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Abstract 13 
Reef-building corals are extremely important for maintenance of marine biodiversity and coastal 14 
economy and are currently under severe threat from anthropogenic warming. Warming is 15 
predicted to drive preferential survival of warm-adapted genotypes that have migrated to cooler 16 
locations and result in an overall decline in genetic diversity due to bleaching-related mortality. 17 
To quantify these trends, we analyzed five populations of a common coral Acropora millepora 18 
along the latitudinal extent of the Great Barrier Reef (GBR). Population genomic analysis 19 
revealed that most populations were demographically distinct and that migration was indeed 20 
preferential southward, from lower (warmer) to higher (cooler) latitudes. However, no recent 21 
increase in southward migration was detectable, and inferred migration rates remained closely 22 
correlated with predictions of a biophysical model of larval dispersal based on ocean currents. 23 
There was also no evidence of recent declines in genetic diversity. A multi-locus adaptation 24 
model indicated that standing genetic variation spread across latitudes could be sufficient to fuel 25 
continuous adaptation of A. millepora metapopulation to warming over the next 100-200 years. 26 
Unexpectedly, we found that naturally low heritability of thermal tolerance in reef-building corals 27 
due to contribution from horizontally transmitted algal symbionts would facilitate longer 28 
metpopulation persistence. Still, despite good prospects for gradual adaptation, our model 29 
predicted increase in severity of mortality events due to random thermal anomalies, which could 30 
lead to much faster coral extinction if there are ecological feedbacks preventing rapid reef 31 
recovery. 32 
 33 
Significance statement: Can long-lived organisms such as reef-building corals adapt fast enough 34 
to keep up with the historically unprecedented rate of sea surface warming? Here we combine 35 
population genomics, biophysical modeling, and evolutionary simulations to argue that 36 
populations of a common reef-building coral (Acropora millepora) spread across latitudes on the 37 
Great Barrier Reef could harbor sufficient genetic variation to fuel efficient adaptation to 38 
increasing temperature for another century and perhaps longer. However, corals will be 39 
increasingly more sensitive to extreme heat waves despite ongoing adaptation to gradual 40 
warming, which could precipitate their extinction much sooner. Our study underscores the key 41 
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role of standing genetic variation in the future persistence of coral reefs and calls for novel reef 42 
management strategies to facilitate natural adaptation process. 43 
 44 
Hot water coral bleaching, caused by global warming, is devastating coral reefs around the world 45 
(1) but there is room for hope if corals can adapt to increasing temperatures (2). Many coral 46 
species have wide distributions that span environments that differ dramatically in their thermal 47 
regimes, demonstrating that efficient thermal adaptation has occurred in the past (3). But can 48 
coral adaptation keep up with the unprecedentedly rapid current rate of global warming (4)? One 49 
way for corals to achieve rapid thermal adaptation is through genetic rescue, involving the spread 50 
of existing heat tolerance alleles from low-latitude, warm-adapted populations to higher-latitude, 51 
warming regions, via larval migration (5, 6). We have previously demonstrated the presence of 52 
genetic variants conferring high thermal tolerance in a low-latitude A. millepora population (5). It 53 
can be expected that global warming will cause preferential survival of warm-adapted poleward 54 
migrants because they will be following their thermal optimum, whereas individuals migrating in 55 
the opposite direction would find themselves in increasingly mismatched environments (Fig. 1 A, 56 
B). Another likely population-level effect of recent declines in coral cover (7) is a reduction in 57 
overall genetic diversity, potentially limiting both the scope and the rate of adaptation. 58 
 59 
Here, we test these predictions in Acropora millepora, a common reef-building coral from the 60 
most ecologically prominent and diverse coral genus in the Indo-Pacific (staghorn corals, 61 
Acropora). We have analyzed genome-wide genetic variation using 2bRAD (8) in five 62 
populations of A. millepora along the latitudinal range of the GBR (Fig. 1 A). We genotyped 18-63 
28 individuals per population at >98% accuracy and with a  >95% genotyping rate. Analysis of 64 
population structure based on ~11,500 biallelic SNPs separated by at least by 2,500 bases agreed 65 
with previous microsatellites results (9, 10), and revealed very low levels of genetic divergence, 66 
with only the Keppel Islands population being potentially different from the others (Fig. 1 D and 67 
Fig. S1). We observed increasing genetic divergence with geographical distance (“isolation by 68 
distance”, Fig. 1 C) that supports population divergence, however, pairwise FST were small and 69 
did not exceed 0.014 even between the southernmost and northernmost populations (Keppel and 70 
Wilkie). To gain a deeper insight into coral demography, we used Diffusion Approximation for 71 
Demographic Inference (dadi, (11)) to more rigorously test for population subdivision and infer 72 
pairwise migration rates among populations and population sizes. dadi is a coalescent-based 73 
method that optimizes parameters of a pre-specified demographic model to maximize the 74 
likelihood of generating the observed allele frequency spectrum (for two populations it is 75 
essentially a two-dimensional histogram of allele frequencies, Fig. S2). Being a likelihood-based 76 
method, dadi can be used to compare alternative models using likelihood ratio tests and Akaike 77 
Information Criterion (AIC).  78 
 79 
We used AIC to confirm that our populations are separate demographic units. For each pair of 80 
populations we generated 120 bootstrapped datasets by resampling genomic contigs and 81 
performed delta-AIC comparison of two demographic models, a split-with-migration model and a 82 
no-split model (Fig. S3 B). The split-with-migration model assumed two populations that have 83 
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split some time T in the past, potentially have different sizes N1 and N2, and exchange migrants 84 
at different rates (m12 and m21) depending on direction. The no-split model allowed for ancestral 85 
population size to change at time T but not for a population split, so the experimental data were 86 
modeled as two random samples from the same population of size N. The majority of bootstrap 87 
replicates (88-100%) showed AIC advantage of the split-with-migration model for all but one 88 
pair of populations (Sudbury-Magnetic, 39% bootstrap support; Fig. S3). This indicates that the 89 
populations are demographically distinct despite very low FST. This result highlights the power of 90 
coalescent analysis relative to classical approaches (such as FST) that assume genetic equilibrium, 91 
i.e., that populations have been stable for thousands of generations. 92 
 93 

