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Abstract4

Genetic material sequenced from ancient samples is revolutionizing our understand-5

ing of the recent evolutionary past. However, ancient DNA is often degraded, resulting6

in low coverage, error-prone sequencing. Several solutions exist to this problem, rang-7

ing from simple approach such as selecting a read at random for each site to more8

complicated approaches involving genotype likelihoods. In this work, we present a9

novel method for assessing the relationship of an ancient sample with a modern popu-10

lation while accounting for sequencing error and post-mortem damage by analyzing raw11

read from multiple ancient individuals simultaneously. We show that when analyzing12

SNP data, it is better to sequence more ancient samples to low coverage: two samples13

sequenced to 0.5x coverage provide better resolution than a single sample sequenced14

to 2x coverage. We also examined the power to detect whether an ancient sample is15

directly ancestral to a modern population, finding that with even a few high cover-16

age individuals, even ancient samples that are very slightly diverged from the modern17

population can be detected with ease. When we applied our approach to European18

samples, we found that no ancient samples represent direct ancestors of modern Euro-19

peans. We also found that, as shown previously, the most ancient Europeans appear20

to have had the smallest effective population sizes, indicating a role for agriculture in21

modern population growth.22
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1 Introduction23

Ancient DNA (aDNA) is now ubiquitous in population genetics. Advances in DNA24

isolation [Dabney et al., 2013], library preparation [Meyer et al., 2012], bone sampling25

[Pinhasi et al., 2015], and sequence capture Haak et al. [2015] make it possible to obtain26

genome-wide data from hundreds of samples [Haak et al., 2015, Mathieson et al., 2015,27

Allentoft et al., 2015, Fu et al., 2016]. Analysis of these data can provide new insight28

into recent evolutionary processes which leave faint signatures in modern genomes,29

including natural selection [Schraiber et al., 2016, Jewett et al., 2016] and population30

replacement [Sjödin et al., 2014, Lazaridis et al., 2014].31

One of the most powerful uses of ancient DNA is to assess the continuity of an-32

cient and modern populations. In many cases, it is unclear whether populations that33

occupied an area in the past are the direct ancestors of the current inhabitants of that34

area. However, this can be next to impossible to assess using only modern genomes.35

Questions of population continuity and replacement have particular relevance for the36

spread of cultures and technology in humans [Lazaridis et al., 2016]. For instance, re-37

cent work showed that modern South Americans are descended from people associated38

Clovis culture that inhabited North America over 10,000 years ago, providing further39

evidence toward our understanding of the peopling of the Americas [Rasmussen et al.,40

2014].41

Despite its utility in addressing difficult-to-answer questions in evolutionary biology,42

aDNA also has several limitations. Most strikingly, DNA decays rapidly following43

the death of an organism, resulting in highly fragmented, degraded starting material44

when sequencing [Sawyer et al., 2012]. Thus, ancient data is frequently sequenced45

to low coverage and has a significantly higher rate of misleadingly called nucleotides46

than modern samples. When working with diploid data, as in aDNA extracted from47

plants and animals, the low coverage prevents genotypes from being called called with48

confidence.49

Several strategies are commonly used to address the low-coverage data. One of the50
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most common approaches is to sample a random read from each covered site and use51

that as a haploid genotype call [Skoglund et al., 2012, Haak et al., 2015, Mathieson52

et al., 2015, Allentoft et al., 2015, Fu et al., 2016, Lazaridis et al., 2016]. Many common53

approaches to the analyses of ancient DNA, such as the usage of F-statistics [Green54

et al., 2010, Patterson et al., 2012], are designed with this kind of dataset in mind.55

As shown by Peter [2016], F-statistics can be interpreted as linear combinations of56

simpler summary statistics and can often be understood in terms of testing a tree-like57

structure relating populations. Nonetheless, despite the simplicity and appeal of this58

approach, it has several drawbacks. Primarily, it throws away reads from sites that are59

covered more than once, resulting in a potential loss of information from expensive,60

difficult-to-acquire data. These approach are also strongly impacted by sequencing61

error, post-mortem damage, and contamination.62

On the other hand, several approaches exist to either work with genotype likelihoods63

or the raw read data. Genotype likelihoods are the probabilities of the read data at a64

site given each of the three possible diploid genotypes at that site. They can be used65

in calculation of population genetic statistics or likelihood functions to average over66

uncertainty in the genotype [Korneliussen et al., 2014]. However, many such approaches67

assume that genotype likelihoods are fixed by the SNP calling algorithm (although68

they may be recalibrated to account for aDNA-specific errors, as in ?). However, with69

low coverage data, an increase in accuracy is expected if genotype likelihoods are co-70

estimated with other parameters of interest, due to the covariation between processes71

that influence read quality and genetic diversity, such as contamination.72

A recent method that coestimates demographic parameters along with error and73

contamination rates by using genotype likelihoods showed that there can be significant74

power to assess the relationship of a single ancient sample to a modern population75

