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Abstract

“Functional Information” —estimated from the mutual information of protein sequence
alignments—has been proposed as a reliable way of estimating the number of proteins
with a specified function and the consequent difficulty of evolving a new function. The
fantastic rarity of functional proteins computed by this approach emboldens some to
argue that evolution is impossible. Random searches, it seems, would have no hope of
finding new functions. Here, we use simulations to demonstrate that sequence
alignments are a poor estimate of functional information. The mutual information of
sequence alignments fantastically underestimates of the true number of functional
proteins. In addition to functional constraints, mutual information is also strongly
influenced by a family’s history, mutational bias, and selection. Regardless, even if
functional information could be reliably calculated, it tells us nothing about the
difficulty of evolving new functions, because it does not estimate the distance between a
new function and existing functions. Moreover, the pervasive observation of
multifunctional proteins suggests that functions are actually very close to one another
and abundant. Multifunctional proteins would be impossible if the FI argument against
evolution were true.

1 Introduction

Evolution is among the most successful theories in all of science. It rationalizes a
staggering array of otherwise disparate biological observations. In our genomic age, the
evidence for evolution is more clear than ever before. Many independent patterns in our
genomes point to the common ancestry of life. Despite the broad scientific consensus
around common ancestry, evolution remains controversial to the general public, and is a
focal point of ongoing political challenges [I7, [18].

In this societal context, it is important to correct faulty arguments against evolution
[, [25]. This is particularly important when components of these arguments appear in
peer reviewed journals. To this end, this study aims to explain the modeling errors on
which the “Functional Information” (FI) argument against evolution depends.
Components of this argument are published in several peer reviewed articles [8, [13], and
are elaborated in public debates, rebuttals and counter rebuttals (see SI). Science, of
course, is not litigated through popular debates, but in careful studies. So it is
important the faulty scientific claims in peer-reviewed publications are corrected, which
is what we aim to do here.

In the following sections, we first explain the FI argument. Next, we demonstrate
with evolutionary simulations that the key scientific claims on which this argument rests
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are false. To the point, sequence alignments wildly overestimate FI and wildly
underestimate the number of functional sequences. Finally, we explain why FI is not a
valid way of estimating the difficulty of evolving new functions, even if FI could be
reliably estimated from sequence alignments.

1.1 The Functional Information Argument

Functional information (FI) itself is a legitimate concept introduced in the literature to
quantify and study the emergency of complexity in evolutionary systems [I3]. The FI
argument against evolution attempts to develop estimates of functional information and
to use these estimates to show that complex biological systems are highly improbable to
be the products of evolution.

The FI argument is formulated in multiple ways. In one formulation, FT is estimated
by computing the mutual information of a sequence alignment (MISA)—which is
sometimes termed functional sequence complexity (FSC)—of a family of proteins with a
specified function. Next, it is hypothesized (without verification) that intelligent minds
are uniquely capable of producing significant amounts of FI, more than 150 bits of MISA.
Then, it is asserted that alignments of proteins with common function demonstrate that
biological function is characterized by very high MISA. Therefore, we must conclude
that life must have been designed, and could not have evolved from random processes.

In a parallel formulation, MISA is used to estimate the number of proteins of a given
length with a specified function, by assuming that MISA is a good estimate of FI. From
here, it is asserted that the chances of finding a protein with a specified function is
astronomically small if the measured FI is greater than 150 bits. Therefore, the
argument concludes that it is impossible for proteins with the specified function to have
evolved by random chance.

Both variations of the argument rely on a similar foundation: the assertions that (1)
MISA is an accurate estimate of FI and that (2) FI is a meaningful measure of
evolvability. In the literature and the public debates, MISA and FI are often conflated
and treated as though they are the same quantity (SI Data). Keeping these concepts
separate, and treating FSC as a synonym for MISA, clarifies the scientific questions at
hand; is MISA (i.e. FSC) a good estimate of FI? And is FI, even if it were knowable, a
good measure of evolvability?

