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Genome-wide association study results for educational attainment 6 

aid in identifying genetic heterogeneity of schizophrenia  7 
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ABSTRACT  13 

Higher educational attainment (EA) is negatively associated with schizophrenia (SZ). 14 
However, recent studies found a positive genetic correlation between EA and SZ. We 15 
investigated possible causes of this counterintuitive finding using genome-wide association 16 
study results for EA and SZ (N = 443,581) and a replication cohort (1,169 controls; 1,067 17 
cases) with deeply phenotyped SZ patients. We found strong genetic dependence between EA 18 
and SZ that cannot be explained by chance, linkage disequilibrium, or assortative mating. 19 
Instead, several genes seem to have pleiotropic effects on EA and SZ, but without a clear 20 
pattern of sign concordance. Genetic heterogeneity of SZ contributes to this finding. We 21 
demonstrate this by showing that the polygenic prediction of clinical SZ symptoms can be 22 
improved by taking the sign concordance of loci for EA and SZ into account. Furthermore, 23 
using EA as a proxy phenotype, we isolate FOXO6 and SLITRK1 as novel candidate genes 24 
for SZ. 25 
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MAIN TEXT  67 

Schizophrenia (SZ) is the collective term used for a severe, highly heterogeneous and costly 68 
psychiatric disorder that is caused by environmental and genetic factors1–4. The latest 69 
genome-wide association study (GWAS) by the Psychiatric Genomics Consortium (PGC) 70 
identified 108 genomic loci that are associated with SZ5. These 108 loci jointly account for 71 
≈3.4% of the variation on the liability scale for SZ5, while all single nucleotide 72 
polymorphisms (SNPs) that are currently measured by SNP arrays capture ≈64% (s.e. = 8%) 73 
of the variation in liability for the disease6. This implies that many genetic variants with small 74 
effect sizes contribute to the heritability of SZ, but most of them are unidentified as of yet. A 75 
polygenic score (PGS) based on all SNPs currently accounts for 4-15% of the variation on the 76 
liability scale for SZ5.  77 

However, this PGS does not predict any differences in symptoms or severity of the disease 78 
among SZ patients4. Partly, this could be because the clinical disease classification of SZ 79 
spans several different behavioural and cognitive traits that may not have identical genetic 80 
architectures. Therefore, identifying additional genetic variants and understanding through 81 
which pathways they are linked with the clinical diagnosis of SZ is an important step in 82 
understanding the aetiologies of the ‘schizophrenias’7. However, GWAS analyses of specific 83 
SZ symptoms would require very large sample sizes to be statistically well powered, and the 84 
currently available datasets on deeply phenotyped SZ patients are not yet large enough for 85 
this purpose.  86 

Here, we use an alternative approach to make progress with data that is readily available – by 87 
combining GWAS for SZ and educational attainment (EA). The GWAS sample sizes for EA 88 
are the largest to date for any cognition-related phenotype. Furthermore, previous studies 89 
suggest a complex relationship between EA and SZ8,9 that may be used to gain additional 90 
insights into the genetic architecture of SZ and its symptoms. In particular, phenotypic data 91 
seem to suggest a negative correlation between EA and SZ10. For example, SZ patients with 92 
lower EA typically show an earlier age of disease onset, higher levels of psychotic 93 
symptomatology, and worsened global cognitive function10. In fact, EA has been suggested to 94 
be a measure of premorbid function and a predictor of outcomes in SZ. Moreover, it has been 95 
forcefully argued that retarded intellectual development, global cognitive impairment during 96 
childhood, and bad school performance should be seen as core features of SZ that precede the 97 
development of psychotic symptoms and differentiate SZ from bipolar disorder (BIP)11–15. 98 
Furthermore, credible genetic links between SZ and impaired cognitive performance have 99 
been found16.  100 

In contrast to these findings, recent studies using large-scale GWAS results identified a small, 101 

but positive genetic correlation between EA and SZ (ߩா஺,ௌ௓ = 0.08)8, and higher PGS values 102 

for SZ have been reported to be associated with creativity and greater EA17. Other 103 
statistically well-powered studies found that a high intelligence quotient (IQ) has protective 104 

effects against SZ18 and reported a negative genetic correlation between IQ and SZ (ߩூொ,ௌ௓ =105 −0.2)19, suggesting the possibility that genetic effects that contribute to EA but not via IQ are 106 
responsible for the observed positive genetic correlation between SZ and EA.  107 

Indeed, the latest GWAS on EA8 already indicated that genetic influences on higher 108 
schooling are not only mediated by IQ but also by personality factors such as behavioural 109 
inhibition and openness to experience. These different factors that contribute to EA seem to 110 
be related to SZ and its symptoms in complex ways20–22. For example, differences in 111 
openness have been reported to differentiate between patients diagnosed with schizophrenia 112 
spectrum personality disorders (higher openness) from patients diagnosed with SZ (lower 113 
openness)20. Furthermore, behavioural inhibition has been reported to be more pronounced 114 
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among SZ patients compared to healthy controls and linked to the severity of negative (but 115 
not positive) symptoms23,24.  116 

The contributing factors to EA that have been identified so far (i.e. IQ, openness, and 117 
behavioral inhibition)8 are phenotypically and genetically related, but by no means 118 
identical25,26. Therefore, it is appropriate to think of EA as a genetically heterogeneous trait 119 
that can be decomposed into subphenotypes that have imperfect genetic correlations with 120 
each other. If the various symptoms of SZ also have non-identical genetic architectures, this 121 
could result in a pattern where both EA and SZ share many genetic loci, but without a clear 122 
pattern of sign concordance and with seemingly contradictory phenotypic and genetic 123 
correlation results.  124 