 94 
Figure 1. The population setting and background for our study. (A) Locations of sampled populations 95 

where mean midsummer month sea surface temperature differed by up to  ~3oC. Inset: Acropora millepora. 96 
(B) Working hypothesis under global warming: Warm-adapted low-latitude genotypes that migrate to 97 

higher latitudes would be following their physiological optimum and hence expected to survive better than 98 
migrants in the opposite direction. (C) Increase of pairwise FST with distance, both indicating weak genetic 99 

divergence along the GBR, and (D) principal component analysis of genome-wide genetic variation. On 100 
panel D, centroid labels are initial letters of population names as in panel A. 101 

 102 
We then determined pairwise migration rates from the split-with-migration model and estimated 103 
their confidence limits from bootstrap replicates. For all pairwise analyses except Wilkie-Sudbury 104 
migration in southward direction exceeded northward migration, and this difference was 105 
significant in seven out of nine cases (Fig. 2 A and Fig. S3A). Linear mixed model analysis of 106 
direction dependent mean migration rates with a random effect of destination (to account for 107 
variation in total migration rate) confirmed the overall significance of this southward trend 108 
(PMCMC <1e-4). 109 
 110 
It is important to note that our pairwise migration rates captured the cumulative effect of genetic 111 
exchange between populations, which included direct migration and the spread of alleles via other 112 
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stepping-stone populations. Such rates do not directly reflect the numbers of larvae exchanged 113 
between populations but are very informative in the genetic rescue context. They represent the 114 
per-generation rate of replacement of the destination population genotypes by genotypes from the 115 
source population, which is essentially the rate at which genetic rescue could proceed.  116 
 117 
To investigate whether the southward migration bias was due to higher survival of southward 118 
migrants relative to northward migrants, as predicted under global warming (Fig. 1 B), we 119 
developed a biophysical model of coral larval dispersal on the Great Barrier Reef. This model 120 
quantified the per-generation migration potential among coral reef habitat patches in the GBR 121 
based on ocean currents and parameters of larval biology (12, 13). We found that the genetic and 122 
biophysical migration rates were very closely correlated (Mantel test: r  = 0.79, P= 0.008, Fig. 2 123 
C).  124 

 125 
 126 

Figure 2. Demography of A. millepora populations on the GBR. (A) Arc-plot of migration rates among 127 
populations reconstructed from population genetic data. Inset: dadi model used: ancestral population splits 128 

into two populations of unequal sizes (N1 and N2) some time T in the past, these populations exchange 129 
migrants at different rates depending on direction. (B) Migration rates according to the biophysical model. 130 

On panels A and B, the arcs should be read clockwise to tell the direction of migration; line thickness is 131 
proportional to the migration rate. (C) Correlation between log-transformed biophysical and genetic 132 
migration rates (Mantel r = 0.79, P = 0.008). Inset: box-plot of residuals from the linear regression. 133 

Southward migration tends to exceed northward migration even after accounting for predictions of the 134 
biophysical model (P =0.058), suggesting higher survival of southward migrants. (D) Box plot of effective 135 

population sizes inferred by the split-with-migration model (panel A) across all population pairs and 136 
bootstrap replicates. (E) Historical changes in effective population sizes inferred using a single-population 137 
dadi model with two periods of exponential growth (T0 and T1, reaching sizes N0 and N1, inset), averaged 138 