[Racimo et al., 2016]. Nonetheless, they found that for very low coverage data, infer-76

ences were not reliable. Thus, they were unable to apply their method to the large77

number of extremely low coverage ( < 1x) genomes that are available. Moreover, they78

were unable to explore the tradeoffs that come with a limited budget: can we learn79
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more by sequencing fewer individuals to high coverage, or more individuals at lower80

coverage?81

Here, we develop a novel maximum likelihood approach for analyzing low coverage82

ancient DNA in relation to a modern population. We work directly with raw read data83

and explicitly model errors due to sequencing and port-mortem damage. Crucially,84

our approach incorporates data from multiple individuals that belong to the same85

ancient population, which we show substantially increases power and reduces error in86

parameter estimates. We then apply our new methodology to ancient human data, and87

show that we can perform accurate demographic inference even from very low coverage88

samples by analyzing them jointly.89

2 Methods90

2.1 Sampling alleles in ancient populations91

We assume a scenario in which allele frequencies are known with high accuracy in a92

modern population. Suppose that an allele is known to be at frequency x ∈ (0, 1) in93

the modern population, and we wish to compute the probability of obtaining k copies94

of that allele in a sample of n (0 ≤ k ≤ n) chromosomes from an ancient population.95

Conditioning on the frequency of the allele in the modern population minimizes the96

impact of ascertainment, and allows this approach to be used for SNP capture data.97

To calculate the sampling probability, we assume a simple demographic model in

which the ancient individual belongs to a population that split off from the modern

population τ1 generations ago, and subsequently existed as an isolated population for τ2

generations. Further, we assume that the modern population has effective size N
(1)
e and

that the ancient population has effective size N
(2)
e , and measure time in diffusion units,

ti = τi/(2N
(i)
e ). If we know the conditional probability that an allele is at frequency y

in the ancient sample, given that it is at frequency x, denoted f(y;x, t1, t2), then the
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sampling probability is simply an integral,

Pn,k(x) =

∫ 1

0

(
n

k

)
yk(1− y)n−kf(y;x, t1, t2)dy

=

(
n

k

)
Ex

(
Y k(1− Y )n−k; t1, t2

)
≡
(
n

k

)
pn,k(t1, t2) (1)

Thus, we must compute the binomial moments of the allele frequency distribution in98

the ancient population. In the Appendix, we show that this can be computed using99

matrix exponentiation,100

pn,k(t1, t2) =
(
eQt2eQ

↓t1hn

)
i
, (2)

where (v)i indicates the ith element of the vector v, hn = ((1−x)n, x(1−x)n−1, . . . , xn)T101

and Q and Q↓ are the sparse matrices102

Qij =



1
2 i(i− 1) if j = i− 1

−i(n− i) if j = i

1
2 (n− i)(n− i− 1) if j = i+ 1

0 else

and103

Q↓ij =



1
2 i(i− 1) if j = i− 1

−i(n− i+ 1) if j = i

1
2 (n− i+ 1)(n− i) if j = i+ 1

0 else.

This result has an interesting interpretation: the matrix Q↓ can be thought of as104

evolving the allele frequencies back in time from the modern population to the common105

ancestor of the ancient and modern populations, while Q evolves the allele frequencies106

forward in time from the common ancestor to the ancient population (Fig 1).107
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[Figure 1 about here.]108

Because of the fragmentation and degradation of DNA that is inherent in obtaining109

sequence data from ancient individuals, it is difficult to obtain the high coverage data110

necessary to make high quality genotype calls from ancient individuals. To address this,111

we instead work directly with raw read data, and average over all the possible genotypes112

weighted by their probability of producing the data. Specifically, we follow Nielsen et al.113

[2012] in modeling the probability of the read data in the ancient population, given the114

allele frequency at site l as115

P(Rl|k) =
2∑

g1,l=0

. . .
2∑

gn,l=0

I

(
m∑
i=1

gi,l = k

)
n∏

i=1

(
2

gi,l

)
P(Ri,l|gi,l),

where Ri,l = (ai,l, di,l) are the counts of ancestral and derived reads in individual i at116

site l, gi,l ∈ {0, 1, 2} indicates the possible genotype of individual i at site l (i.e. 0 =117

homozygous ancestral, 1 = heterozygous, 2 = homozygous derived), and P(Ri,l|gi,l) is118

the probability of the read data at site l for individual i, assuming that the individual119

truly has genotype gi,l. We use a binomial sampling with error model, in which the120

probability that a truly derived site appears ancestral (and vice versa) is given by121

ε. We emphasize that the parameter ε will capture both sequencing error as well as122

post-mortem damage (c.f. Racimo et al. [2016] who found that adding an additional123

parameter to specifically model post-mortem damage does not improve inferences).124

Thus,125

P(R|g) =

(
a+ d

d

)
pdg(1− pg)a
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with

p0 = ε

p1 =
1

2

p2 = 1− ε

.126

Combining these two aspects together by summing over possible allele frequencies127

weighted by their probabilities, we obtain our likelihood of the ancient data,128

