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Abstract5

The concept of a tuning curve has been central for our understanding of how the responses of cortical6

neurons depend on external stimuli. Here, we describe how the influence of unobserved internal7

variables on sensory responses, in particular their response correlations, can be understood in a8

similar framework. We review related recent work and discuss its implication for the information9

contained in sensory responses.10

Introduction11

A large part of cortical function can be characterized as transforming sensory inputs to behavioral12

outputs. While this transformation is conceptually unidirectional, the anatomical structures imple-13

menting it are largely bidirectional [1]. In this review, we will concentrate on discussing progress14

in understanding feedback signals (FB) that influence neural responses in early visual areas, and15

their relation to classically feedforward (FF) models of sensory processing. We expect the discussed16

techniques and computational frameworks to also be useful in understanding neural responses in17

other sensory or motor areas.18

The transformation of sensory inputs into behavioral outputs can be understood on at least19

two levels. On the first one, we would like to understand how a stimulus, S, influences neural20

responses, r, and how these responses influence behavior, B. On a more abstract level, one can try21

to understand how a stimulus affects internal states, I, and how these internal states are linked to22

behavior (Figure 1). While those two levels are clearly linked, the representation of abstract internal23

states is generally unclear, and it is in principle only possible to directly observe the corresponding24

neural responses. Internal states are only accessible by their covariability with one or more of25

the observable quantities, S, B, and r. In general, all of these quantities vary over time [2], and26

observations of their joint or conditional probability distributions can tell us about different aspects27

of brain function (Figure 1).128

ppS, rq: Characterizes the stimulus-dependence of neural responses, giving rise to tuning func-29

tions and receptive fields.30

∗{rlange,rhaefne2}@ur.rochester.edu
1We use joint distributions here because they allow us to characterize relationships even when one of the variables

is not directly observed.
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Figure 1: a: A computational-level description of the brain may invoke abstract Internal States
(I) that govern behavior (B) and are influenced by stimuli (S). On a neurophysiological level, we
also seek a description on the level of responses (r) of populations of neurons. It is often useful to
mix levels of abstraction, for example modeling the effect of attention (an abstract state) on neural
responses.

ppr, Bq: Usually called ‘decision-related’ or ‘choice-related’ activity in the context of decision-31

making tasks [3]. When r is measured in motor cortex, it gives rise to tuning curves32

with respect to motor outputs [4, 5].33

ppr, Iq: Depending on the nature of I, this can alternatively be interpreted as the influence of34

cortical states on neural responses (e.g. anesthesia, attentional state, motor activity)35

[6, 7, 8, 9‚‚, 10, 11‚‚, 12, 13], or their neural representation (e.g. for beliefs about the36

outside world) [14, 15, 16‚, 17‚].37

ppS, Iq: Not observable directly, but may be induced by experimental design, for instance by38

training a subject to allocate attention following an external cue, or when measuring39

neural correlates of reward and value.40

ppI,Bq: Captures differences in behavior depending on internal state, e.g. performance differ-41

ences between attentional states, or different choices depending on percept. Again,42

not directly observable, but usually implicitly assumed to be under the control of the43

experimenter.44

We will first describe the implications of extending the concept of a tuning function to charac-45

terizing the influence of internal states on neural responses. We will then describe recent efforts to46

distinguish between feedforward and feedback influences on neural responses, and the implications47

for the information represented by sensory neurons.48

1 Characterization of the influence of internal states49
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Box 1: Tuning and Covariability

Just as the dependence of a neuron’s firing rate on an external parameter yields a tuning curve,
a similar dependence on some internal state may be thought of as “tuning” to that internal
state, though the value of that state may not be precisely known [2]. Taken together, we can
write a population’s response as a vector-valued ‘tuning’ function of the external parameters
and internal states on which it depends::

r “ fpa, b, . . .
loomoon

external

, x, y, . . .
loomoon

internal

q ` noise (1)

Taking the linear approximation of f (Figure 2), the covariance between two neurons’
responses takes the form of a sum of outer products [18‚, 19‚‚, 16‚]:

C « C0 `
ÿ
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df

dv

df

dv
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ÿ
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interaction terms

(2)

where C0 is ‘intrinsic’ covariance (i.e. the covariance of the noise) and u, v P vars represents
any of the internal or external variables that f depends on.