across bootstrap replicates. 139 
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Although the biophysical model explained most of the southward migration bias in the genetic 140 
data, the residuals were still in favor of southward migration (Fig. 2 C, inset; P = 0.058).  141 
While this residual excess suggest preferential survival of southward migrants, as predicted by 142 
our hypothesis (Fig. 1 B). These genetic predictions represent historical averages since the 143 
populations split and did not resolve any potential recent migration changes. 144 
 145 
To determine any recent changes in southward migration, we evaluated a similar basic split-with-146 
migration model (Fig. 2A) that allowed for a change in migration over the past 75-100 years. The 147 
new model suggested some recent migration changes, but there was no consistent change between 148 
northward and southward migration (Fig. S4). Delta-AIC bootstrap analysis favored the new 149 
model over the basic one only for two pairs of populations, Wilkie-Orpheus and Wilkie-Magnetic 150 
(85 and 60% bootstrap support, respectively). We conclude that with the current data and analysis 151 
techniques we cannot yet detect the effect of recent warming on preferential direction of coral 152 
migration along the GBR. 153 
 154 
The GBR has already warmed by 0.8ºC since the end of last century (14) and may have already 155 
reduced genetic diversity in A.millepora populations. We used dadi to infer effective population 156 
sizes, which is a measure of genetic diversity and one of the key parameters determining the 157 
population’s adaptive potential (15).  The results of the split-with-migration model (Fig. 2 A) 158 
were consistent for all population pairs and indicated that Keppel population was about one-fifth 159 
the size of others (Fig. 2 D, E). This result was not surprising since the Keppel population 160 
frequently suffers high mortality due to environmental disturbances and was therefore is expected 161 
to show diminished long-term effective population size (9). We also used a single-population 162 
dadi model that allowed for two consecutive growth/decline periods (Fig. 2 E, inset) to 163 
reconstruct effective sizes of individual populations through time (Fig. 2 E and Fig S5). All 164 
populations showed evidence of growth prior to the last glaciation, 500-20 thousand years ago 165 
(Fig 2 E), which aligned well with the fossil record of rising dominance of Acropora corals on 166 
Indo-Pacific reefs during this period (16). It has been suggested that the fast growth and early 167 
sexual maturation of Acropora corals gave them an advantage relative to most other reef-building 168 
corals during dynamic changes in the reef-forming zone due to the sea level changes 169 
accompanying glacial cycles (16). Our results suggest that A. millepora populations have been in 170 
stasis or slow decline since sea level changes abated (Fig. S5), although the inclusion of an 171 
additional growth/decline period only improved the model fit significantly for the Keppel 172 
population (Fig S6). None of the populations showed evidence of accelerated decline in effective 173 
population size over the past few hundred years. Although our samples were collected in the 174 
early-mid 2000s, our results are still relevant since they characterize populations only two-three 175 
coral generations ago. Disturbances that have affected corals since then would not yet have 176 
substantially impacted genetic diversity. 177 
 178 
To evaluate whether standing genetic variation contributed by local thermal adaptation could 179 
sustain evolution of the A. millepora metapopulation in response to warming, we have developed 180 
a multi-QTL model of metapopulation adaptation in SLiM (17). The model was parameterized 181 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2017. ; https://doi.org/10.1101/114173doi: bioRxiv preprint 

https://doi.org/10.1101/114173
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

with population sizes and migration rates inferred from the genetic analysis (Fig. 2 A, D), and 182 
with differences in midsummer monthly mean temperature among populations (Fig. 1 A). The 183 
number of QTLs and their effect sizes, phenotypic plasticity (standard deviation of the Gaussian 184 
slope of fitness decline when phenotype mismatches the environment) and heritability (proportion 185 
of phenotypic variation attributable to genetics) can all be varied in the model. It can also 186 
incorporate climate scenarios with any combination of directional, cyclical and random changes. 187 
The model also allows for new mutations but here the new mutation rate was set to zero. This was 188 
to assess the contribution of only the standing genetic variation that was introduced into 189 
populations at the start of simulation as random QTL effects. The climate scenario started with a 190 
pre-adaptation to local thermal conditions for 2,000 generations. Assuming a generation time of 191 
of 5 years in A. millepora (18) this corresponded to the period of stable temperature since the last 192 
deglaciation. After pre-adaptation, the temperature was increased at a rate of 0.05oC/generation in 193 
all populations, corresponding to the projected 0.1oC warming per decade (19). Throughout the 194 
simulation temperature was allowed to fluctuate randomly between generations to approximate El 195 
Nino Southern Oscillation (ENSO): the temperature deviations were drawn from a normal 196 
distribution with a standard deviation of 0.25oC. The size of populations was kept constant 197 
throughout the pre-adaptation period and scaled linearly with the populations’ relative fitness 198 
(mean current fitness divided by the mean fitness at the end of pre-adaptation period) during 199 
warming. Migration rates from a population also scaled linearly with the population’s fitness. In 200 
this way, a population declining in fitness would shrink in size and stop contributing migrants to 201 
other populations. 202 
 203 
Our model suggested that, with only ten thermal QTLs, under all combinations of heritability and 204 
plasticity the pre-adapted metapopulation would be able to persist through the warming for at 205 
least 50-100 generations and, in some realistic cases, much longer (Fig. 3 and Figs. S7-S8). 206 
Migration in general and southward migration in particular substantially contributed to this 207 
persistence (Fig. 3 E, F), underscoring the importance of the spread of warm-adapted genotypes 208 
from lower to higher latitudes (5). 209 
 210 
Predictably, higher phenotypic plasticity promoted population persistence and stability against 211 
random thermal anomalies, but we were rather surprised to observe a similar positive effect of 212 
lower heritability, set to the values observed in coral quantitative genetics experiments (0.25-0.5, 213 
(17); Fig 3, Fig. S7). One specific reason why corals are expected to show low heritability of 214 
thermal tolerance is that much of natural variation in this trait in corals is due to the type of algal 215 
symbionts (Symbiodinium spp.  (20)). Photo-symbionts are not transmitted from parent to 216 
offspring in the majority of coral species (21), and although host genetics can have some effect on 217 
the choice of Symbiodinium in the next generation (22) environment has a very strong effect on 218 
this association (20, 23). Higher persistence under low heritability and high plasticity is most 219 
likely explained by the fact that they both allow for higher standing genetic variation to be 220 
retained in populations (Fig. S9). During warming, this variation lasts longer as a source of 221 
adaptive genetic variants, enabling up to 5oC increase in mean thermal tolerance over 150 222 
generation (Fig. 3 G and Fig. S7). Higher plasticity partially rescued the drop in fitness due to low 223 
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heritability (Fig. 3 B and D, Fig. S7). Another notable tendency observed with all parameter 224 
settings was that during warming the fitness (and hence the size) of adapting populations began to 225 
fluctuate following random thermal anomalies, and the amplitude of these fitness fluctuations 226 
increased as the warming progressed even though the amplitude of thermal anomalies did not 227 
change (Fig. 3 H). These fluctuations correspond to severe mortality events induced by thermal 228 
extremes due to ENSO and affected warm-adapted populations most, which very much resembles 229 
the situation currently observed throughout the world (1). 230 
 231 