To explore this hypothesis and to discern it from alternative explanations, we performed a 125 
series of statistical genetic analyses using large-scale GWAS results for SZ and EA from non-126 
overlapping samples. We started by characterizing the genetic relationship between both 127 
traits by using EA as a “proxy phenotype”27 for SZ. We annotated possible biological 128 
pathways, tissues, and cell types implied by genetic variants that are associated with both 129 
traits and explored to what extent these variants are also enriched for association with other 130 
traits. We tested if the genetic relationship between EA and SZ can be explained by chance, 131 
linkage disequilibrium (LD), or assortative mating. Furthermore, we investigated the 132 
hypothesis that the part of SZ that is different from BIP is a neurodevelopmental disorder, 133 
whereas the part of SZ that overlaps with BIP is not. Finally, we developed a formal 134 
statistical test for genetic heterogeneity of SZ using a polygenic prediction framework that 135 
leverages both the SZ and the EA GWAS results.  136 

 137 

RESULTS  138 

As a formal prelude to our study, it is conceptually important to differentiate between genetic 139 
dependence and genetic correlation. In our analyses, genetic dependence means that the 140 
genetic variants associated with EA are more likely to also be associated with SZ than 141 
expected by chance. In contrast, genetic correlation is defined by the correlation of the (true) 142 
effect sizes of genetic variants on the two traits. Thus, genetic correlation implies a linear 143 
genetic relationship between two traits whereas genetic dependence does not. Thus, two traits 144 
can be genetically dependent even if they are not genetically correlated and vice versa. One 145 
possible cause of a non-linear genetic dependence is that at least one of the traits is 146 
genetically heterogeneous in the sense that it aggregates across subphenotypes (or symptoms) 147 
with non-identical genetic architectures. Supplementary Note 1 presents a more formal 148 
discussion and simulations that illustrate the data patterns that can emerge. 149 

Proxy-phenotype analyses 150 

We used the proxy-phenotype method (PPM)27 to illustrate the genetic dependence between 151 
EA and SZ. PPM is a two-stage approach. In the first stage, a GWAS on the proxy-phenotype 152 
(EA) is conducted. The most strongly associated loci are then advanced to the second stage, 153 
which tests the association of these loci with the phenotype of interest (SZ) in an independent 154 
sample. If the two traits are genetically dependent, this two-stage approach can increase the 155 
statistical power for detecting associations for the target trait because it limits the multiple 156 
testing burden for the phenotype of interest compared to a GWAS8,9,27.  157 

Our PPM analyses followed a preregistered analysis plan (https://osf.io/dnhfk/) using GWAS 158 
results on EA (n = 363,502)8 and SZ (34,409 cases and 45,670 controls)28 that were obtained 159 
from non-overlapping samples of Europeans. For replication and follow-up analyses, we used 160 
the Göttingen Research Association for Schizophrenia (GRAS) data collection29, which has a 161 
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uniquely rich and accurate set of SZ measures. The GRAS sample was not part of either 162 
GWAS (Supplementary Notes 2-3).  163 

Analyses were performed using 8,240,280 autosomal SNPs that passed quality controls in 164 
both GWAS and additional filters described in Methods and Supplementary Note 4. We 165 
selected approximately independent lead SNPs from the EA GWAS that passed the 166 

predefined significance threshold of P୉୅ < 10ିହ and looked up their SZ results. To test if 167 
EA-associated SNPs are more strongly associated with SZ than expected by chance (referred 168 
to as “raw enrichment” below), we conducted a Mann-Whitney test that compares the PSZ-169 
values of the EA-associated lead SNPs with the PSZ -values of a set of randomly drawn, 170 
approximately LD-independent SNPs with similar minor allele frequencies (Supplementary 171 
Notes 5-6). Fig. 1 presents an overview of the proxy-phenotype analyses. 172 

The first-stage GWAS on EA (Supplementary Note 2) identified 506 loci that passed our 173 

predefined threshold of P୉୅ < 10ିହ; 108 of them were significant at the genome-wide level 174 

(P୉୅ < 5 × 10ି଼, see Supplementary Table 2). Of the 506 EA lead-SNPs, 132 are 175 

associated with SZ at nominal significance (Pୗ୞ < 0.05), and 21 of these survive Bonferroni 176 

correction (Pୗ୞ < ଴.଴ହହ଴଺ = 9.88 × 10ିହ) (Table 1). LD score regression results suggest that the 177 

vast majority of the association signal in both the EA8 and the SZ5 GWAS are truly genetic 178 
signals, rather than spurious signals originating from uncontrolled population stratification. 179 
Figure 2a shows a Manhattan plot for the GWAS on EA highlighting SNPs that were also 180 

significantly associated with SZ (turquoise crosses for Pୗ୞ < 0.05, magenta crosses for 181 Pୗ୞ = 9.88 × 10ିହ).  182 

A Q-Q plot of the 506 EA lead SNPs for SZ is shown in Figure 2b. Although the observed 183 

sign concordance of 52% is not significantly different from a random pattern (ܲ = 0.40), we 184 

find 3.23 times more SNPs in this set of 506 SNPs that are nominally significant for SZ than 185 
expected given the distribution of the P values in the SZ GWAS results (raw enrichment 186 ܲ = 6.87 × 10ିଵ଴, Supplementary Note 6). The observed enrichment of the 21 EA lead 187 

SNPs that pass Bonferroni correction for SZ ( ௌܲ௓ < ଴.଴ହହ଴଺ = 9.88 × 10ିହ) is even more 188 

pronounced (27 times stronger, ܲ = 5.44 × 10ିଵସ).  189 

The effect sizes of these 21 SNPs on SZ are small, ranging from Odds = 1.02 (rs4500960) to 190 
Odds = 1.11 (rs4378243) after correction for the statistical winner’s curse27 (Table 1). We 191 
calculated the probability that these 21 SNPs are truly associated with SZ using a heuristic 192 
Bayesian method that takes the winner’s curse corrected effect sizes, statistical power, and 193 
prior beliefs into account27. Applying a reasonable prior belief of 5% (Supplementary Note 194 
6), we find that all 21 SNPs are likely or almost certain to be true positives.  195 