1.2 Functional information and the probability of function

Following from information theory, we define the ”functional information” of a specific
biological function as

FI = — log, [N/W], (1)

where N is the number of protein sequences with the specified function and W is the
total number of possible protein sequences under consideration [I3]. From this formula,
the probability of guessing a functional sequence decreases exponentially as the FI
increases (27 F1). This interpretation only holds if each sequence is guessed with equal
probability.

1.3 Functional information from sequence alignments

The central scientific claim: the MISA of proteins with a specified function is a good
estimate of the function’s FI. This claim is so confidently asserted that MISA and FI
are sometimes conflated and treated as though they are the same quantity. This claim
appears in the peer-reviewed literature, authored together by a group of Intelligent
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Design theorists [8]. They coin a new term FSC, but use the formula for mutual
information to compute it,

MISA = —L - log, [1/20] )
+ ZZP(a at i) log, P(a at i),

where L is the length of the sequence alignment, 7 ranges over each position in the
alignment, a ranges over the twenty amino acids, and P(a at %) is the probability of
observing amino acid a at position i [§]. This formula applies to both position specific
scoring matrices (PSSMs) and Hidden Markov Models (HMMs), and it is asserted that
Pfam—the widely used repository of protein family HMMs [9]—can be used to estimate
the FI of important biological functions.

Care is given to remove redundant sequences and ensure that enough sequences are
included for the MISA to converge to a specific value. Measured this way, the MISA of
important protein families ranges from about 1 to 4 bits per amino acid. MISA is
computed to be over 150 bits per family for many protein families, and up to 1,000 bits
for some families.

1.4 Functional information and evolvability

The final step of the FI argument combines equations [1] and [2| to calculate the
probability of randomly guessing a protein sequence with a specified function. Previous
studies estimate that evolution has explored at most 2!45 different protein sequences [7].
Therefore, the argument concludes that any protein function we observe with
substantially more than 150 bits of FI (measured by MISA) is very unlikely to have
evolved. In particular, the argument claims that protein families with greater than 1000
bits MISA are astronomically unlikely to be the products of evolution.

2 Results and Discussion

The FI argument depends on several fallacies, but we focus on the component of the
argument that appears in the literature. Specifically, straightforward simulations
demonstrate that MISA wildly overestimates FI. Furthermore, we argue that FI (even if
accurately estimated) cannot be used to quantify the difficulty of evolving a specific
function. Proceeding forward, it is important to emphasize a sharp distinction between
the FT estimated by MISA (Equation [2)) and the true FI computed from the total
number of known and unknown sequences with the specified function (Equation . As
we will see, there is a fantastically large gap between MISA and the true FI.

2.1 Uniform evolution of non-functional proteins

This first and most important simulation demonstrates that mindless evolutionary
processes can produce sequences with very high MISA. This simulation samples several
extant sequences a fixed number of mutational events away from a single ancestral
sequence. There are no functional constraints, so the FI by definition equals zero
(Equation . If MISA is a good estimate of FI, it should converge to zero bits too.
We find that MISA does not converge to zero, even as more extant sequences are

sampled (Figs. |1| and . Entirely mindless processes produce sequences with high,
mutation-rate- and length-dependent MISA. The simulation converges to 4.3, 2.6, 1.8,
1.2, and 0.8 bits per amino acid for mutation rates of, respectively, 0.0, 0.25, 0.50, 0.75,
and 1.0 mutation events per amino acid. MISA does go to zero if the mutation rate is
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Figure 1. MISA is arbitrarily high even for sequences with an FI of zero. Here, extant
sequences 150 amino acids long, and a fixed number of mutations away from a single
ancestral sequence are sampled, added to the sequence alignment, and the MISA is
reported as a function of the number of samples.

increased to several events per amino acid, as the memory of the ancestral sequence is
wiped. So, in addition to the effect of functional constraints, MISA encodes the
mutational age of the protein family.