L(D) =
L∏

l=1

n∑
k=0

P(Rl|k)pn,k(xl). (3)

3 Results129

3.1 Impact of coverage and number of samples on inferences130

To explore the tradeoff of sequencing more individuals at lower depth compared to fewer131

individuals at higher coverage, we performed simulations using msprime [Kelleher et al.,132

2016] combined with custom scripts to simulate error and low coverage data. Briefly, we133

assumed a Poisson distribution of reads at every site with mean given by the coverage,134

and then simulated reads by drawing from the binomial distribution described in the135

Methods.136

First, we examined the impact of coverage and number of samples on the ability137

to recover the drift times in the modern and the ancient populations. Figure 2 shows138

results for data simulated with t1 = 0.02 and t2 = 0.05, corresponding to an ancient139

individual who died 300 generations ago from population of effective size 1000. The140

populations split 400 generations ago, and the modern population has an effective141

size of 10000. We simulated approximately 180000 SNPs by simulating 100000 500142
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base pair fragments. Inferences of t1 can be relatively accurate even with only one143

low coverage ancient sample (Figure 2A). However, inferences of t2 benefit much more144

from increasing the number of ancient samples, as opposed to coverage (Figure 2B). In145

particular, two individuals sequenced to 0.5x coverage have a much lower error than a146

single individual sequenced to 2x coverage. To explore this effect further, we derived the147

sampling probability of alleles covered by exactly one sequencing read (see Appendix).148

We found that sites covered only once have no information about t2, suggesting that149

evidence of heterozygosity is very important for inferences about t2.150

[Figure 2 about here.]151

We next examined the impact of coverage and sampling on the power to reject152

the hypothesis that the ancient individuals came from a population that is directly153

ancestral to the modern population. We analyzed both low coverage (0.5x) and higher154

coverage (4x) datasets consisting of 1 (for both low and high coverage samples) or 5155

individuals (only for low coverage). We simulated data with parameters identical to156

the previous experiment, except we now examined the impact of varying the age of157

the ancient sample from 0 generations ago through to the split time with the modern158

population. We then performed a likelihood ratio test comparing the null model of con-159

tinuity, in which t2 = 0, to a model in which the ancient population is not continuous.160

Figure 3 shows the power of the likelihood ratio test. For a single individual sequenced161

to low coverage, we see that the test only has power for very recently sampled ancient162

individuals (i.e. samples that are highly diverged from the modern population). How-163

ever, the power increases dramatically as the number of individuals or the coverage per164

individual is increased; sequencing 5 individuals to 0.5x coverage results in essentially165

perfect power to reject continuity. Nonetheless, for samples that are very close to the166

divergence time, it will be difficult to determine if they are ancestral to the modern167

population or not, because differentiation is incomplete.168

[Figure 3 about here.]169
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3.2 Impact of admixture170

We examined two possible violations of the model to assess their impact on inference.171

In many situations, there may have been secondary contact between the population172

from which the ancient sample is derived and the modern population used as a refer-173

ence. We performed simulations of this situation by modifying the previous simulations174

to include subsequent admixture from the ancient population to the modern popula-175

tion 200 generations ago (NB: this admixture occurred more recently than the ancient176

sample). In Figure 4, we show the results for admixture proportions ranging from 0177

to 50%. Counterintuitively, estimates of t1 initially decrease before again increasing.178

This is likely a result of the increased heterozygosity caused by admixture, which acts179

to artificially inflate the effective size of the modern population, and thus decrease t1.180

As expected, t2 is estimated to be smaller the more admixture there is; indeed, for an181

admixture rate of 100%, the modern and ancient samples are continuous. The impact182

on t2 appears to be linear, and is well approximated by (1 − f)t2 if the admixture183

fraction is f .184

[Figure 4 about here.]185

In other situations, there may be admixture from an unsampled “ghost” population186

into the modern population. If the ghost admixture is of a high enough proportion, it187

is likely to cause a sample that is in fact a member of a directly ancestral population to188

not appear to be ancestral. We explored this situation by augmenting our simulations189

in which the ancient sample is continuous with an outgroup population diverged from190

the modern population 0.04 time units ago (corresponding to 800 generations ago)191

and contributed genes to the modern population 0.01 time units ago (corresponding to192

200 generations ago). We then assessed the impact on rejecting continuity using the193

likelihood ratio test (Figure 5). As expected, we see that low-power sampling strategies194

(such as a single individual sequenced to low coverage) are relatively unimpacted by195

ghost admixture. However, even relatively powerful sampling strategies can be robust196

to ghost admixture up to approximately 10%.197
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[Figure 5 about here.]198

3.3 Application to ancient humans199

We applied our approach to ancient human data from Mathieson et al. [2015], which200

is primarily derived from a SNP capture approach that targeted 1.2 million SNPs.201