Prediction of future genome-wide significant loci for schizophrenia 196 

Of the 21 variants we identified, 12 are in LD with loci previously reported by the PGC5 and 197 
2 are in the major histocompatibility complex region on chromosome (chr) 6 and were 198 
therefore not separately reported in that study. Three of the variants we isolated (rs7610856, 199 
rs143283559, and rs28360516) were independently found in a recent meta-analysis of the 200 
PGC results5 with another large-scale sample30. We show in Supplementary Note 6 that 201 
using EA as a proxy-phenotype for SZ helped to predict the novel genome-wide significant 202 
findings reported in that study, which illustrates the power of the proxy-phenotype approach. 203 
Furthermore, two of the 21 variants (rs756912, rs7593947) are in LD with loci recently 204 
reported in a study that also compared GWAS findings from EA and SZ using smaller 205 
samples and a less conservative statistical approach31. The remaining 2 SNPs we identified 206 
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(rs7336518 on chr13 and rs7522116 on chr1) add to the list of empirically plausible candidate 207 
loci for SZ.  208 

Detection of shared causal loci 209 

The next step in our study was a series of analyses that aimed to identify reasons for the 210 
observed genetic dependence between EA and SZ and to put the findings of the PPM analysis 211 
into context. First, we probed if there is evidence that the loci identified by the PPM may tag 212 
shared causal loci for both EA and SZ (i.e., pleiotropy), rather than being in LD with different 213 
causal loci for both traits.   214 

For each of the 21 SNPs isolated by our PPM analysis, we looked at their neighbouring SNPs 215 
within a +/- 500 kb window and estimated their posterior probability of being causal for EA 216 
or SZ using PAINTOR32. We then selected two sets of SNPs, each of which contains the 217 
smallest number of SNPs that yields a cumulative posterior probability of 90% of containing 218 
the causal locus for EA and SZ. For each of these sets, we calculated the posterior probability 219 
that it contains the causal locus for the other trait. We classified the probability of a locus 220 
being pleiotropic as low (0-15%), medium (15-45%), or high (>45%) (Supplementary Note 221 
7).  222 

For eight loci, the credible set had a medium or high credibility to have direct causal effects 223 
on both EA and SZ (including one of the novel SNPs, rs7336518). Five of these loci have 224 
concordant effects on the two traits (i.e., ++ or --) while three have a discordant effects (i.e., 225 
+- or -+, Supplementary Note 7). We recognize that a second metric of importance in this 226 
analysis is the size of the credible set – a single SNP with a high probability of being a causal 227 
SNP for both traits (say 30%) may be stronger evidence of a shared a causal signal than a 228 
large set of SNPs (say several hundred) that have a higher probability (say 65%) of 229 
containing a causal locus for both traits.  230 

For most loci we investigated, the 90% credibility sets are > 100 SNPs, and the 65% 231 
credibility sets are > 25 SNPs (Supplementary Table 3). The size of the sets indicates the 232 
limits of statistical fine-mapping. Further progress would require a different approach such as 233 
cross-ethnic or experimental fine-mapping or analysis of sequence data in families. However, 234 
one locus (rs7336518) has medium credibility and a small credibility set (18 SNPs for EA 235 
and 2 SNPs for SZ), which makes it a reasonable candidate for having direct pleiotropic 236 
effects on both traits.   237 

Biological annotations 238 

Biological annotation of the 132 SNPs that are jointly associated with EA ( ாܲ஺ < 10ିହ) and 239 

SZ ( ௌܲ௓ < 0.05) using DEPICT identified 111 significant reconstituted gene sets 240 
(Supplementary Table 4.1). Pruning these resulted in 19 representative gene sets, including 241 
dendrites, axon guidance, transmission across chemical synapses, and abnormal cerebral 242 
cortex morphology (Supplementary Table 4.2 and Supplementary Fig. 3a). All 243 
significantly enriched tissues are related to the nervous system and sense organs 244 
(Supplementary Fig. 3b). Furthermore, “Neural Stem Cells” is the only significantly 245 
enriched cell type (Supplementary Table 4.3). DEPICT prioritized genes that are known to 246 
be involved in neurogenesis and synapse formation (Supplementary Table 4.4). Some of the 247 
genes, including SEMA6D and CSPG5, have been suggested to play a potential role in 248 
SZ33,34. For the two novel candidate SNPs reported in this study (rs7522116 and rs7336518), 249 
DEPICT points to the FOXO6 (Forkhead Box O6) and the SLITRK1 (SLIT and NTRK Like 250 
Family Member 1) genes, respectively. FOXO6 is predominantly expressed in the 251 
hippocampus and has been suggested to be involved in memory consolidation, emotion and 252 
synaptic function35,36. Similarly, SLITRK1 is also highly expressed in the brain37, is 253 
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particularly localized to excitatory synapses and promotes their development38, and it has 254 
previously been suggested to be a candidate gene for neuropsychiatric disorders39.  255 

LD-aware enrichment across different traits 256 

To probe if the observed genetic dependence between EA and SZ can be entirely explained 257 
by LD patterns in the human genome, we developed an association enrichment test that 258 
corrects for the LD score of each SNP (Supplementary Note 9). We applied this test to the 259 

132 SNPs that are jointly associated with EA ( ாܲ஺ < 10ିହ) and SZ ( ௌܲ௓ < 0.05). LD scores 260 
were obtained from the HapMap 3 European reference panel40. Furthermore, we used this test 261 
to explore if these SNPs are generally enriched for association with all (brain-related) 262 
phenotypes, or whether they exhibit some degree of outcome-specificity. For this purpose, we 263 
extended the LD-aware enrichment test to 21 additional traits for which GWAS results were 264 
available in the public domain. Some of the traits were chosen because they are 265 
phenotypically related to SZ (e.g., neuroticism, depressive symptoms, major depressive 266 
disorder, autism, and childhood IQ), while others were less obviously related to SZ (e.g., age 267 
at menarche, intracranial volume, cigarettes per day) or served as negative controls (height, 268 
birth weight, birth length, fasting (pro)insulin). 269 