Equation (2) makes explicit how shared sources of variability introduce structured co-
variability into a population. Importantly, both variation in internal states and variation in
external stimulus parameters affect a population’s covariance analogously. By analyzing a
population’s covariance structure, then, we can learn about both stimuli and internal states
modulating neural responses.

Figure 2: a: The population tuning of two neurons to some parameter, fpaq, entails response
co-variability along f (blue) [18‚], often called ‘signal correlations’ when a reflect the stimulus,
and ‘noise correlations’ when it reflects uncontrolled internal variability [20, 21]. b: Variability
in multiple parameters adds (eq. 2). c-d: Population responses of [22] replotted to illustrate
conceptual similarity between tuning with respect to outside stimulus (d), and tuning with
respect to behavior (c). Here, monkeys performed a motion-based detection task while the
authors recorded from macaques’ MT neurons. c: Dependence of a neuron’s ‘detect probability’
(DP) on its preferred motion direction relative to the task direction measured. DP is closely
related to the difference in the mean responses associated with the two choices, ∆f{∆choice
[23]. Hence, if DPs reflect FB influences from a decision-making area[24‚‚, 25], then this curve
is interpretable as tuning to the decision state. d: Normalized difference in response associated
with the two task-relevant stimuli, ∆f{∆stim, showing the relationship between tuning to
internal and to external parameters.

:Correlations between I and r considered here may reflect causation from I to r, or common input to both.
Equation (2) holds as long as I is not purely a function of r, in which case variability in I will not affect
variability in r.
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Stimulus-dependence of responses ppS, rq: Observing the full joint distribution ppS, rq is50

rarely possible even for a single neuron due to the high dimensionality of S, at least in the visual51

domain. As a result, experimentalists have often concentrated on probing this relation along a52

single dimension while keeping everything else about the stimulus constant. For example, varying53

the orientation of a grating pattern yields the orientation tuning curve of each recorded neuron.54

In general, a neuron may be tuned to multiple independent parameters. For example, V1 neurons55

are often characterized jointly by their tuning to the orientation and to the spatial-frequency of a56

grating stimulus.57

Behavior-related responses ppr, Bq: Taking the same approach as above, we can use concurrent58

observations of neural responses and behavioral outputs to infer their relationship. Traditionally,59

this has been done by computing ‘choice probability’ and ‘detect probability’ [26, 25, 27] – measures60

for how neural responses differ depending on behavioral response. A closely related but simpler61

measure is the dependence of the mean neural response on the behavioral response. For continuous62

behavioral outputs such as eye or limb movements [28, 29], such a measure is equivalent to the63

classic concept of a tuning curve. For binary responses as common in perceptual decision-making64

tasks (reviewed in [25]), it is closely related to choice and detect probabilities under reasonable65

assumptions [30].66

In a purely feedforward, unidirectional model, the dependence of neural responses on behavior67

would reflect the decoding strategy of the brain, i.e. how the neural responses inform behavior.68

However, in a bidirectional model including internal variables that influence both responses and69

outputs, this dependence is best thought of as a covariance between responses and outputs, and70

does not imply only feedforward causation (Box 1).71

Internal state-related responses ppr, Iq: Since a subject’s internal state is not observable72

directly, the traditional approach to measuring its impact on neural responses has been to exploit73

its relationship to observed quantities like stimulus and behavior. For example, training an animal74

in an attention task induces a relationship between an aspect of the internal state (‘attentional75

state’) and an external sensory signal (‘attention cue’) [2], where improved behavioral performance76

is taken as an indicator for successful manipulation of attentional state [9‚‚]77