 232 
Figure 3. Modeling coral metapopulation persistence under global warming. (A-D) Fitness of modeled 233 

populations depending on heritability of thermal tolerance (h2, proportion of tolerance variation explained 234 
by genetics), phenotypic plasticity (σ, standard deviation of the Gaussian slope of fitness decline away from 235 
the phenotypic optimum, in degrees C), and presence-absence of migration (E, F). On panels A-F, y-axis is 236 

observed fitness relative to maximal fitness at the genetically determined optimum, averaged over all 237 
individuals in a population. Warm-adapted populations (W and M) are shown as red-tint traces, populations 238 

from mild thermal regime (S and O) are green-tint traces, and the cool-adapted population (K) is the blue 239 
trace. Note nearly complete overlap between traces for pairs of populations pre-adapted to the same 240 

temperature (W,M and S,O). (G) Thermal tolerances of evolving populations. Thin noisy lines are modeled 241 
temperatures at different locations. (H) Modeled random temperature anomalies (grey line) and fluctuations 242 
in populations’ fitness (the colored lines are residuals from loess regression over fitness traces on panel D; 243 
Wilkie: orange line, Keppel: blue line). Note the inverse sign of temperature anomalies: this more clearly 244 

shows the correspondence between rise in temperature and drop in fitness in the next generation. As 245 
warming progresses, populations (especially originally warm-adapted ones) become increasingly sensitive 246 