Supplementary Fig. 4 and Supplementary Table 5.1 show the LD-aware enrichment of the 270 
SNPs that are jointly associated with EA and SZ across traits. First, we found significant joint 271 
LD-aware enrichment for SZ, further confirming that the genetic dependence between EA 272 
and SZ cannot be entirely explained by LD. We also found LD-aware enrichment for BIP, 273 
neuroticism, childhood IQ, and age at menarche. However, we found no LD-aware 274 
enrichment for other brain-traits that are phenotypically related to SZ, such as depressive 275 
symptoms, subjective well-being, autism, and attention deficit hyperactivity disorder. We 276 
also did not find LD-aware enrichment for most traits that are less obviously related to the 277 
brain and our negative controls. Furthermore, one of the novel SNPs we isolated shows 278 
significant LD-aware enrichment both for SZ and for BIP (rs7522116). The results suggest 279 
that the loci identified by the PPM are not simply related to all (brain) traits. Instead, they 280 
show some degree of phenotype specificity.  281 

Replication in the GRAS sample 282 

Our replication sample, the GRAS data collection, is described in Supplementary Note 10. 283 
Following our preregistered analysis plan (https://osf.io/dnhfk/), our replication of the PPM 284 
analysis results uses a PGS that is based on the 132 independent EA lead SNPs that are also 285 

nominally associated with SZ ( ாܲ஺ < 10ିହ and ௌܲ௓ < 0.05, Supplementary Note 11). This 286 

PGS (SZ_132) adds ∆ܴଶ = 7.54% − 7.01% = 0.53% predictive accuracy for SZ case-287 

control status to a PGS (SZ_all) derived from the GWAS on SZ alone (ܲ = 1.7 × 10ିସ, 288 

Supplementary Table 7.2.a, Model 3). The SZ_132 score also significantly adds (ܲ = 3.4 ×289 10ିସ) to the predictive accuracy of SZ case-control status when all other scores we 290 
constructed are included as control variables (Supplementary Table 7.2.a, Model 9). 291 

Prediction of schizophrenia measures in the GRAS patient sample 292 

To explore the genetic architecture of specific SZ measures, we again used our replication 293 
sample (GRAS), which contains exceptionally detailed measures of SZ symptoms, severity, 294 
and disease history4,7,29. We focused on years of education, age at prodrome, age at disease 295 
onset, premorbid IQ (approximated by a multiple-choice vocabulary test), global assessment 296 
of functioning (GAF), the clinical global impression of severity (CGI-S), as well as positive 297 
and negative symptoms (PANSS positive and negative, respectively) among SZ patients (N 298 
ranges from 903 to 1,039, see Supplementary Notes 10 and 12). Consistent with the idea 299 
that EA is a predictor of SZ measures, our phenotypic correlations show that higher education 300 
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is associated with later age at prodrome, later onset of disease, and less severe disease 301 
symptoms among SZ patients (Supplementary Note 12, Supplementary Table 8.1 and 302 
Supplementary Fig. 5).  303 

Our most direct test for genetic heterogeneity of SZ is based on PGS analyses that we 304 
performed using the detailed SZ measures among GRAS patients. If SZ is genetically 305 
heterogeneous, there is potentially relevant information in the sign concordance of individual 306 
SNPs with EA traits that may improve the prediction of symptoms (see Supplementary Note 307 
1 for formal derivations). We use a simple method to do this here: First, we construct a PGS 308 
for SZ that contains one SNP per LD-block that is most strongly associated with SZ. Overall, 309 
this score (SZ_all) contains 349,357 approximately LD-independent SNPs. Next, we split 310 
SZ_all into two scores, based on sign-concordance of the SNPs with SZ and EA. More 311 
specifically, one score contains all estimated SZ effects of SNPs that have concordant signs 312 
for both traits (174,734 SNPs with ++ or -- on both traits, Concordant) while the other 313 
contains the estimated SZ effects of the remaining SNPs with discordant effects (174,623 314 
SNPs with +- or -+, Discordant). Note that splitting the SZ_all score this way is not expected 315 
to improve the prediction of symptoms if they share the same genetic architecture (i.e., if SZ 316 
was a genetically homogenous trait). We test this null hypothesis with an F-test that 317 
compares the predictive performance of models that include (i) the SZ_all and the EA score 318 
(EA_all) and (ii) the Concordant, Discordant, and EA_all scores (Supplementary Note 319 
1.3.2). We also compare the performance of both of these models to a baseline that only 320 
includes the SZ_all score as a relevant predictor. 321 

We found that the EA_all PGS is associated with years of education (ܲ = 1.0 × 10ି଺) and 322 

premorbid IQ (ܲ = 2.7 × 10ିସ) among SZ patients (Supplementary Note 12 and Table 2). 323 
Consistent with earlier results4, we also found that none of the SZ measures can be predicted 324 
by the PGS for SZ (SZ_all, Table 2). However, splitting the PGS for SZ based on the sign-325 
concordance of SNPs with EA (Concordant and Discordant) increased predictive accuracy 326 
significantly for severity of disease (GAF (pF = 0.023)) and symptoms (PANSS negative (pF 327 
= 0.007)) (Table 2). This increase in predictive accuracy is evidence for genetic 328 
heterogeneity of SZ (Supplementary Note 1). Specifically, our results indicate that SZ 329 
patients with a high genetic propensity for EA have better GAFs and less severe negative 330 
symptoms (PANSS negative). However, if the high genetic predisposition for EA is primarily 331 
due to loci that also increase the risk for SZ (i.e., high values on the Concordant score), this 332 
protective effect is attenuated. We repeated these analyses excluding patients who were 333 
diagnosed with schizoaffective disorder (SD, N = 198) and found similar results, implying 334 
that our findings are not only due to the presence of patients with SD (Supplementary Note 335 
12, Supplementary Table 8.4.a). 336 