There are two limitations to this approach. (1) there usually remains significant uncertainty78

about the relationship between observables and internal states. For instance, even though an79

attention cue may only have two states, the internal variables determining the animal’s attentional80

state is likely non-binary and more variable. And (2), the internal state is much higher-dimensional81

than the observations. For instance, the attentional state is likely high-dimensional determining82

location(s), feature(s), etc. that the animal is attending to [9‚‚, 31, 19‚‚] (Box 2). Equally, the83

internal percept is surely richer than the binary output in a perceptual decision-making task. Both84

problems severely limit the information that can be inferred about internal states and their influence85

on neural responses from their dependence on the preceding stimulus or their dependence on the86

behavioral report.87

What covariability reveals about internal states: The above approaches can all be consid-88

ered conditional : they rely on measuring each neuron’s response conditioned on other quantities,89

e.g. conditioned on choice or on the attentional cue. One way to overcome the described limitations90

is by considering the full response distribution, i.e. across all choices or cues. If some component,91

x, of the subject’s internal state varies uncontrolled from trial to trial, the population response r92

moves together according to its ‘tuning’ to x (Box 1). This means that variability in an internal93
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state leaves a signature in the statistical structure of the neural population response. Furthermore,94

different internal states all leave their own signatures that will superpose (Box 2). By recording95

from sufficiently many neurons concurrently, and by using sufficiently powerful statistical inference96

techniques, both of which are under current development [32‚, 33, 34], we can infer both the internal97

states influencing neural responses, and how those responses depend on them [9‚‚, 31, 35‚‚]. This98

will also allow estimation of the internal state as a function of time [11‚‚] and on individual trials99

[9‚‚]. Furthermore, with nonlinear dimensionality reduction methods one can infer curvature in f100

as well, going beyond the simple but instructive picture of linear tuning presented above [32‚].101

Experimental data: A number of papers can be interpreted in this framework as having mea-102

sured consequences of tuning curves with respect to internal variables by correlating neural re-103

sponses with behavior [22, 36, 37, 38‚‚, 9‚‚, 31, 11‚‚, 35‚‚, 39‚‚], four of which we will highlight104

here (also see Fig. 2 in Box 1, and Box 2).105

Having trained a monkey on a cued change-detection task, [9‚‚] computed the line connecting106

the mean neural response in attention trials with the mean neural response in the attend-away trials.107

This is equivalent to computing f 1 with respect to attention. The authors overcome the challenge108

that attentional state is not precisely known by binarizing it (‘attend left’ or ‘attend right’) and109

discarding false negative trials, where attention is assumed to not match the cued location. They110

found that their trial-by-trial estimates of attentional state predicted performance on individual111

trials, and that it varied substantially across trials even within the same experimental condition.112

[11‚‚] regressed a scalar latent factor influencing neural activity in primate V1 both during113

anesthesia and while awake. The shared, time-varying gain term accounted for a large part of the114

population’s variability as well as their correlations during the anesthetized, but not during the115

awake state. This is an example of inferring an internal state which is clearly important but for116

which no normative account exists at present.117

[35‚‚] explicitly modeled the trial-by-trial changes in V4 spiking activity during a change-118

detection task as a combination of a stimulus-driven component and shared time-varying feedback119

terms that were either known (the attentional cue) or fit to the data. The inferred values of the120

fitted internal states were then correlated per-trial with spiking statistics (ppI, rq) and the animal’s121

behavior (ppI,Bq), and were found to explain a large amount of variance in both.122

At least two groups have measured the effect of changing the task context on noise correlations123

while keeping the stimulus distribution the same [38‚‚, 39‚‚]. [38‚‚] find, in a change detection124

task, correlations that are well-described as the effect of only two varying attentional states (Box125

2). [39‚‚] measured the noise correlation matrix in V1 while the monkey performed a coarse126

discrimination task. Interestingly, they found that the feedback component of correlations could127

largely be explained by variability in only a single state. Furthermore, [39‚‚] were able to isolate128

and quantify the task-dependent component of both choice probabilities and noise correlations,129

finding a significant contribution of task-related covariability to both.130
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Box 2: Case Study: [38‚‚]

In Box 1 we argued that response correlations (or more precisely, covariances) may be use-
fully understood as the sum of ‘intrinsic’ covariability with outer products of the population’s
‘tuning’ to each independently varying parameter. [38‚‚] used essentially this idea, which we
replicate and make more explicit here. The authors measured pairwise noise correlations be-
tween MT neurons in a motion discrimination task, where the discriminated directions changed
from trial to trial. Recording from pairs of neuron at the same time, switching tasks implied
that firing by the two neurons either supported the same decision, or opposite decisions. Their
results showed noise correlations change depending on whether the neurons support the same
choice or different choices, implying an influence of the internal state ’task context’ on MT
responses (Figure 3, bottom left).