Based on sampling location and associated archeological materials, the individuals202

were grouped into a priori panels, which we used to specify population membership203

when analyzing individuals together. We analyzed all samples for their relationship to204

the CEU individuals from the 1000 Genomes Project [Consortium, 2015]. Based on205

our results that suggested that extremely low coverage samples would yield unreliable206

estimates, we excluded panels that are composed of only a single individual sequenced207

to less than 2x coverage.208

We computed maximum likelihood estimates of t1 and t2 for individuals as grouped209

into populations (Figure 6A; Table 1). We observe that t2 is significantly greater than 0210

for all populations. Thus, none of these populations are consistent with directly making211

up a large proportion of the ancestry of modern CEU individuals. Strikingly, we see212

that t2 � t1, despite the fact that the ancient samples must have existed for fewer213

generations since the population split than the modern samples. This suggests that214

all of the ancient populations are characterized by extremely small effective population215

sizes.216

[Table 1 about here.]217

[Figure 6 about here.]218

We further explored the relationship between the dates of the ancient samples and219

the parameters of the model by plotting t1 and t2 against the mean sample date of220

all samples in that population (Figure 6B, C). We expected to find that t1 correlated221

with sample age, under the assumption that samples were members of relatively short-222

lived populations that diverged from the “main-stem” of CEU ancestry. Instead, we223
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see no correlation between t1 and sample time, suggesting that the relationship of224

these populations to the CEU is complicated and not summarized well by the age225

of the samples. On the other hand, we see a strong positive correlation between226

t2 and sampling time (p < 1 × 10−4). Because t2 is a compound parameter, it is227

difficult to directly interpret this relationship. However, it is consistent with the most228

ancient samples belonging to populations with the smallest effective sizes, consistent229

with previous observations [Skoglund et al., 2014].230

Finally, we examined the impact of grouping individuals into populations in real231

data. We see that estimates of t1 for low coverage samples are typically lower when an-232

alyzed individually than when pooled with other individuals of the same panel (Figure233

7A), suggesting a slightly downward bias in estimating t1 for low coverage samples. On234

the other hand, there is substantial bias toward overestimating t2 when analyzing sam-235

ples individually, particularly for very low coverage samples (Figure 7B). This again236

shows that for estimates that rely on heterozygosity in ancient populations, pooling237

many low coverage individuals can significantly improve estimates.238

[Figure 7 about here.]239

4 Discussion240

Ancient DNA (aDNA) presents unique opportunities to enhance our understanding241

of demography and selection in recent history. However, it also comes equipped with242

several challenges, due to postmortem DNA damage [Sawyer et al., 2012]. Several243

strategies have been developed to deal with the low quality of aDNA data, from rela-244

tively simple options like sampling a read at random at every site [Green et al., 2010]245

to more complicated methods making use of genotype likelihoods [Racimo et al., 2016].246

Here, we presented a novel maximum likelihood approach for making inferences about247

how ancient populations are related to modern populations by analyzing read counts248

from multiple ancient individuals and explicitly modeling relationship between the two249

populations. We explicitly condition on the allele frequency in a modern population;250
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thus, our method is robust to ascertainment in modern samples and can be used with251

SNP capture data. Using this approach, we examined some aspects of sampling strat-252

egy for aDNA analysis and we applied our approach to ancient humans.253

We found that sequencing many individuals from an ancient population to low cov-254

erage ( .5-1x) can be a significantly more cost effective strategy than sequencing fewer255

individuals to relatively high coverage. For instance, we saw from simulations that far256

more accurate estimates of the drift time in an ancient population can be obtained by257

pooling 2 individuals at 0.5x coverage than by sequencing a single individual to 2x cov-258

erage (Figure 2). We saw this replicated in our analysis of the real data: low coverage259

individuals showed a significant amount of variation and bias in estimating the model260

parameters that was substantially reduced when individuals were analyzed jointly in a261

population (Figure 7). To explore this further, we showed that sites sequenced to 1x262

coverage in a single individual retain no information about the drift time in the ancient263

population. This can be intuitively understood because the drift time in the ancient264

population is strongly related the amount of heterozygosity in the ancient population:265

an ancient population with a longer drift time will have lower heterozygosity at sites266

shared with a modern population. When a site is only sequenced once in a single indi-267

vidual, there is no information about the heterozygosity of that site. We also observed268

a pronounced upward bias in estimates of the drift time in the ancient population from269

low coverage samples. We speculate that this is due to the presence of few sites covered270

more than once being likely to be homozygous, thus deflating the estimate of heterozy-271

gosity in the ancient population. Thus, for analysis of SNP data, we recommend that272

aDNA sampling be conduced to maximize the number of individuals from each ancient273

population that can be sequenced to ∼1x, rather than attempting to sequence fewer274

individuals to high coverage.275

When we looked at the impact of model misspecification, we saw several important276

patterns. First, the influence of admixture from the ancient population on inferences277

of t2 is approximately linear, suggesting that if there are estimates of the amount of278

admixture between the modern and ancient population, a bias-corrected estimate of279
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t2 could be produced (Figure 4B). The impact on inference of t1 is more complicated:280

admixture actually reduces estimates of t1 (Figure 4A). This is likely because admixture281

increases the heterozygosity in the modern population, thus causing the amount of drift282

time to seem reduced. In both cases, the bias is not impacted by details of sampling283

strategy, although the variance of estimates is highly in a way consistent with Figure284