We note that this implementation of our test for heterogeneity of SZ (Supplementary Note 337 
1) is based on a conservative pruning algorithm that controls for LD both within and across 338 
the Concordant and Discordant scores. This limits the number of genetic markers in both of 339 
these scores, their expected predictive accuracy, and the power of the test. As an alternative, 340 
we also used a less conservative approach that only prunes for LD within scores, yielding 341 
260,441 concordant and 261,062 discordant SNPs (Supplementary Note 11.1.1). Split 342 
scores based on this extended set of SNPs have higher predictive accuracy for all the SZ 343 
measures that we analysed (Supplementary Table 8.7), reaching ΔR2  = 1.12% (pF = 0.0004) 344 
for PANSS negative. 345 

Finally, we show that randomly splitting the SZ_all score does not yield any gains in 346 
predictive accuracy (Supplementary Note 12 and Supplementary Table 8.5). 347 
  348 
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Controlling for the genetic overlap between schizophrenia and bipolar disorder 349 

The ongoing debate about what constitutes the difference between SZ and BIP11–15 suggests 350 
an additional possibility to test for genetic heterogeneity among SZ cases. While SZ and BIP 351 
share psychotic symptoms such as hallucinations and delusions, scholars have argued that SZ 352 
should be perceived as a neurodevelopmental disorder in which cognitive deficits precede the 353 
development of psychotic symptoms, while this is not the case for BIP11–15. However, 354 
cognitive deficits during adolescence are currently not a diagnostic criterion that formally 355 
differentiates SZ from BIP. As a result, many patients who are formally diagnosed with SZ 356 
did not suffer from cognitive impairments in their adolescent years, but their disease 357 
aetiology may be different from those who do. These differences in disease aetiology may be 358 
visible in how the non-shared part of the genetic architecture of SZ and BIP is related to 359 
measures of cognition, such as EA and childhood IQ.  360 

We tested this by using genome-wide inferred statistics (GWIS)41 to obtain GWAS regression 361 
coefficients and standard errors for SZ that are “purged” of their genetic correlation with BIP 362 
and vice versa (yielding “unique” SZ(min BIP) and “unique” BIP(min SZ) results, respectively). 363 
We then computed genetic correlations of these GWIS results with EA, childhood IQ, and (as 364 
a non-cognitive control trait) neuroticism using bivariate LD score regression42 and compared 365 
the results to those obtained using ordinary SZ and BIP GWAS results (Supplementary Note 366 
13). 367 

In line with earlier findings8,42, we see a positive genetic correlation of ordinary SZ and BIP 368 
with EA. However, the genetic correlations between “unique” SZ(min BIP) with EA and 369 
childhood IQ are negative and significant (rg = -0.16, P = 3.88×10-04 and rg = -0.31, P = 370 
6.00×10-03, respectively), while the genetic correlation of “unique” BIP(min SZ) with EA and IQ 371 
remain positive (rg ≈ 0.3) (Fig. 3, Supplementary Table 9.2). Thus, the slightly positive 372 
genetic correlation between SZ and EA8,42 can be entirely attributed to the genetic overlap 373 
between SZ and BIP41. Overall, these results add to the impression that current clinical 374 
diagnoses of SZ aggregate over various non-identical disease aetiologies.  375 

Simulations of assortative mating 376 

As a final test, we conducted simulations to explore if strong assortative mating of two traits 377 
can induce a spurious genetic dependence between them that resembles the patterns we see in 378 
our data (Supplementary Note 14). The results of these simulations suggest it is unlikely 379 
that assortative mating is a major cause of the genetic dependence between EA and SZ 380 
(Supplementary Fig. 7).  381 

 382 

DISCUSSION  383 

We explored the genetic relationship between EA and SZ using large, non-overlapping 384 
GWAS samples. Our results show that EA-associated SNPs are much more likely to be 385 
associated with SZ than expected by chance, i.e., both traits are genetically dependent. Loci 386 
that are jointly associated with EA and SZ are also enriched for association with BIP, 387 
neuroticism, and childhood IQ, but not for other SZ-related phenotypes such as depressive 388 
symptoms, ADHD, or autism, or negative controls such as body height. Thus, these loci show 389 
some degree of phenotype specificity. Overall, we isolated 21 genetic loci that are credibly 390 
associated with SZ by using EA as a proxy-phenotype, including two novel candidate genes, 391 
FOXO6 and SLITRK1. Furthermore, we showed that EA GWAS results help to predict future 392 
GWAS findings for SZ in even larger samples.  393 
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Biological annotation of a broader set of SNPs that are jointly associated with EA ( ாܲ஺ <394 10ିହ)	and SZ ( ௌܲ௓ < 0.05) points to neurogenesis and synapse formation as potentially 395 
important pathways that may influence both traits.  396 

However, the genetic loci that are associated with both traits do not follow a systematic sign 397 
pattern that would correspond to a strong positive or negative genetic correlation. Our follow-398 
up analyses demonstrated that this pattern of strong genetic dependence but weak genetic 399 
correlation between EA and SZ cannot be fully explained by LD or assortative mating.  400 

Instead, our results are most consistent with the idea that EA and SZ are both genetically 401 
heterogeneous traits that aggregate over various subphenotypes or symptoms with non-402 
identical genetic architectures. Specifically, our results suggest that current SZ diagnoses 403 
aggregate over at least two disease subtypes: One part resembles BIP and high IQ (possibly 404 
associated with Concordant SNPs), while the other part is a cognitive disorder that is 405 
independent of BIP (possibly influenced by Discordant SNPs). This latter subtype bears 406 
similarity with Kraepelin’s description of dementia praecox12. Overall, our pattern of results 407 
resonates with the idea that cognitive deficits in early life may be an important differentiating 408 
factor between patients with BIP versus SZ psychosis.  409 