The mutation rates in the simulation correspond to very long time periods. One
mutation per amino acid corresponds to more than 30 million years of mammalian
evolution (at approximately ten mutations per base per billion years). Moreover, this
effect would amplified by sampling extant sequences from a phylogenetic tree, where
some sequences more recently diverge from one another.

Therefore, the MISA of protein families is strongly influenced by the common
evolutionary origin of the extant sequences. Evolution samples sequences by randomly
walking around the ancestral sequence, not by randomly sampling sequences with equal
probability from the space of all possible proteins. This biased sampling pushes MISA
upward. The effect of evolutionary history on MISA is substantial, protein length
dependent, and independent of functional constraints.

As obvious as this result may seem, its importance in this discussion cannot be
overstated. This simulation directly falsifies the hypothesis that “minds are uniquely
capable” of generating sequences with high FI as measured by MISA. From this
experiment, we must conclude either that (1) a mindless process driven entirely by
randomness can reliably generate arbitrarily high FI or that (2) MISA is an extremely
bad estimate of FI. Either conclusion falsifies the FI argument entirely.

Going forward, any sensible effort to measure FI from a sequence alignment needs to
subtract the effect of shared evolutionary history. Put another way, the information in a
sequence alignment (MISA) quantitates both functional and historical information. The
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Figure 2. MISA increases scales linearly with sequence length, even when true FI is
zero. Here, extant sequences 150 amino acids long, and a fixed number of mutations
away from a single ancestral sequence are sampled, added to the sequence alignment,
and the MISA is reported as a function of the number of samples. The MISA of this
process scales linearly with sequence length, even though the true FI is zero.

FI encodes a sequence’s function, but the historical information records the sequence’s
history, its ancestry. Any effort to compute FI needs to subtract the historical
information from MISA. One solution to this problem might use DNA sequences
adjacent to protein coding regions as a control. The mutual information of these
sequences, if not under strong functional constraint, might be used to compute a length
dependent, correction factor. Full consideration of this possibility is beyond the scope of
this study. However, if done correctly, an appropriate correction would substantially
reduce estimates of FI in many cases. Regardless, MISA itself wildly overestimates FI.

2.2 Codon evolution of non-functional proteins

In the first simulation, as mutation rate increases to several events per amino acid, the
substitution rate approaches 100% and the MISA of the extant sequences approaches
zero bits. This is only true because the simulation uses a mutational model that
uniformly substitutes amino acids. Biological systems, however, substitute amino acids
non-uniformly, and this introduces an additional bias.

A more accurate simulation models the evolution of codons with restrictions imposed
by the genetic code. Here, an ancestral sequence is constructed by uniformly sampling
codons. Mutations change a codon into another codon with exactly one nucleotide
difference. As would be expected, the MISA of non-functional sequences generated by
codon evolution is even higher than that generated with a uniform model. The
simulation converges to 4.3, 3.2, 2.5, 2.1, and 1.6 bits per amino acid for mutation rates
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Figure 3. Codon evolution of non functional sequences. The simulation models the
evolution of a codon sequence, by limiting mutations to substitution of codons with a
single base-pair difference. Extant sequences a fixed number of mutations away from a
single ancestral sequence are sampled, added to the sequence alignment, and the MISA
is reported as a function of the number of samples. As the number of samples increase,
MISA does not converge to zero if the mutation rate is not high enough, even though
the true FI is zero. As mutation rate increases, asymptotic MISA does move downwards,
but more slowly than uniform evolution and it does not ever reach zero FI even once all
amino acids have been substituted.

of, respectively, 0.0, 0.25, 0.50, 0.75, and 1.0 mutations per amino acid (Fig. . Once
again, MISA scales inversely with mutation rate. In this model, the equilibrium amino
acid composition is not uniform but is proportional to the number of codons encoding
each amino acid. Consequently, even after a large number of mutations erase all
memory of the ancestral sequence, an additional 0.183 bits per amino acid are added to
MISA, and it never reaches zero (Fig. S1).