to random temperature fluctuations.  247 
 248 
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There are several uncertainties in our model associated with coral biology. Higher number of 249 
QTLs and/or their larger effect sizes would promote higher genetic variation and lead to longer 250 
population persistence. To keep the analysis conservative, our model included only ten QTLs, 251 
which is likely much fewer that the actual number of thermal QTLs in acroporid corals (20). We 252 
also kept the distribution of QTL effect sizes narrow: with the current settings and ten QTLs, at 253 
the start of simulation only about 2% of corals deviated from the mean thermal tolerance by more 254 
than 1.5oC in either direction. Such narrow variation makes adaptation to the thermal gradient of 255 
~3oC along the GBR non-trivial, but still, at present there is no experimental data to evaluate 256 
whether even such narrow variation is realistic. Our model was also conservative in using 257 
effective population sizes suggested by genetic analysis as census sizes. In highly fecund marine 258 
organisms census sizes tend to substantially exceed effective population sizes, sometimes by 259 
orders of magnitude (24), which would strongly promote higher genetic diversity and population 260 
persistence. Moreover, we modeled only our five populations rather than the whole GBR, which 261 
would have resulted in much higher standing genetic variation in the metapopulation, promoting 262 
longer persistence.  263 
 264 
As for phenotypic plasticity, in simulations shown on Fig. 3, σ = 0.5 and σ = 1 corresponded to 265 
86% and 40% decline in fitness if the individual’s phenotype mismatched the environment by 266 
1oC. The existing data on the issue of coral thermal plasticity are somewhat conflicting. One 267 
study shows that acroporid corals can successfully acclimatize to environments differing in 268 
maximum temperatures by as much as 2oC (25); however, another study found that coral grew 269 
52-80% more slowly when transplanted among locations differing by 1.5ºC average temperature, 270 
(26). Although it is not possible to directly place these results into our quantitative plasticity 271 
framework, the former study supports the higher plasticity setting  (σ = 1) while the latter study 272 
supports σ = 0.5. It must also be noted that both these studies involved in situ transplantations and 273 
hence the effect of temperature remains confounded with other local fitness-affecting 274 
environmental parameters. Also, in adult corals plasticity is likely lower that in larvae and 275 
recruits, which are expected to exhibit non-reversible developmental plasticity associated with 276 
metamorphosis and establishment within a novel environment (27). Future experiments that 277 
expose multiple genetically distinct coral individuals to a range of temperatures under controlled 278 
laboratory settings are required to rigorously quantify variation in thermal optima and plasticity in 279 
natural populations. 280 
 281 
In conclusion, we found that genetic diversity and migration patterns of our study species were 282 
not yet affected by global warming and were well positioned to facilitate persistence of the GBR 283 
metapopulation for a century or more. However, despite ongoing adaptation to gradual 284 
temperature increase, corals will become increasingly more sensitive to local thermal anomalies, 285 
especially among the originally warm-adapted populations. The 10-85% mortality in the Northern 286 
GBR as a result of 2016 bleaching event (28) could be a particularly sobering recent 287 
manifestation of this trend. Our model assumed that recovery from such mortality events would 288 
depend solely on the demographic exchange between coral populations. However, ecological 289 
feedbacks such as shifts to an alternative ecological stable state (29) might substantially decrease 290 
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the rate of reseeding and recovery of affected reefs. In that case, the increase in severity of 291 
bleaching-related mortality might lead to much faster coral extinction than predicted by our 292 
model. 293 
 294 
More research into phenotypic plasticity and genetic variation in coral thermal tolerance and its 295 
genetic architecture (number of QTLs and their effect sizes) is needed to further improve the 296 
predictive power of our model. The estimated migration in the order of 10 - 100 migrants per 297 
generation could be feasibly facilitated by assisted gene flow efforts (30) without risking 298 
disruption of the natural local adaptation patterns (31). Corals are declining on reef world-wide 299 
and there is an urgent need to develop new solutions to effectively manage the impacts of global 300 
processes such as climate change at local management scales. The broad characterization of 301 
genetic diversity, local thermal adaptation and migration pathways in multiple reef-building coral 302 
species would greatly inform both traditional spatial management and novel assisted gene flow 303 
approaches and should therefore be given high priority.  304 
 305 
Methods  306 
 307 
Genotyping 308 
 309 
This study relied predominantly on samples described by van Oppen et al (10), with addition of 310 
several samples from Orpheus and Keppel islands that were used in the reciprocal transplantation 311 
experiment described by Dixon et al (32). The samples were genotyped using 2bRAD (8) 312 
modified for Illumina sequencing platform; the latest laboratory and bioinformatics protocols are 313 
available at https://github.com/z0on/2bRAD_GATK. BcgI restriction enzyme was used and the 314 
samples retained for this analysis had 2.3-20.2 (median: 7.45) million reads after trimming and 315 
quality filtering (no duplicate removal was yet implemented in this 2bRAD version). The reads 316 
were mapped to the genome of the outgroup species, Acropora digitifera (33, 34), to polarize the 317 
allelic states into ancestral (as in A. digitifera) and derived, e.g., (35, 36).  Genotypes were called 318 
using GATK pipeline (37). 319 
 320 
Preliminary analysis of sample relatedness using vcftools (38) revealed that our samples included 321 
several clones: four repeats of the same genotype from the Keppel Island (van Oppen et al (10) 322 
samples K210, K212, K213 and K216), another duplicated genotype from Keppel (samples K211 323 
and K219), and one duplicated genotype from Magnetic Island (samples M16 and M17). All 324 
other samples were unrelated. We took advantage of these clonal replicates to extract SNPs that 325 
were genotyped with 100% reproducibility across replicates and, in addition, appeared as 326 
heterozygotes in at least two replicate pairs (script replicatesMatch.pl with hetPairs=2 option).  327 
These 7,904 SNPs were used as “true” SNP dataset to train the error model to recalibrate variant 328 
quality scores at the last stage of the GATK pipeline. During recalibration, we used the transition-329 
transversion (Ts/Tv) ratio of 1.438 determined from the “true” SNPs to assess the number of false 330 
positives at each filtering threshold (as it is expected that an increase of false positive calls would 331 
decrease the Ts/Tv ratio towards unity). We chose the 95% tranche, with novel Ts/Tv = 1.451. 332 
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After quality filtering that restricted the calls to only bi-allelic polymorphic sites, retained only 333 
loci genotyped in 95% or more of all individuals, and removed loci with the fraction of 334 
heterozygotes exceeding 0.6 (possible lumped paralogs), we ended up with 25,090 SNPs. In total, 335 
2bRAD tags interrogated 0.18% of the genome. The genotyping accuracy was assessed based on 336 
the match between genotyped replicates using script repMatchStats.pl. Overall agreement 337 
between replicates was 98.7% or better with the heterozygote discovery rate (fraction of matching 338 
heterozygote calls among replicates) exceeding 96%.  339 
 340 
Genome-wide genetic divergence  341 
 342 
To begin to characterize genome-wide divergence between populations we used pairwise 343 
genome-wide Weir and Cockerham’s FST calculated by vcftools (38), principal component 344 
analysis (PCA) using R package adegenet (39), and ADMIXTURE (40). For PCA and 345 
ADMIXTURE, the data were thinned to keep SNPs separated by 5kb on average and by at least 346 
2.5 kb, choosing SNPs with highest minor allele frequency (script thinner.pl with options 347 
‘interval=5000 criterion=maxAF’). 348 
 349 
Demographic analysis and bootstrapping 350 
 351 
Prior to demographic analysis, Bayescan (41) was used to identify sites potentially under 352 
divergent selection among populations, and 13 such sites with q-value <0.05 were removed. 353 
Demographic models were fitted to 120 bootstrapped datasets, which were generated in two 354 
stages. First, five alternatively thinned datasets were generated for which SNPs were randomly 355 
drawn to be on average 5 kb apart and not closer than 2.5 kb. This time the SNPs were drawn at 356 
random to avoid distorting the allele frequency spectrum unlike thinning for PCA and 357 
ADMIXTURE where the highest minor allele frequency SNPs were selected. Then, 20 358 
bootstrapped replicates were generated for each thinned dataset by resampling contigs of the 359 
reference genome with replacement (script dadiBoot.pl). The fitted model parameters were 360 
summarized after excluding bootstrap replicates that fell into the lowest 15% likelihood quantile 361 
and the ones where model fitting failed to converge, leading to some parameters being 362 
undetermined or at infinity (less than 10% of total number of runs). Delta-AIC values were 363 
calculated for each bootstrap replicate that passed these criteria for both compared models, and 364 
summarized to obtain bootstrap support value, the percentage of replicates favoring the 365 
alternative model. While fitting dadi models, the data for each population were projected to 366 
sample sizes maximizing the number of segregating sites in the analysis, resulting in 7000-8172 367 
segregating sites per population. 368 
 369 
Unit conversion 370 
 371 
To convert dadi-reported coalescent parameter values (θ, T and M) into time in years (t), effective 372 
population sizes in number of individuals (Ne) and migration rates as fraction of new immigrants 373 
per generation (m), we estimated the mutation rate (µ) from the time-resolved phylogeny of 374 
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Acorpora genus based on paxC intron (42), at 4e-9 per base per year. Although A. millepora was 375 
shown to start reproducing in 3 years (18) we assumed the generation time of 5 years reasoning 376 
that it would better reflect the attainment of full reproductive potential as the colony grows. 377 
Assuming a genome size of 5e+8 bases (33) the number of new mutations per genome per 378 
generation is 10. Since the fraction 2bRAD-sequenced genome in our experiment was 1.8e-3, the 379 
mutation rate per 2bRAD-sequenced genome fraction per generation is µ = 0.018. This value was 380 
used to obtain: 381 
- Ancestral effective population size: Ne = θ / 2µ  382 
- Migration rate: m = M / 2Ne  383 
- Time in years: t = 2TNe • 5 384 