Moreover, splitting the PGS for SZ into two scores based on the sign concordance of SNPs 410 
with EA enables the prediction of disease symptoms and severity from genetic data for the 411 
first time to some extent. We showed that this result is not driven by patients with SD and it 412 
cannot be repeated by randomly splitting the SZ score. Obviously, further replication of our 413 
results in other samples with high-quality SZ measures would be highly desirable.  414 

The many sign-concordant loci that increase the risk for SZ but also improve the chance for 415 
higher education point to possible side-effects of pharmacological interventions that may aim 416 
to target biological pathways that are implicated by pleiotropic loci. Indeed, exploring 417 
pleiotropic patterns of disease-associated genes across a broad range of phenotypes 418 
(including social-scientific ones such as EA or subjective well-being43) may be a viable 419 
strategy to identify possible side-effects of new pharmacological products at early stages of 420 
drug development in the future.  421 

Although the complexity of SZ remains astonishing, our study contributes to unravelling this 422 
complexity by starting at a genetic level of analysis using well-powered GWAS results. Our 423 
results provide some hope that a psychiatric nosology that is based on biological causes rather 424 
than pure phenotypical classifications may be feasible in the future. Studies that combine 425 
well-powered GWASs of several diseases and from phenotypes that represent variation in the 426 
normal range such as EA are likely to play an important part in this development. However, 427 
deep phenotyping of large patient samples will be necessary to link GWAS results from 428 
complex outcomes such as EA and SZ to specific biological disease subgroups.  429 

 430 

METHODS 431 

A full description of all methods, materials, and results is available in the Supplementary 432 
Notes. 433 

GWAS 434 

We obtained GWAS summary statistics on EA from the Social Science Genetic Association 435 
Consortium (SSGAC). The results are based on Okbay et al.8, including the UK Biobank. The 436 
PGC shared GWAS summary statistics on SZ with us that were reported in Ripke et al.5, but 437 
excluded data from our replication sample (GRAS, see Supplementary Note 10), yielding a 438 
total sample size of n = 34,409 cases and n = 45,670 controls. All cohorts that were part of 439 
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both studies5,8 were excluded from the meta-analysis on EA, yielding non-overlapping 440 
GWAS samples and nEA = 363,502. The original EA results file contained 12,299,530 genetic 441 
markers, compared to 17,221,718 in the SZ results file. We applied additional quality control 442 
steps: First, we excluded SNPs that were missing from large parts of both samples. Second, 443 
we excluded SNPs that were not available in both GWAS results files. Third, we excluded 444 
SNPs with non-standard alleles, mismatching effective alleles, and SNPs that exhibited 445 
strong differences in minor allele frequency in both results files. The remaining 8,240,280 446 
autosomal SNPs were used in the proxy-phenotype and prediction analyses.  447 

Proxy-phenotype method (PPM) 448 

We conducted proxy-phenotype analyses following a preregistered analysis plan 449 
(https://osf.io/dnhfk/), which specified that we would look up SZ results only for 450 

approximately independent SNPs with ாܲ஺ < 10ିହ in the independent EA sample. For LD-451 
pruning in the EA GWAS results, we applied the clumping procedure in PLINK version 452 
1.944,45 using r2 > 0.1, a window of 1,000,000 kb, and the 1000 Genomes phase 1 version 3 453 
European reference panel46. 454 

Biological annotations 455 

To gain insights into possible biological pathways that are indicated by the PPM results, we 456 

applied DEPICT8,47 using a false discovery rate threshold of ≤ 0.05. To identify independent 457 
biological groupings, we used the affinity propagation method based on the Pearson distance 458 
matrix for clustering48 (Supplementary Note 8). 459 

LD-aware enrichment of PPM results across different traits 460 

For SNP i in trait j, we calculate the expected chi-square statistic as 461 ܧሾܼ݆݅ଶሿ = (݆ܰ × ℎ2݆ × (ܯ/݅݁ݎ݋ܿݏܦܮ + (1 + ܰܽ)݆ 
where N is the sample size of the target trait j, h2 is the heritability of trait j, ݁ݎ݋ܿݏܦܮ௜ =462 ∑ ௜௞ଶெ௞ୀଵݎ  for SNP i is calculated using HapMap3 SNPs from European ancestry, M is the 463 

number of SNPs included in the calculation of the LD score (n = 1,173,569 SNPs), ݎ௝௞ଶ  is the 464 

squared correlation between SNPs j and k in the HapMap3 reference panel, and 1 + Na is the 465 
LD score regression intercept for trait j. We calculated the LD score regression intercept and 466 
slope of the traits (h2 ) using LDSC49.  467 

To determine whether a particular realization is significantly larger than expected (and thus 468 

the ratio ܥℎ݅௢௕௦௘௥௩௘ௗଶ ℎ݅௘௫௣௘௖௧௘ௗଶܥ/  is significantly greater than one), we tested each particular 469 

observed Z–statistic (the square root of the Chi2) for SNP j against a normal distribution with 470 

variance (Nj × h2j × LDscorei/M) + (1 + Na)j. 471 

Replication of PPM results 472 

We showed in our preregistered analysis plan that our replication sample (GRAS) is not large 473 
enough to replicate individual SNPs (https://osf.io/dnhfk/). Instead, we decided at the outset 474 
to attempt replication of the proxy-phenotype analysis results using a PGS that consists of the 475 
>80 most strongly associated, independent SNPs. The set that best meets this criterion are the 476 