So, improved modeling of mutational mechanisms increases the measured MISA.
MISA is only a good estimate of FI if known sequences are uniformly sampled from the
space of functional sequences. However, the more realistically evolution is simulated, the
less uniformly sequences are sampled, and this deviation from uniformity adds to MISA.

2.3 DMore realistic mutational models

It is beyond the scope of this study to implement a comprehensive model of evolutionary
change. Rather, we emphasize that MISA estimates of FI are inaccurate, and
simulations are made more realistic, MISA diverges farther from FI. Each improvement
in the evolutionary model introduces additional non-uniform biases into the sampling of
sequences, which add an additional upward bias to MISA estimates of FI.
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More realistic simulations would model several additional mutational mechanisms.
For example, genome GC-content also exerts a strong effect on amino acid composition
and substitution probabilities [4] 16}, 2], 23]. Likewise, differences in transversions and
transition probabilities are also important, are caused by biochemical mechanisms, and
appear to be independent of amino acid conservation [22]. A comprehensive model
would also include insertions, deletions, stop codons, frameshift mutations, exon
shuffling, exon duplication and deletion, alternate splicing, recombination, fusions,
transposons, horizontal gene transfer, and more. Of course, some of these mechanism
would require more complicated alignment algorithms than PSSMs to correctly compute
MISA. For example, sequences from a mutational model that includes insertions and
deletions would be correctly aligned by a HMM, but not a PSSM. Unfortunately, there
are no standard approaches to aligning sequences generated by many important
mutational mechanisms. Each mechanism introduces a new source of ”information” into
protein sequence families. In the same way codon evolution introduces a persistent
deviation from uniformity that pushes MISA upwards, so does each one of these
mechanisms.

One poorly motivated strategy to cope with the complexity of mutational
mechanisms is to settle for alignment methods incapable of correctly aligning sequences.
Attempts to justify this approach might incorrectly assert that alignment deficiencies
can only bias MISA estimates downward, producing more conservative estimates of FI.
However, this assertion is predicated on correct identification and alignment of
sequences with the same function. Methods incapable of aligning sequences under a
realistic mutational model will introduce upward biases to MISA in at least three ways.
First, excluding functional sequences from the alignment reduces the sampling of the
alignment, which in many substitution regimes increases MISA estimates (Fig. [1]).
Second, alignment deficiencies makes it much harder to identify all the families with
shared function. Third, failure to align to correctly functional sequences multiplies the
number of sequence families with the function, and the more functional families there
are, the more divergent MISA is from FI (as we will see).

Unfortunately, no method is guaranteed to correctly align sequences generated by all
these mutational mechanisms. For example, there is no standard method of accounting
for the non-linear alignments produced by fusions and exon shuffling. However,
speculatively speaking, it is possible that estimates of mutual information computed by
DNA compression algorithms might be more accurate than HMMs in some cases; for
example, fusions and exon shuffling are not modeled by Pfam HMM alignments but are
correctly modeled in genome compression algorithms [5], and compression size estimate
an upper bound on information content. Putting the technical challenges aside, the
particulars of many mutational mechanisms drive evolution farther from uniform
sampling. Therefore, each mechanism, when correctly modeled, can increase estimates
of MISA. In fact, unaccounted for patterns in genomic data is exactly how some
mutational mechanisms are identified in the first place [3, [T, T2]. Each mutational
mechanism has the potential to introduce an independent upward bias to MISA
estimates of FI. Each of these biases needs to be identified and accounted for if MISA
can ever effectively measure FI.