2.285

Of particular interest in many studies of ancient populations is the question of286

direct ancestry: are the ancient samples members of a population that contributed287

substantially to a modern population? We emphasize that this does not mean that288

the particular samples were direct ancestors of any modern individuals; indeed, this289

is exceedingly unlikely for old samples [Rohde et al., 2004, Chang, 1999, Baird et al.,290

2003, Donnelly, 1983]. Instead, we are asking whether an ancient sample was a member291

of a population that is directly continuous with a modern population. Several methods292

have been proposed to test this question, but thus far they have been limited to many293

individuals sequenced at a single locus [Sjödin et al., 2014] or to a single individual with294

genome-wide data [Rasmussen et al., 2014]. Our approach provides a rigorous, maxi-295

mum likelihood framework for testing questions of population continuity using multiple296

low coverage ancient samples. We saw from simulations (Figure 3) that data from sin-297

gle, low coverage individuals result in very little power to reject the null hypothesis of298

continuity unless the ancient sample is very recent (i.e. it has been diverged from the299

modern population for a long time). Nonetheless, when low coverage individuals are300

pooled together, or a single high coverage individual is used, there is substantial power301

to reject continuity for all but the most ancient samples (i.e. samples dating from very302

near the population split time).303

Because many modern populations may have experienced admixture from unsam-304

pled “ghost” populations, we also performed simulations to test the impact of ghost305

admixture on the probability of falsely rejecting continuity. We find that single an-306

cient samples do not provide sufficient power to reject continuity even for high levels of307

ghost admixture, while increasingly powerful sampling schemes, adding more individ-308
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uals or higher coverage per individual, reject continuity at higher rates. However, in309

these situations, whether we regard rejection of continuity as a false or true discovery310

is somewhat subjective: how much admixture from an outside population is required311

before considering a population to not be directly ancestral? In future work it will be312

extremely important to estimate the “maximum contribution” of the population an313

ancient sample comes from (c.f Sjödin et al. [2014].314

To gain new insights from empirical data, we applied our approach to ancient315

samples throughout Europe. Notably, we rejected continuity for all populations that we316

analyzed. This is unsurprising, given that European history is extremely complicated317

and has been shaped by many periods of admixture [Lazaridis et al., 2014, Haak et al.,318

2015, Lazaridis et al., 2016]. Thus, modern Europeans have experienced many periods319

of “ghost” admixture (relative to any particular ancient sample). Nonetheless, our320

results show that none of these populations are even particularly close to directly321

ancestral, as our simulations have shown that rejection of continuity is robust to low322

levels of ghost admixture.323

Secondly, we observed that the drift time in the ancient population was much larger324

than the drift time in the modern population. Assuming that the ancient sample were325

a contemporary sample, the ratio t1/t2 is an estimator of the ratio N
(2)
e /N

(1)
e ; in fact,326

because the ancient sample existed for fewer generations since the common ancestor327

of the ancient and modern populations, t1/t2 acts as an upper bound on N
(2)
e /N

(1)
e .328

Moreover, this is unlikely to be due to unmodeled error in the ancient samples: error329

would be expected increase the heterozygosity in the ancient sample, and thus decrease330

our estimates of t2. Thus, we find strong support for the observation that ancient331

Europeans were often members of small, isolated populations [Skoglund et al., 2014].332

We interpret these these two results together as suggestive that many ancient samples333

found thus far in Europe were members of small populations that ultimately went334

locally extinct.335

We further examined the effective sizes of ancient populations through time by336

looking for a correlation between the age of the ancient populations and the drift337
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time leading to them (Figure 6C). We saw a strong positive correlation, and although338

this drift time is a compound parameter, which complicates interpretations, it appears339

that the oldest Europeans were members of the smallest populations, and that effective340

population size has grown through time as agriculture spread through Europe.341

We anticipate the further development of methods that explicitly account for dif-342

ferential drift times in ancient and modern samples will become important as aDNA343

research becomes even more integrating into population genomics. This is because344

many common summary methods, such as the use of Structure [Pritchard et al., 2000]345

and Admixture [Alexander et al., 2009], are sensitive to differential amounts of drift346

between populations [Falush et al., 2016]. As we’ve shown in ancient Europeans, an-347

cient samples tend to come from isolated subpopulations with a large amount of drift,348

thus confounding such summary approaches. Moreover, standard population genetics349

theory shows that allele frequencies are expected to be deterministically lower in an-350

cient samples, even if they are direct ancestors of a modern population. Intuitively,351

this arises because the alleles must have arisen at some point from new mutations, and352

thus were at lower frequencies in the past. A potentially fruitful avenue to combine353

these approaches moving forward may be to separate regions of the genome based on354

ancestry components, and assess the ancestry of ancient samples relative to specific355