132 independent EA lead SNPs that are also nominally associated with SZ ( ௌܲ௓ < 0.05), see 477 
Supplementary Note 6. The PGS for this set of 132 candidate SNPs (SZ_132) was 478 

constructed in PLINK version 1.944,45 using the ߚ coefficient estimates of the SZ GWAS 479 
meta-analysis.  480 
  481 
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GWIS schizophrenia – bipolar disorder 482 

To infer a SNP’s effect on SZ conditioned upon its effect on BIP, we approximated the 483 
following linear regression function: 484 
 485 ܼܵ = ߚ	 ∗ ܲܫܤ + ݁ 
 486 

where the parameter ߚ is estimated from the genetic covariance between SZ and BIP and the 487 

genetic variance in BIP as ߚ = 	 ௖௢௩೒(ௌ௓,஻ூ௉)௩௔௥೒(஻ூ௉) . The residual (݁) is actually our trait of interest, 488 

for which we use the term SZ(min BIP). Using GWIS41, we inferred the genome-wide summary 489 
statistics for SZ(min BIP) given the most recent PGC GWAS results for SZ (omitting the GRAS 490 
data collection)5 and BIP50. The effect size with respect to SZ(min BIP) for a single SNP is 491 
computed as:  492 
 493 ݂݁ ௦݂௭ − ߚ	 ∗ ݂݁ ஻݂ூ௉ = ݂݁ ௘݂ 
 494 

The standard error for each SNP effect is approximated using the delta method and accounts 495 
for the possible effect of sample overlap between the SZ and BIP GWAS.  496 

As data input, we used the GWAS results on SZ (excluding the GRAS data collection) 497 
described in Supplementary Note 3. GWAS results for BIP50 (6990 cases, 4820 controls) 498 
were obtained from the website of the PGC 499 
(https://www.med.unc.edu/pgc/files/resultfiles/pgc.cross.bip.zip).  500 

 501 
Code availability 502 

Source code for GWIS and LD-aware enrichment analyses will be made available through a 503 
GIT repository. 504 
 505 
Data availability 506 
The GWAS summary statistics that were analysed during the current study are available on 507 
the website of the Social Science Genetic Association Consortium (SSGAC): 508 
http://www.thessgac.org/#!data/kuzq8. The GRAS data collection is not publicly available 509 
due to strict data protection laws in Germany for study participants that could potentially be 510 
identified. For further information, contact the study’s principal investigator Prof. Dr. 511 
Hannelore Ehrenreich (ehrenreich@em.mpg.de).    512 
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FIGURE LEGENDS 669 
 670 

Figure 1: Workflow of the proxy-phenotype analyses. 671 
 672 

Notes: Educational attainment (EA) and schizophrenia (SZ) GWAS results are based on the analyses reported in 673 
ref. 5,8. All cohorts that were part of the SZ GWAS were excluded from the meta-analysis on EA. The GRAS 674 
data collection was not included in either the SZ or the EA meta-analysis. Proxy-phenotype analyses were 675 
conducted using 8,240,280 autosomal SNPs that passed quality control. Genetic outliers of non-European 676 
descent (N = 13 cases) were excluded from the analysis in the GRAS data collection.  677 
 678 
Figure 2: Results of the proxy-phenotype analyses. 679 

 

Notes: Panel a: Manhattan plot for educational attainment (EA) associations (n = 363,502). The x-axis is the 
chromosomal position, and the y-axis is the significance on a −log10 scale (2-sided). The black dashed line 
shows the suggestive significance level of 10−5 that we specified in our preregistered analysis plan. Turquois and 
magenta crosses identify EA-associated lead-SNPs that are also associated with SZ at nominal or Bonferroni-
adjusted significance levels, respectively.  
Panel b: Q–Q plot of the 506 EA-associated SNPs for schizophrenia (SZ) (n = 34,409 cases and n = 45,670 
controls). SNPs with concordant effects on both phenotypes are pink, and SNPs with discordant effects are 
blue. SNPs outside the grey area (21 SNPs) pass the Bonferroni-corrected significance threshold that corrects 
for the total number of SNPs we tested (P < 0.05/506 = 9.88×10-5) and are labelled with their rs numbers. 
Observed and expected P values are on a −log10 scale. For the sign concordance test: P = 0.40, 2-sided. 

 

Figure 3: Genetic correlations of GWAS and GWIS results that are central to the 
relationship between SZ and EA. 
 

Notes: The heatmap displays the genetic correlations across 7 sets of GWAS or GWIS summary statistics. 
Genetic correlations were estimated with LD score regression.42 The colour scale represents the genetic 
correlations ranging from –1 (red) to 1 (blue). Asterisks denote significant genetic correlations at P value < 0.01. 
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Table 1: SNPs significantly associated with schizophrenia after Bonferroni correction. 682 
           
               Chance that 

SNP has direct 
pleiotropic effect 

on EA and SZ 

Posterior probability of true association with SZ 

 
SNP-ID EA- 

signs 
concordant? 

SZ-R2 SZ-Odds EAF Power Prior belief (π)  

    beta  (adj) (adj)   (α = 0.05/506) 0.1% 1.0% 5.0% 10.0% 
1 rs79210963 -0.016 yes 0.021% 0.931 0.89 22.9% High 75.0% 96.8% 99.3% 99.7% 
2 rs7610856 0.013 no 0.022% 0.955 0.41 22.8% Medium 74.9% 96.8% 99.3% 99.7% 
3 rs10896636 0.012 no 0.020% 0.956 0.67 17.8% High 68.7% 95.6% 99.1% 99.5% 

4 rs756912 -0.015 yes 0.022% 0.956 0.51 22.7% Low 74.8% 96.7% 99.3% 99.7% 

5 rs6449503 0.018 no 0.020% 0.961 0.51 12.9% Low 60.0% 93.7% 98.7% 99.3% 
6 rs7336518 -0.016 yes 0.014% 0.964 0.13 1.5% Medium 13.4% 60.6% 88.5% 93.9% 
7 rs143283559 0.014 no 0.017% 0.965 0.72 4.6% Medium 32.8% 83.0% 96.1% 98.0% 
8 rs11210935 0.015 no 0.014% 0.973 0.77 1.2% Low 10.9% 55.1% 86.0% 92.5% 
9 rs77000541 -0.014 yes 0.018% 0.974 0.33 1.6% Low 14.1% 62.2% 89.2% 94.3% 