2.4 Multiple families with shared function

The MISA approach to estimating FI assumes that only a single family of proteins can
perform a specified function. Even if all the biases presented in this study could be
corrected, this assumption fundamentally limits any sequence alignment based approach
to estimating the number of proteins with a specified function that are also within the
same family. This assumption is not warranted. Sequences that cannot be aligned can
still adopt the same tertiary structure [I5] and can share the same function [I9]. A
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Figure 4. Evolutionary processes cause high MISA in extant sequences, independent of
functional constraints. The figure depicts a hypothetical sequence space with regions
corresponding to two functions marked. The lines depict the evolutionary trajectory as a
new sequence is evolved. Positive selection, in this case, concentrates the extant sequences
in the region of highly functional sequences. Estimates of functional information from
the sequence alignment of extant sequence are limited to estimating the size of the
region occupied by the extant sequences (the dark blue region). Due to incomplete and
non-uniform sampling, the full extent of possible functional sequences within the protein
family is not correctly measured, and other protein families with the same function
are also not counted. The effect of these limitations is that sequences alignments
dramatically overestimate functional information and underestimate the number of
functional sequences. Regardless, evolvability might be better measured, for example,
by the distance between the new function and pre-existing sequences.
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more accurate method would, instead, compute the FI of each individual functional
family, and then aggregate them to compute the true FI. It follows algebraically from
Equation [I] that the MISA of each family should be aggregated by summing in negative
exponential space,

FI=— lnz e MISAs (3)
f

where f indexes functional families, and MISA ¢ is the FI of each family. In the toy case,
where all families have nearly equal FI, the aggregation reduces to,

FI < u(MISAy) —log, F, (4)

where p1(MISAy) is the mean MISA across all functional families, and F' is the total
number of families. This is an upper-bound, because sums in negative exponential space
are dominated by smaller terms. In contrast, the mean equally weight all terms, thereby
biasing the FI approximation upwards, so this formula is an upper-bound, not an
unbiased estimate. Alternatively, this aggregation has another algebraically derived
upper-bound,

FT < minMISA,;. (5)

So the MISA of one family is at best a very loose, low confidence, upper bound on FI.
Put another way, these results demonstrate the FI of a specified function is always less
than the MISA of the simplest protein family with the function. Likewise, it is always
less than the average MISA of families with the function. Most important, aggregate FI
can be much smaller than the MISA of any individual family with the function.

From this analysis it might seem possible to estimate FI by aggregating MISA across
the multiple families that we know have shared function. However, this approach
assumes that all families with a specified function have been identified and sequences
are available for each family in large numbers. However, evolution does not uniformly
sample sequence space, so there is no reason to think we have catalogued all possible
families of proteins, or that all of them exist in nature. As has been laid out in the FI
argument itself, there is a upper-bound of about 2'4® protein sequences explored by
evolution. But there are 20'°°—or approximately 2648—proteins that are 150 amino
acids long. To be sure, it is possible that evolution could have explored all possible
sequences of shorter proteins, especially if early life had a more limited amino acid
alphabet [7]. Nonetheless, it is clear, for the current alphabet of 20 amino acids and
proteins with 100 or more amino acids, only an infinitesimally small proportion of
protein sequences have been explored. So only a very small number of protein families
have been sampled. Simply aggregating the MISA of known families to estimate FI does
not manage or correct for this under-sampling bias, and there is no foreseeable
theoretical way of overcoming this challenge.

Moreover, we do not even observe (or know the function of) the vast majority of the
sequences that evolution has explored. Setting aside the ancient sequences of proteins
that have been irrecoverably lost, the recent proliferation of metagenomic studies
demonstrate how little we know about extant proteins. In many metagenomic
experiments, more than 90% of sequences fail to align to known protein families [6]; the
unknown sequences are frequently different from experiment to experiment too. We only
know the functional role of only a tiny fraction of sequences. Some of these sequences,
undoubtably, represent novel functions, but how many represent novel families with
functions already known? Knowing the MISA of one family, even if it could correctly
estimate the size of the family, tells us nothing about the aggregate size of all functional
families, nor does it tell us how many there are. MISA does not estimate the aggregate
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MSIA of all functional families (Equation [3), nor does it estimate the minimum MISA
across the families (Equation . Therefore, MISA tells us very little about FI and,
consequently, the number of proteins that have a specified function.

