of applying the PLDS model to an

example data set from the deep region of avian A1. (Top) Spectrogram of a zebra finch song that was

used as auditory stimulus. (Second from top) Spike count responses of all simultaneously recorded cells to

one presentation of the song stimulus. (Bottom) Estimated stimulus drive st and inferred posterior mean

of shared variability zt. (C) Population response summed across neurons for the same trial as in (B).

Shown is the deviation (black line) on the example single trial from the (time-dependent) trial average.

It is highly similar to the first latent factor x1,t (brown, scaled for comparison, shaded envelope is the

posterior standard deviation). (D) Top: The spike count vector yt at a fixed time bin t (t = 3 in this

example) is shown for all 15 presentations of the song stimulus from (B), illustrating population response

variability across trials. For comparison, the trial average (boxed) is shown on the right. Bottom: Inferred

first factor x1,t (posterior mean, errorbars are posterior standard deviation) for the corresponding spike

count vectors yt shown above. For both panels (top and bottom) trials were sorted with respect to the

magnitude of x1,t.
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Figure 2 (preceding page): Low-rank latent factor model faithfully captures songbird A1 pop-

ulation recordings. (A) Eigenvalues of the covariance matrices of the stimulus drive st (black) and the

population variability zt (red) of the PLDS model ordered with respect to their magnitude, pooled over

all data sets from deep region L3 (scaled such that largest eigenvalue for each data set is 1). This shows

that variance of the signal drive st is distributed over many dimensions, whereas the shared variability

zt is low-rank. PCA on the raw population spike count variability (yt minus population PSTH) fails

to uncover the low-dimensional structure in population variability. (B) Noise variances of all recorded

cells from deep region L3 (double logarithmic plot) computed from raw data (horizontal axis) and PLDS

model fits (vertical axis). Each marker represents a neuron under one corresponding stimulus condition

(ML noise: black, song: red). Black line indicates the diagonal. (C) Same as (B) but for all pairwise noise

correlations. Each marker represents a pair of simultaneously recorded neurons under the corresponding

stimulus condition. (D) Empirical distributions of summed population spike count (number of spikes

in 50 ms windows averaged across population) computed from raw data (black dashed) are matched by

that from surrogate data sampled from the PLDS model (red dashed). Solid lines are distributions of

the population spike count after subtracting the PSTH for each cell; this shows that the PLDS model

faithfully captures the statistics of the summed population response variability. (E) Example signal and

noise correlation matrices computed from raw data and PLDS surrogate data for the same recording

session as shown in Figure 1.
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Figure 3: Shared variability is stimulus dependent in the deep region of avian A1. (A) Mag-

nitude of stimulus drive st, population variability zt and gain modulation g for both stimulus conditions

quantified by the trace norm of their respective covariance matrices and normalized by the number of

neurons. While the stimulus drive is larger for conspecific song stimuli, the corresponding population

variability is substantially reduced compared to ML noise stimuli. Lower part (light region) of each bar

indicates share of variance that is captured by a one-dimensional approximation, highlighting that the

shared variability but neither stimulus drive nor gain modulation are low-rank. (B) Angle between pop-

ulation variability zt under song and ML noise conditions is close to zero, while angle between population

variability zt and stimulus drive st within a condition is substantially larger. (C) Difference of the noise

covariances (including variances) between song and ML noise conditions for all simultaneously recorded

pairs of neurons from L3; computed from data (horizontal axis) and from PLDS model fit (vertical axis).

Black line indicates diagonal. (D) Autocorrelation functions of signal drive st and shared variability zt

averaged over all data sets. Error bars for (A) and (E) are given by standard deviation of mean over

five-fold cross-validation. (E) Fraction of cells that have the same sign of loading coefficient onto a one-

dimensional approximation to the terms st, gt and zt respectively. Each cross represents one model fit

on one data set. This illustrates that the population variability zt increases (and reduces) the firing of

almost all cells together, whereas this is less the case for st and gt.
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Figure 4: Shared variability is spatially structured in the deep region of songbird A1. (A)

Parasagittal section of the avian auditory cortex. The border between the intermediate and deep regions

is indicated in yellow and the blue dot indicates the location of an example recording site. The distance

between a recording site and the intermediate region was defined as the minimum distance to the yellow

contour. Purple arrows indicate electrode tracks (CSt: Caudal striatum). (B) Magnitude of shared

variability increases with distance from the intermediate region, and the rate of increase is larger for ML

noise stimuli. This implies increasing song selectivity in shared variability as a function of distance from

the anatomical boundary. Each data point shows the average across units located at the same distance

(binned at 0.1 mm) and error bars indicate standard deviation across cells. (C) Same as (B) but for

magnitude of signal drive st. In contrast to shared variability, a clear relationship with distance is not

evident.
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Figure 5 (preceding page): Shared variability of evoked activity is highly similar to spontaneous

activity. (A) Noise correlations during spontaneous activity for all pairs of simultaneously recorded neu-

rons from region L3, computed from raw data (horizontal axis) and PLDS model fits (vertical axis). Black

line indicates diagonal. (B) Example noise correlation matrices during spontaneous activity computed

from raw data and PLDS model fit for same data set as shown in Figure 1. (C) Magnitude of shared

variability zt during spontaneous activity. Lower, brighter part of the bar indicates variance captured

by first latent factor x1,t indicating that shared variability during spontaneous activity is low-rank. For

comparison the magnitudes during ML noise and song stimuli are also shown (same data as in Figure 3A).

(D) Left: Angle between shared variability zt during spontaneous activity and during evoked activity.

Right: Angle between shared variability zt during spontaneous activity st and stimulus drive. (E) Top:

Inferred first factor x1,t (posterior mean) around stimulus onset for all 15 presentations for one song

stimulus (same example data set as B). Bottom: Magnitude of first factor x1,t (square root of posterior

second moment) around stimulus onset, pooled over all song and ML noise stimuli for same example data

set. (F) Differences in single cell noise variance between spontaneous and evoked activity (logarithmic

scale) for all recorded neurons from L3, computed from data (horizontal axis) and PLDS model (vertical

axis). Black line indicates diagonal.
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