 385 
Biophysical model 386 
 387 
A spatially-explicit biophysical modeling framework (12, 43) was used to quantify migration 388 
between coral reef habitats of the broader region surrounding the Great Barrier Reef, thereby 389 
revealing the location, strength, and structure of a species' potential population connectivity. The 390 
model’s spatial resolution of ca. 8 km coincides with hydrodynamic data for the broader region 391 
(1/12.5 degree; HYCOM+NCODA Reanalysis and Analysis product; hycom.org). Our 392 
biophysical dispersal model relies on geographic data describing the seascape environment and 393 
biological parameters capturing coral-specific life-histories. Coral reef habitat data are available 394 
from the UNEP World Conservation Monitoring Centre (UNEP-WCMC; http://data.unep-395 
wcmc.org/datasets/1) representing a globally-consistent and up-to-date representation of coral 396 
reef habitat. To capture specific inter-annual variability, two decades of hydrodynamic data were 397 
used from 1992 to 2013 (44). 398 
 399 
Coral-specific biological parameters for A. millipora included relative adult density (dependent 400 
on the habitat), reproductive output, larval spawning time and periodicity (e.g., Magnetic Island 401 
populations spawn a month earlier than the other GBR sites (45)), maximum dispersal duration, 402 
pre-competency and competency periods, and larval mortality (46, 47). The spatially explicit 403 
dispersal simulations model the dispersal kernel (2-D surface) as a ‘cloud’ of larvae, allowing it 404 
to be concentrated and/or dispersed as defined by the bio-physical parameters. An advection 405 
transport algorithm is used for moving larvae within the flow fields (48).  406 
 407 
Simulations were carried out by releasing a cloud of larvae into the model seascape at all 408 
individual coral reef habitat patches and allowing the larvae to be transported downstream by the 409 
currents. Ocean current velocities, turbulent diffusion, and larval behavior move the larvae 410 
through the seascape at each time-step. Larval competency, behavior, density, and mortality 411 
determine when and what proportion of larvae settle in habitat cells at each time step. When 412 
larvae encounter habitat, the concentration of larvae settling with the habitat is recorded at that 413 
time-step. From the dispersal data, we derived the coral migration matrix representing the 414 
proportion of settlers to each destination patch that came from a source patch, which is analogous 415 
to the source distribution matrix (49) and is equivalent to migration matrices derived from 416 
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population genetic analysis. It is important to note that migration matrices extracted for the field 417 
sites represent the potential migration through all possible stepping-stones. 418 
  419 
Metapopulation adaptation model 420 
 421 
The model was implemented in SLiM the forward evolutionary simulator, by modifying the 422 
provided recipe “Quantitative genetics and phenotypically-based fitness”. The model simulates 423 
Fisher-Wright populations with discreet generations. At the start of the simulation, populations 424 
were established at specified population sizes and pairwise migration rates (genetic replacement 425 
rates), and all QTLs in all individuals were given a mutation with the effect size drawn from a 426 
normal distribution with mean zero and specified standard deviation, to create standing genetic 427 
variation. The phenotype of each individual was calculated as the sum of QTL effects plus 428 
random noise to simulate desired heritability. Then, fitness of each individual was calculated 429 
based on the difference between the individual’s phenotype (thermal optimum), temperature of 430 
the environment, and the setting for phenotypic plasticity, modeled as the standard deviation of 431 
the Gaussian slope of fitness decline with increasing distance between phenotype and 432 
environment. Then, parents were chosen to produce the next generation according to their fitness; 433 
parents for immigrant individuals are chosen from among individuals in the source population. 434 
New mutations at QTLs happened at the specified rate when transitioning to the next generation 435 
and the effect of a new mutation replaced the previous QTL effect. 436 
 437 
Our code was designed for general modeling of multilocus adaptation in metapopulations and can 438 
process matrices of population sizes and migration rates for an arbitrary number of populations. 439 
We modeled our five populations with effective population sizes and pairwise migration rates 440 
inferred by dadi . Within the code, it is also possible to adjust: 441 
 442 
- Number of QTLs and the distribution of their effect sizes. To keep the model conservative, 443 