10 rs2819344 0.014 no 0.017% 0.983 0.62 0.3% High 3.0% 23.3% 60.4% 75.3% 
11 rs4500960 -0.013 no 0.017% 1.017 0.47 0.3% Low 3.0% 23.3% 60.4% 75.3% 
12 rs28360516 -0.012 no 0.013% 1.027 0.70 1.4% Low 12.6% 59.0% 87.8% 93.5% 
13 rs7522116 0.011 yes 0.015% 1.029 0.56 3.0% Low 23.8% 75.8% 94.0% 96.9% 
14 rs7593947 0.014 yes 0.018% 1.040 0.51 12.5% Low 59.1% 93.5% 98.6% 99.3% 
15 rs11694989 0.011 yes 0.021% 1.044 0.43 17.9% Low 68.8% 95.7% 99.1% 99.5% 
16 rs320700 0.013 yes 0.024% 1.054 0.65 36.4% High 85.3% 98.3% 99.7% 99.8% 
17 rs3957165 0.015 yes 0.020% 1.056 0.83 14.7% Low 63.6% 94.6% 98.9% 99.4% 
18 rs10791106 0.011 yes 0.026% 1.056 0.54 46.9% Low 89.9% 98.9% 99.8% 99.9% 
19 rs2992632 0.016 yes 0.025% 1.060 0.74 36.8% Medium 85.5% 98.3% 99.7% 99.8% 
20 rs10773002 0.022 yes 0.043% 1.087 0.28 91.0% Low 99.0% 99.9% 100.0% 100.0% 
21 rs4378243 0.019 yes 0.044% 1.112 0.85 91.5% Low 99.1% 99.9% 100.0% 100.0% 

Notes: The SNPs in the table are ordered by their Odds ratio on SZ. Effect sizes for SZ (in R2 and Odds) are downward adjusted for the winner's curse27. EA (beta) is the 683 
standardized beta of a SNP for educational attainment GWAS. R2 was approximated from the winner’s curse adjusted Odds ratios, using the formulas described in Supplementary 684 
Note 6.2. The winner's curse adjustment took into account that only SNPs with P = 0.05/506 were selected. SNPs with concordant effects on both SZ and EA are marked as “yes” 685 
in the sign concordance column. EAF is the effect allele frequency in the schizophrenia GWAS data. Power calculations assumed that the available GWAS sample size for SZ for 686 
each SNP consisted of 34,409 cases and 45,670 controls. The chance that a SNP has direct pleiotropic effects on EA and SZ has be evaluated using the procedure described in 687 
Supplementary Note 7. The posterior probability that these SNPs are truly associated with SZ was calculated using the Bayesian procedure developed by Rietveld et al. (2014)27. 688 
SNPs highlighted in bold are associations for SZ that have not been emphasized in the previous literature.  689 
 690 
  691 
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Table 2: Polygenic prediction of schizophrenia measures in the GRAS patient sample. 692 
 693 

 694 
Notes: Linear regression using the first 10 genetic principal components as control variables. 1: Age of onset was included as covariate. 2: Medication was included as covariate. 695 
 # Change in Adj. R² of the models compared to a model that only contains the SZ_all score and the control variables. ° P value from F-test refers to improvement in split model 696 
compared to baseline model. *denotes significance at P < 0.05. **denotes significance at P < 0.01. 697 
 698 

    Years of 
education1 

Age at 
prodrome 

Age at disease 
onset 

Premorbid IQ1 GAF2 CGI-S2 
PANSS 
positive2 

PANSS 
negative2 

Baseline Model                 

SZ_all standardized beta  0.001 -0.041 -0.056 -0.063 -0.024 0.041 0.033 0.043 

P value 0.976 0.297 0.129 0.090 0.510 0.249 0.364 0.253 

EA_all standardized beta  0.182** 0.005 -0.002 0.149** 0.068* -0.057 0.001 -0.051 

P value 4.4x10-09 0.884 0.961 7.2x10-06 0.029 0.065 0.981 0.107 

Adj. R² 0.0612 0.0023 0.0047 0.0417 0.0655 0.0816 0.0711 0.0243 

Δ Adj. R²# 0.0312 -0.0010 -0.0009 0.0209 0.0035 0.0023 -0.0010 0.0015 
          

Split Model                   

Concordant standardized beta  -0.013 -0.019 -0.031 -0.043 -0.096* 0.050 0.079 0.125** 

P value 0.751 0.665 0.456 0.326 0.022 0.232 0.059 0.0036 

Discordant standardized beta  0.014 -0.030 -0.035 -0.034 0.066 <0.001 -0.039 -0.072 

P value 0.730 0.515 0.409 0.437 0.112 0.996 0.351 0.090 

EA_all standardized beta  0.191** 0.002 -0.002 0.153** 0.122** -0.074 -0.039 -0.118** 

P value 1.0x10-06 0.965 0.953 2.7x10-04 0.002 0.058 0.319 0.003 

Adj. R² 0.0604 0.0012 0.0037 0.0406 0.0694 0.0811 0.0728 0.0306 

Δ Adj. R²# 0.0304 -0.0021 -0.0019 0.0198 0.0074 0.0018 0.0007 0.0078 

  n 1,039 915 1,043 903 1,010 1,014 1,009 1,002 

ΔR² (Split Model – Baseline Model) -0.0008 -0.0011 -0.0010 -0.0011 0.0039 -0.0005 0.0017 0.0063 

P value from F-test° 0.698 0.907 0.968 0.891 0.023* 0.479 0.098 0.007** 
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