2.5 Selection for high function

Selection also introduces a strong upward bias to MISA estimates. In many cases, high
efficiency proteins are selected over low efficiency proteins with the same function. Most
skeptics of evolution term this ”microevolution,” and readily concede that the iterative
refinement of proteins by natural selection is a real and observable process. This widely
understood, verified, and accepted mechanism increases MISA.

The essential point is that selective pressures, in many cases, will limit extant
sequences to those that are high functioning, excluding those that are low function. So
sequence alignment of extant sequences could only hope to estimate the FI (or the
number) of high functioning proteins, instead of the much larger space of all protein
sequences with the specified function, including the less efficient members of the family.
This effect is likely to be strongest in ancient proteins that have been well optimized
over long periods of time, and at the same time have outsized impact on fitness. For
example proteins functioning in DNA replication, RNA transcription, and protein
translation are all ancient and strongly impact fitness. Selection likely confines them to
a narrow space of high functioning sequences, even though the space of less efficiently
functioning sequences could be much larger.

To demonstrate this effect, we simulated evolution of functional sequences under
selection using the codon model of evolution (Fig. . In this simulation, we see that
MISA is much closer to the FI of high functioning sequences, and tells us nothing about
the total number of sequences of any functional efficiency. These results are robust to a
large number of variations in the parameters, and any reasonable fitness function that
places a selective advantage to high over low function (Fig. S3 and S4). The smoothness
of the fitness landscape makes no difference in this simulation, as long the high function
space is eventually reached. Critically, MISA is influenced very weakly by the size of the
low function space. On the other hand, it is almost entirely determined by the size of
high function space.

Although a simplified model of evolution, it recapitulates several key behaiviors.
Initially, but only for a short time, positive selection dominates. However, when the
high functioning space is reached, the simulation is dominated by neutral mutations and
purifying selection to keep the population in high functioning space. Moreover, the
simulation exposes an unfounded assumption in MISA estimates of FI, that selection
operates at the boundary of functional and non-functional sequences. For extant
proteins under purifying selection, this is not the case. Rather, selection here operates
at the boundary of high and low function sequences. It not clear how MISA could be
corrected to adjust for this effect and, as we have seen, this effect is substantial and
persists indefinitely.

2.6 Functional information and evolvability

Until now, we have focused on the problems with estimating FI from MISA. Our
emphasis here is to correct fallacious claims in the literature that conflate FI and MISA,
as if the two quantities are nearly equivalent. In contrast with this claim, we identify
several very strong upward biases to MISA that are independent of FI: historical
information, mutational bias, and selection. MISA , therefore, is a very poor estimate of
FI.

Still, it is worth considering if FI, if it were possible to estimate, would be a good
estimate of evolvability. Recall, indispensable to the FI argument is the assertion that
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FI is a good measure of how difficult it is to evolve a specific function. The argument
depends on using FI to measure the difficulty of randomly guessing a functional
sequences.

This rationale, however, is flawed because evolution does not sample sequences with
uniform likelihood. If we accept the definition of FI presented in Equation [1| FI just
tells us the proportion of sequences that are functional. If evolution just sampled
uniformly from the space of all proteins, it is possible that FI would be a good estimate
of evolvability. However, evolution proceeds by sampling around existing protein and
DNA sequences, which are substantially enriched for function. Evolvability is better
estimated by measuring the distance between existing sequences and the closest family
of functional proteins. FI, however, tells us nothing about how close the first functional
protein of a family was to preexisting sequences without that function (Fig. |4)).

We have one strong hint that new functions are close to old functions and abundant,
and therefore easy to evolve. The same protein family can often perform several
different functions. If functionality were astronomically rare and isolated in sequence
space, this would be nearly impossible. If the FI argument was even approximately
correct, multifunctional proteins and protein families would be extremely rare. Yet we
observe them in nature all the time.