ancestry components, rather than to genomes as a whole.356

Our current approach leaves several avenues for improvement. We use a relatively357

simple error model that wraps up both post-mortem damage and sequencing error358

into a single parameter. While Racimo et al. [2016] shows that adding an additional359

parameter for PMD-related error does not significantly change results, the recent work360

of ? shows that building robust error models is challenging and essential to estimating361

heterozygosity properly. Although our method is robust to non-constant demography362

because we consider only alleles that are segregating in both the modern and the ancient363

population, we are losing information by not modeling new mutations that arise in the364

ancient population. Similarly, we only consider a single ancient population at a time,365

albeit with multiple samples. Ideally, ancient samples would be embedded in complex366
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demographic models that include admixture, detailing their relationships to each other367

and to modern populations [Patterson et al., 2012, Lipson and Reich, 2017]. However,368

inference of such complex models is difficult, and though there has been some progress369

in simplified cases [Lipson et al., 2014, Pickrell and Pritchard, 2012], it remains an370

open problem due to the difficult of simultaneously inferring a non-tree-like topology371

along with demographic parameters. Software such as momi [Kamm et al., 2016] that372

can compute the likelihood of SNP data in an admixture graph may be able to be used373

to integrate over genotype uncertainty in larger settings than considered here.374

5 Appendix375

5.1 Computing allele frequency moments in the ancient popu-376

lation377

We wish to compute moments of the form378

Ex(g(Y ); t1, t2) =

∫ 1

0

g(y)f(y;x, t1, t2)dy. (4)

To do so, we make use of several results from diffusion theory. To ensure that this379

paper is self contained, we briefly review those results here. The interested reader may380

find much of this material covered in Ewens [2012], Karlin and Taylor [1981]. Several381

similar calculations can be found in Griffiths [2003].382

Let the probability of an allele going from frequency x to frequency y in τ genera-383

tions in a population of size Ne be f(x, y; t), where t = τ/(2Ne). Under a wide variety384

of models, the change in allele frequencies through time is well approximated by the385

Wright-Fisher diffusion, which is characterized by its generator,386

L =
1

2
x(1− x)

d2

dx2
.

The generator of a diffusion process is useful, because it can be used to define a differ-387
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ential equation for the moments of that process,388

d

dt
Ex(g(Xt)) = Ex (Lg(Xt)) . (5)

We will require the speed measure of the Wright-Fisher diffusion, m(x) = x−1(1−389

x)−1, which essentially describes how slow a diffusion at position x is “moving” com-390

pared to a Brownian motion at position x. Note that all diffusions are reversible with391

respect to their speed measures, i.e.392

m(x)f(x, y; t) = m(y)f(y, x; t).

We additionally require the probability of loss, i.e. the probability that the allele393

currently at frequency x is ultimately lost from the population. This is394

u0(x) = 1− x.

Note that it is possible to condition the Wright-Fisher diffusion to eventually be lost.395

The transition density can be computed as396

f↓(x, y; t) = f(x, y; t)
u0(y)

u0(x)

by using Bayes theorem. The diffusion conditioned on loss is characterized by its397

generator,398

L↓ = −x d

dx
+

1

2
x(1− x)

d2

dx2
.

In an infinite sites model, in which mutations occur at the times of a Poisson399

process with rate θ/2 and then each drift according to the Wright-Fisher diffusion, a400

quasi-equilibrium distribution will be reached, known as the frequency spectrum. The401

frequency spectrum, φ(x), predicts the number of sites at frequency x, and can be402
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written in terms of the speed measure and the probability of loss,403

φ(x) = θm(x)u0(x).

To proceed with calculating (4), note that the conditional probability of an allele404

being at frequency y in the ancient population given that it’s at frequency x in the405

modern population can be calculated406

f(y;x, t1, t2) =
f(x, y; t1, t2)

φ(x)

where f(x, y; t1, t2) is the joint probability of the allele frequencies in the modern and407

ancient populations and φ(x) is the frequency spectrum in the modern population.408

Assuming that the ancestral population of the modern and ancient samples was at409

equilibrium, the joint distribution of allele frequencies can be computed by sampling410

alleles from the frequency spectrum of the ancestor and evolving them forward in time411

via the Wright-Fisher diffusion. This can be written mathematically as412

f(x, y; t1, t2) =

∫ 1

0

f(z, x; t1)f(z, y; t2)φ(z)dz.