Following [38‚‚], we assume two independently varying internal states, x and y: one for
alternating ‘attention’ between the discriminated directions, and one for fluctuating ‘attention’
to both of the task-relevant motion directions concurrently [19‚‚].

Figure 3: Middle row: a full simulated correlation matrix, plotted as a function of each
neuron’s preferred motion direction, is derived from the weighted sum of independent variability
(not shown), limited-range covariance, and independent outer-product terms (Equation 2).
Bottom row: [38‚‚] measured pairwise correlations as a function of the difference in the
pair’s preferred directions, ranging from 0 to 1800. Data replotted as error bars and compared
to model (lines). Pairs where neurons support the same choice are in blue, and pairs supporting
different choices are in red. Both, the initial separation between the conditions as well as the
crossover at larger differences in preferred direction are captured by the above two components
of attention.

2 Distinguishing feedforward from feedback influences131

Because the external stimulus is under the direct control of the experimenter, it is possible to132

establish a causal feedforward relationship between external inputs and the responses of sensory133

neurons. In order to establish causality in the relationships between neural responses and behavior,134

or neural responses and internal states, it is likewise necessary to experimentally manipulate either135

of them. Two non-causal approaches to distinguish between feedforward and feedback signals have136

been (1) to compare the observations to the predictions from a purely feedforward model and ascribe137

any residuals to feedback influences, and (2) to compare neural responses for different internal states138

under the assumption that those states are represented by neurons downstream of those that are139
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Figure 4: Identification of feedback signals by dependency of neural response on stimuli not within
the presumed feedforward pathway. a: Dependency of neural responses in other sensory modalities,
or outside the receptive field. b: Dependency on external inputs at different times, sufficiently long
in the past such that ‘memory’ about them within the feedforward pathway can be excluded.

being observed (Figure 4). Note that we refer here only to the functional definition of FB, and140

that FB signals from downstream neurons may themselves not involve just pure cortico-cortico FB141

pathways but also anatomically FF pathways [40], for instance via a thalamocortical loop [41, 42].142

[24‚‚] took the first of these approaches. In monkeys performing a disparity discimination143

task, they compared the relationships between stimulus and choice to the relationship between144

sensory area V2 neural responses and choice. They found that the stimulus was most strongly145

correlated with the choice at the beginning of a trial, while the neural responses were most strongly146

correlated with the choice towards the end of the trial. Assuming that correlations between the147

neural responses do not change over the course of a trial one would expect the time courses of148

stimulus–choice, and response–choice correlations to agree, contrary to what is observed [43]. The149

authors therefore concluded that the neural responses they observed must be partly due to non-150

feedforward influences, most notably feedback from downstream decision-related neurons. Since it151

is conceivable that either feedforward inputs or recurrent connectivity among the sensory neurons152

could lead to increasing response correlations, answering this question definitively requires direct153

observations of those correlations.154

Most studies taking the second approach manipulate the attentional state of the subject, e.g.155

by presenting a pre-trial cue, and have been extensively reviewed elsewhere [44]. An alternative156

approach is to analyze the co-variability of the neural responses and determine whether they contain157

task-dependent components. Under the critical assumption that task-learning, or task-switching,158

does not alter the feedforward connectivity, or recurrent connectivity, one can then conclude that159

any such task-dependent component must be due to feedback signals. The underlying assumption160

is more likely to be true for early sensory areas than higher levels of sensory processing where161

learning-induced plasticity has observed to be stronger [45]. The assumption is also more likely162

to be true for task-switches across shorter time scales, e.g. from trial to trial (seconds) rather163

than days or weeks over which relevant changes of the feedforward pathway become more likely.164