we modeled only ten QTLs with normal distribution of effect sizes with a standard deviation 444 
of 0.2oC. With ten QTLs, this setting implied that at the start of simulation only about 2% of 445 
corals deviated from mean thermal tolerance by more than 1.5oC in either direction. Since 446 
thermal differences between our populations exceeded 3oC, this narrow variation made local 447 
adaptation rather non-trivial. 448 

- Dominance of QTLs (set to 0.5 in our simulation). 449 
- Phenotypic plasticity. We modeled three plasticity settings, 0.5, 1 and 2, which corresponded 450 

to 86%, 40% and 13% fitness drop when the individual’s phenotypic optimum (calculated 451 
based on QTLs and heritability setting) mismatched the environment by 1oC. 452 

- Heritability (proportion of phenotypic variation explained by genetics). We examined values 453 
1, 0.5, 0.25 and 1e-5, the latter to confirm that no adaptation or evolution was observed when 454 
the trait was not heritable. 455 

- Mutation rate, which was set to zero because we wanted to explore only the role of standing 456 
genetic variation. 457 
 458 
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To better model population dynamics during warming period, we implemented linear scaling of 459 
the population size and immigration rates with the population’s mean fitness. In this way, a 460 
population declining in fitness shrinks in size and stops contributing migrants to other 461 
populations.  462 
 463 
Environmental conditions are supplied to our model as a table of values for each population in 464 
every generation and can be arbitrary. Here we modeled identical thermal trends across 465 
populations with population-specific offsets. During pre-adaptation period lasting 2000 466 
generations, the temperature was constant on average but experienced random fluctuations 467 
across generations drawn from a normal distribution with a standard deviation of 0.25oC (to 468 
approximate ENSO events). The temperature was offset by +1.6oC in Wilkie and Magnetic 469 
populations and by -1.8oC in the Keppel population, to model differences in midsummer 470 
monthly mean temperature among populations (Fig. 1). After 2000 generations a linear increase 471 
at 0.05oC per generation was added to simulate warming.  472 

 473 
All combinations of parameter settings were run ten times to ensure consistency. We found that 474 
with population sizes in thousands, such as in our case, the results were very consistent among 475 
independent runs. We therefore did not aggregate results over many replicated runs but show one 476 
randomly chosen run for each tested parameter combination. 477 
 478 
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Supplemental Figures 599 
 600 
 601 
 602 

 603 
Figure S1. ADMIXTURE analysis of genetic differentiation between populations. (A) Map of sampled 604 

locations with one-letter population identifiers. (B) ADMIXTURE plot of ancestry proportions with K = 2 605 
(optimal K was 1). 606 

 607 
 608 
 609 
 610 
 611 

 612 
Figure S2. Example of two-population dadi model fit. (A) The model: ancestral population splits into two 613 
populations of unequal sizes (N1 and N2) some time T in the past, which exchange migrants with different 614 
rates depending on direction. (B) Observed allele frequency spectrum comparing Wilkie (W) and Keppel 615 

(K) populations. (C) Allele frequency spectrum generated by the fitted model. (D, E) Map and histogram of 616 
residuals (absolute scale). 617 
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 619 
 620 
 621 