We now expand the frequency spectrum in terms of the speed measure and the prob-

ability of loss and use reversibility with respect to the speed measure to rewrite the

equation,

∫ 1

0

f(z, x; t1)f(z, y; t2)φ(z)dz = θ

∫ 1

0

f(z, x; t1)f(z, y; t2)m(z)u0(z)dz

= θ

∫ 1

0

m(x)

m(z)
f(x, z; t1)f(z, y; t2)m(z)u0(z)dz

= θm(x)u0(x)

∫ 1

0

f(x, z; t1)
u0(z)

u0(x)
f(z, y; t2)dz

= φ(x)

∫ 1

0

f↓(x, z; t1)f(z, y; t2)dz.
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The third line follows by multiplying by u0(x)/u0(x) = 1. This equation has the inter-413

pretation of sampling an allele from the frequency spectrum in the modern population,414

then evolving it backward in time to the common ancestor, before evolving it forward415

in time to the ancient population. The interpretation of the diffusion conditioned on416

loss as evolving backward in time arises by considering the fact that alleles arose from417

unique mutations at some point in the past; hence, looking backward, alleles must418

eventually be lost at some point in the past.419

To compute the expectation, we substitute this form for the joint probability into

(4),

∫ 1

0

g(y)f(y;x, t1, t2)dy =

∫ 1

0

g(y)

(∫ 1

0

f↓(x, z; t1)f(z, y; t2)dz

)
dy

=

∫ 1

0

(∫ 1

0

g(y)f(z, y; t2)dy

)
f↓(x, z; t1)dz,

where the second line follows by rearranging terms and exchanging the order of inte-

gration. Note that this formula takes the form of nested expectations. Specifically,

∫ 1

0

g(y)f(z, y; t2)dy = Ez(g(Yt2))

≡ h(z)

and

∫ 1

0

h(z)f↓(x, z; t1)dz = E↓x(h(Zt1))

= Ex(g(Y ); t1, t2).

We now use (5) to note that420

d

dt
pn,k =

k(k − 1)

2
pn,k−1 − k(n− k)pn,k +

(n− k)(n− k − 1)

2
pn,k+1
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and421

d

dt
p↓n,k =

k(k − 1)

2
p↓n,k−1 − k(n− k + 1)p↓n,k +

(n− k + 1)(n− k)

2
p↓n,k+1

with obvious boundary conditions pn,k(0; z) = zk(1 − z)n−k and p↓n,k(0;x) = xk(1 −422

x)n−k.423

These systems of differential equations can be rewritten as matrix differential equa-424

tions with coefficient matrices Q and Q↓ respectively. Because they are linear, first425

order equations, they can be solved by matrix exponentiation. Because the expectation426

of a polynomial in the Wright-Fisher diffusion remains a polynomial, the nested expec-427

tations can be computed via matrix multiplication of the solutions to these differential428

equations, yielding the formula (2).429

5.2 Sites covered exactly once have no information about drift430

in the ancient population431

Consider a simplified model in which each site has exactly one read. When we have432

sequence from only a single individual, we have a set la of sites where the single read is433

an ancestral allele and a set ld of sites where the single read is a derived allele. Thus,434

we can rewrite (3) as435

L(D) =
∏
l∈la

(
(1− ε)P2,0(xl) +

1

2
P2,1(xl) + εP2,2(xl)

)∏
l∈ld

(
εP2,0(xl) +

1

2
P2,1(xl) + (1− ε)P2,2(xl)

)
.

We can use formulas from Racimo et al. [2016] to compute P2,k(xl) for k ∈ {0, 1, 2},

P2,0(xl) = 1− xle−t1 −
1

2
xle
−(t1+t2) + xl

(
xl −

1

2

)
e−(3t1+t2)

P2,1(xl) = xle
−(t1+t2) + xl(1− 2xl)e

−(3t1+t2)

P2,2(xl) = xle
−t1 − 1

2
xle
−(t1+t2) + xl

(
xl −

1

2

)
e−(3t1−t2).
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Note then that436

(1− ε)P2,0(xl) +
1

2
P2,1(xl) + εP2,2(xl) = 1− ε− x(1− 2ε)e−t1

and437

εP2,0(xl) +
1

2
P2,1(xl) + (1− ε)P2,2(xl) = ε+ x(1− 2ε)e−t1 .

Neither of these formulas depend on t2; hence, there is no information about the drift438

time in the ancient population from data that is exactly 1x coverage.439

6 Software Availability440

Python implementations of the described methods are available at www.github.com/schraiber/continuity/441
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Figure 1: The generative model. Alleles are found at frequency x in the modern population
and are at frequency y in the ancient population. The modern population has effective

size N
(1)
e and has evolved for τ1 generations since the common ancestor of the modern and

ancient populations, while the ancient population is of size N
(2)
e and has evolved for τ2