Multifunctional proteins are ubiquitous. One excellent example, which our group
studies, is the family of P450 enzymes, which metabolize a wide range of different
xenobiotic and endogenous molecules in several different ways [I} 20 27]. Moreover, a
large number of individual proteins are multifunctional, with “moonlight” functions that
seem unrelated to their first discovered function [I4]. The many to many relationship
between protein families and functions underscores an important insight. Protein
families are defined primarily by our ability to align sequences, but these alignments do
not neatly correspond to biochemical function. Individual proteins in most families
might be implicated in several functions; many functions can be executed by multiple
families. Evolving a specific function may be easy if a large number of proteins and
protein families are just a few mutational steps away from the new function.

Quantifying the importance of each evolutionary pathway is a difficult and
important scientific endeavor, but beyond the scope of this study. Speaking to the
current questions, this data independently tells us the FI argument must be false. This
should be no surprise; FI tells us absolutely nothing about the proximity of the new
function to extant or ancient families of proteins. So it does not quantify in any way the
likelihood of the mutational path to evolve a new function.

Perhaps most surprisingly, in addition to evolving new functions from existing
proteins, there is evidence that proteins occasionally arise de novo from previously
untranslated DNA sequences [2, [24] 26]. In a similarly surprising process, new function
can be added to existing proteins by adding protein sequence encoded by previously
untranslated DNA sequences too [I0]. In all these cases, functional protein sequence in
one species corresponds to untranslated DNA in other species. This is a clear sign that
functional protein sequences must be common enough to occasionally pop into existence
from untranslated DNA.

Once again, FI tells us nothing about how close a new function is to pre-existing and
untranslated DNA sequences. While sequence alignments might trace the origin of de
novo proteins, they prospectively tell us very little about the difficulty of evolving any
specific function. The refrain here is the same. Even if we could accurately compute FT,
it would tell us nothing about the proximity of new functions to existing sequences. It
would tell us nothing about the evolutionary pathways between existing functions and
new functions.
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Figure 5. MISA fantastically overestimates the FI of sequences under selection and,
therefore, drastically underestimates the number of functional proteins. In this simulation,
a functional sequence family is defined as all sequences 150 amino acids long with fewer
than 50 amino acids different from a fixed centroid sequence. This space contains
1.8 x 10'% sequences (so FI approximately equals 301 bits). A fitness function varies
between 50 and 10 differences from the centroid, with sequences closer to the centroid
given two times higher fitness than those one mutation father away. All sequences within
10 amino acids of the centroid were defined as highly functional and assigned equal
fitness. The FI of the high function group is about 555 bits. The population is initialized
to 2,000 copies of a single ancestral sequence exactly 50 amino acids from the centroid
sequence, at the edge of functionality. Each generation, ten offspring per sequence are
sampled using a mutation rate of 0.01 events per amino acid. The next generation is
selected from the offspring with fitness weighted random sampling without replacement.
The population converges to a very high level of fitness (Fig. S2), and MISA converges to
a value greater than 600 bits, overestimating the true FI by approximately 307 bits, and
underestimating the number of functional sequences by about 90 orders of magnitude.
We ran this selection simulation using both the codon model of mutations and the
uniform model of mutations. Both yield similar results.

3 Conclusion

Evolutionary simulations demonstrate that the mutual information of sequence
alignments (sometimes referred to as functional sequence complexity) fantastically
overestimates the functional information of proteins. This overestimate, in turn,
fantastically underestimates the number of proteins with a specified function.
Regardless, even if we could estimate functional information, it would tell us very little
about the evolvability of new functions. Perhaps most clearly, these simulations
demonstrate that FI (as estimated by MISA) is not a “unique property of minds,” but
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also a signature of shared evolutionary history and non-uniform mutation distributions.
For all these reasons, and more, the functional information argument against evolution
fails.
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