 622 
Figure S3. Bootstrap analysis of migration rates and population subdivision using dadi. (A) Migration 623 

among population pairs, with bootstrap-derived 95% confidence intervals. The pairs are identified on the x-624 
axis and sorted by increasing geographical distance. Black bars – southward migration, grey bars – 625 

northward migration. (B) Models being compared: the full model (left) implies populations’ split into two 626 
different sizes (N1 and N2) at time T in the past, since when they exchanged migrants at unequal rates 627 

depending on direction. Reduced model allows for population size change at time T in the past but does not 628 
include population split: the two genotyped groups (p1 and p2) are regarded as two samples from the same 629 
population. (C-L) Histograms of delta-AIC values for 100 bootstrap replicates (bootstrap was performed 630 
over genomic contigs of the draft genome of A. digitifera. Positive numbers indicate support for the full 631 
model. The letters on top of each panel identify compared populations, the number is the proportion of 632 

positive bootstrap replicates (i.e., bootstrap support for the full model). The only comparison that did not 633 
receive >50% bootstrap support for population split is between S and M populations (panel H). 634 
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 636 
 637 
 638 
 639 

 640 
Figure S4. Migration rates inferred by the dadi model allowing for the change in migration rates over the 641 

last 0.01 T units (15-20 generations or 75-100 years, in our case). Box plots show historical (N, S) and 642 
recent (Nr, Sr) migration rates inferred among pairs of population across 100 bootstrap replicates. Numbers 643 
in the top left corner of the WO and WM plots are delta-AIC bootstrap support values for the model with 644 
the recent change in migration when compared to the split-with-migration model with no recent change 645 
(Fig. 1A). All other pairs had less than 50% delta-AIC bootstrap support. There is no consistent recent 646 

change in the preferential direction of migration. 647 
 648 
 649 
 650 
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 652 
Figure S5. Population history. (A-E) Historical population sizes with bootstrap-derived 95% confidence 653 

intervals, according to the two-growth model (Fig. S6 A). (F) Sea level with shaded area corresponding to 654 
standard error (41). 655 

 656 

 657 
Figure S6. Delta-AIC bootstrap analysis of single-population models. (A) Models compared. The full 658 
model (left) includes two exponential growth periods (any of which could be growth or decline), the 659 

reduced model (right) has only one growth period. (B-F) Histograms of delta-AIC values for 100 bootstrap 660 
replicates. Positive numbers indicate support for the full model. The letter on top of each panel identify the 661 
population, the number is the proportion of positive bootstrap replicates (i.e., bootstrap support for the full 662 
model). The two-growth model is strongly supported for population K (panel F) and marginally supported 663 

for population W (panel B). 664 
 665 
 666 
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 667 
Figure S7. Fitness of modeled populations after pre-adaptation period and under warming, depending on 668 

heritability of thermal tolerance (h2, proportion of phenotypic variation explained by genetics) and 669 
phenotypic plasticity (σ, standard deviation of the Gaussian slope of fitness decline away from the 670 

phenotypic optimum, in degrees C). X-axis is generations; warming starts at generation 0. Y-axis is fitness 671 
relative to maximal fitness at the genetically determined optimum. Warm-adapted populations (W and M) 672 
are shown as red-tint traces, populations from mild thermal regime (S and O) are green-tint traces, and the 673 

cool-adapted population (K) is the blue trace. Pairs of traces for warm- and mild-adapted populations 674 
largely overlap. (A, C, E): h2=1. (B, D, F): h2=0.25. (A, B): σ = 0.5. (C, D): σ = 1. (E, F): σ = 2.  Higher 675 

plasticity facilitates metapopulation persistence during warming and confers stability against random 676 
fluctuations. Higher plasticity also partially rescues the drop in fitness achievable under low heritability 677 

(compare pre-warming generations, from -100 to 0, on panels B, D and F).  678 
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 680 

 681 
Figure S8. Higher plasticity and lower heritability promote longer and more extensive evolution in response 682 

to warming. The graphs show mean thermal tolerance of modeled populations after pre-adaptation period 683 
and under warming, depending on heritability of thermal tolerance (h2, proportion of phenotypic variation 684 

explained by genetics) and phenotypic plasticity (σ, standard deviation of the Gaussian slope of fitness 685 
decline away from the phenotypic optimum, in degrees C). X-axis is generations; warming starts at 686 

generation 0. Y-axis is thermal tolerance (mean phenotype of the population). Warm-adapted populations 687 
(W and M) are shown as red-tint traces, populations from mild thermal regime (S and O) are green-tint 688 

traces, and the cool-adapted population (K) is the blue trace. Thin noisy lines are modeled temperatures at 689 
the corresponding locations. Pairs of traces for warm- and mild-adapted populations largely overlap. (A, C, 690 

E): h2=1. (B, D, F): h2=0.25. (A, B): σ = 0.5. (C, D): σ = 1. (E, F): σ = 2.  691 
 692 
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 694 
 695 

Figure S9. Higher plasticity (σ) and lower heritability (h2) promote retention of higher genetic variation in 696 
thermal tolerance. The scatterplots show the dependence of the number of individuals in a population 697 

bearing a mutation at a thermal QTL locus on the mutation’s effect size (change in thermal tolerance, in ºC) 698 
at the end of the pre-adaptation period (2000 generations with no directional change in temperature). The 699 

starting standing genetic variation was the same in all simulations. (A,D,E): h2=1. (B,E,H): h2=0.5. (C,F,I): 700 
h2=0.25.  (A-C): σ = 0.5. (D-F): σ = 1. (G-I): σ = 2. Populations are colored according to the color scheme 701 

used in Figures 3, S7 and S8 (see legend).  702 
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