Both [38‚‚] (see Box 2) and Bondy & Cumming [39‚‚] have taken this approach comparing changes165

across trials in MT responses, and changes separated by several days in V1 responses, respectively.166

Even though [35‚‚] did not explicitly vary the task, a similar logic can be applied: Since the167

main common factors driving trial-to-trial variability impact individual neurons depending on their168

task-dependent tuning properties, they have to be different if the task is changed, and hence they169
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Figure 5: d1d1´correlations (d1 ” f 1{σ) can arise in different ways, with differing implications for
sensory information which is determined by covariance. The blue response distributions have the
same correlation but different covariances. a: No change in sensory information if d1d1´correlation
is induced by suppression of variability orthogonal to f 1. This case implies lower response variability
for both neurons. b: Decrease in sensory information if d1d1´correlations is induced by increased
variability along f 1, e.g. by variability in an internal state whose tuning is aligned with f 1, assuming
that this internal state contains no information about a.

must be due to feedback signals.170

In this framework, training on a task induces a task-specific association or relationship between171

internal states like choice and sensory responses. If those internal states are represented by down-172

stream neurons, and if this relationship is purely feedforward in nature, then neural responses will173

affect those states, and in turn observable behavioral outputs, but not the other way around. If,174

however, those internal states affect sensory responses, then sensory responses will differ depending175

on the task.176

3 Implication for the information in sensory responses177

Fisher information is often used to quantify the amount of information contained in sensory pop-178

ulation responses. It is important to note that this information is computed not with respect to179

the entire input signal, S, but with respect to an experimenter-defined aspect, a, of it (e.g. with180

respect to orientation instead of the entire retinal image). In general, response variability that is181

indistinguishable from the variability along df
da that would be induced by variability in the relevant182

aspect of the external signal, limits information with respect to that aspect [20, 18‚]. Whether183

the response variability induced by variability in internal states increases or decreases Fisher in-184

formation depends principally on two questions: first, whether the internal signal itself contains185

information about a, and second, whether the way it influences sensory responses is aligned with df
da186

[19‚‚]. For instance, in the context of a perceptual experiment, an internal variable may represent187

the subject’s expectations about the stimulus in the upcoming trial. If those expectations bias the188

sensory responses in an analogous fashion to actual sensory information, trial-to-trial variability in189

those expectations will induce sensory response variability in the df
da direction [16‚]. If those expec-190

tations are based on superstition (e.g. if trials are randomized), then this internal-state-induced191

variability will decrease information. However, if they reflect correctly learned serial dependencies192

between trials, then they will increase information.193

Consider the result that attention reduces covariability in the f 1f 1J´direction where the deriva-194

tive is taken with respect to the task-relevant stimulus [35‚‚]. Since trials were randomized in the195

underlying experiment, an internal variable whose value depended on previous stimulus presenta-196

tions could not contain any information about the upcoming stimulus. Reducing sensory variability197
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with respect to such a variable would therefore increase information in the sensory representation198

in line with the behavioral improvement experimentally observed [35‚‚].199

Importantly, information is limited not by correlations themselves but by covariability, the200

product of correlation and individual variability. Consider Figure 5 which illustrates two different201

ways in which correlations in the f 1´direction can emerge. Either (panel c), by increasing variability202

that is indistinguishable from stimulus-induced variability and hence reduces information. Or (panel203

a), by decreasing variability in orthogonal directions that leave variability along f 1 and, hence,204

information unchanged [19‚‚].205

4 Conclusion206

The influence of internal states on sensory responses can be characterized by tuning functions207

in analogy to the influence of the external stimulus on neural responses. Variability in those208

states leaves characteristic signatures in the statistics of sensory responses that can in principle209

be exploited to infer states and state-specific tuning functions. We suggest that analyzing sensory210

responses in these terms can shed new light on both their meaning and on the information they211

carry.212
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