generations. Ancient diploid samples are taken and sequenced to possibly low coverage,
with errors. Arrows indicate that the sampling probability can be calculated by evolving
alleles backward in time from the modern population and then forward in time to the
ancient population.
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Figure 2: Impact of sampling scheme on parameter estimation error. In each panel, the x
axis represents the number of simulated ancient samples, while the y axis shows the relative
root mean square error for each parameter. Each different line corresponds to individuals
sequenced to different depth of coverage. Panel A shows results for t1 while panel B shows
results for t2. Simulated parameters are t1 = 0.02 and t2 = 0.05.
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Figure 3: Impact of sampling scheme on rejecting population continuity. The x axis
represents the age of the ancient sample in generations, with 0 indicating a modern sample
and 400 indicating a sample from exactly at the split time 400 generations ago. The y axis
shows the proportion of simulations in which we rejected the null hypothesis of population
continuity. Each line shows different sampling schemes, as explained in the legend.
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Figure 4: Impact of admixture from the ancient population on inferred parameters. The x
axis shows the admixture proportion and the y axis shows the average parameter estimate
across simulations. Each line corresponds to a different sampling strategy, as indicated in
the legend. Panel A shows results for t1 and Panel B shows results for t2.
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Figure 5: Impact of ghost admixture on falsely rejecting continuity. The x axis shows
the admixture proportion from the ghost population, and the y axis shows the fraction of
simulations in which continuity was rejected. Each line corresponds to a different sampling
strategy, as indicated in the legend.
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Figure 6: Parameters of the model inferred from ancient West Eurasian samples. Panel A
shows t1 on the x-axis and t2 on the y-axis, with each point corresponding to a population
as indicated in the legend. Numbers in the legend correspond to the mean date of all
samples in the population. Panels B and C show scatterplots of the mean age of the
samples in the population (x-axis) against t1 and t2, respectively. Points are described by
the same legend as Panel A.
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Figure 7: Impact of pooling individuals into populations when estimating model param-
eters from real data. In both panels, the x-axis indicates the parameter estimate when
individuals are analyzed separately, while the y-axis indicates the parameter estimate when
individuals are grouped into populations. Size of points is proportional to the coverage of
each individual. Panel A reports the impact on estimation of t1, while Panel B reports the
impact on t2. Note that Panel B has a broken x-axis. Solid lines in each figure indicate
y = x.
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pop cov date t1 t2 lnL t1 (cont) lnL (cont)

Alberstedt LN 12.606 4417.000 0.005 0.013 -779411.494 0.006 -779440.143
Anatolia Neolithic 3.551 8317.500 0.010 0.042 -9096440.714 0.044 -9106156.877
Baalberge MN 0.244 5684.333 0.001 0.071 -201575.306 0.007 -201750.419
Bell Beaker Germany 1.161 4308.444 0.003 0.010 -1834486.744 0.008 -1834652.858
BenzigerodeHeimburg LN 0.798 4209.750 0.003 0.032 -346061.545 0.007 -346134.356
Corded Ware Germany 2.250 4372.833 0.005 0.023 -2139002.723 0.017 -2139858.192
Esperstedt MN 30.410 5238.000 0.005 0.029 -975890.329 0.009 -976047.889
Halberstadt LBA 5.322 3082.000 0.003 0.015 -558966.522 0.004 -558993.078
Hungary BA 3.401 3695.750 0.004 0.023 -789754.969 0.010 -789939.889
Hungary CA 5.169 4869.500 0.005 0.037 -504413.094 0.010 -504549.603
Hungary EN 4.033 7177.000 0.007 0.036 -3478429.262 0.033 -3481855.461
Hungary HG 5.807 7763.000 0.000 0.147 -469887.471 0.015 -471652.083
Iberia Chalcolithic 1.686 4630.625 0.005 0.037 -2351769.869 0.028 -2354249.543
Iberia EN 4.875 7239.500 0.005 0.053 -1483274.628 0.030 -1485675.934
Iberia MN 5.458 5765.000 0.004 0.039 -1491407.962 0.023 -1492793.179
Iberia Mesolithic 21.838 7830.000 0.009 0.141 -720759.133 0.030 -723091.935
Karelia HG 2.953 7265.000 0.008 0.125 -652952.676 0.033 -655352.439
LBK EN 2.894 7123.429 0.007 0.039 -3656617.954 0.033 -3660838.639
Motala HG 2.207 7729.500 0.003 0.126 -1477338.076 0.068 -1489573.895
Poltavka 2.211 4684.500 0.008 0.029 -1334662.071 0.020 -1335358.630
Potapovka 0.267 4076.500 0.004 0.063 -220112.816 0.011 -220251.379
Samara Eneolithic 0.463 6615.000 0.007 0.078 -362161.674 0.020 -362689.209
Scythian IA 3.217 2305.000 0.012 0.011 -492961.306 0.013 -492973.694
Srubnaya 1.662 3653.273 0.004 0.015 -2578065.957 0.013 -2578645.731
Srubnaya Outlier 0.542 3704.500 0.006 0.019 -285828.766 0.008 -285851.523
Unetice EBA 1.320 4024.786 0.002 0.012 -1676798.610 0.008 -1677026.310
Yamnaya Samara 1.937 4990.500 0.008 0.033 -2440183.354 0.028 -2442192.801

Table 1: Details of populations included in analysis. “pop” is population name, “cov” is
mean coverage of individuals in the population, “date” is mean date of individuals in the
population, “t1” is the maximum likelihood estimate of t1 in the full model, “t2” is the
maximum likelihood estimate of t2 in the full model, “LnL” is the maximum likelihood
value in the full model, “t1 (cont)” is the maximum likelihood estimate of t1 in the model
where t2 = 0, “LnL” is the maximum likelihood value in the model where t2 = 0.
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