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Abstract

A common technique for interpreting experimentally-identified lists of
genes is to look for enrichment of genes associated to particular ontology
terms. The most common technique uses the hypergeometric distribution;
more recently, a model-based approach was proposed. These approaches
must typically be run using downloaded software, or on a server. ~ We de-
velop a collapsed likelihood for model-based gene set analysis and present
WTFgenes, an implementation of both hypergeometric and model-based
approaches, that can be published as a static site with computation run
in JavaScript on the user’s web browser client. Apart from hosting files,
zero server resources are required: the site can (for example) be served di-
rectly from Amazon S3 or GitHub Pages. A C++11 implementation yield-
ing identical results runs roughly twice as fast as the JavaScript version.
WTFgenes is available from https://github.com/evoldoers/wtfgenes
under the BSD3 license. A demonstration for the Gene Ontology is us-
able at https://evoldoers.github.io/wtfgo. Contact: Ian Holmes
ihholmes+wtfgenes@gmail . com.

Introduction

Term Enrichment Analysis (TEA) is a common technique for finding func-
tional patterns, specifically over-represented ontology terms, in a set of
experimentally identified genes (Boyle et al., 2004). The most common
approach, which we refer to as Frequentist TEA, is a one-tailed Fisher’s
Exact Test (based on the hypergeometric distribution, which models the
number of term-associations if the gene set was chosen by chance), with
a suitable correction for multiple hypothesis testing. Frequentist TEA
has been implemented many times on various platforms (Robinson et al.,
2002; Khatri et al., 2002; Zeeberg et al., 2003; Boyle et al., 2004; Bauer
et al., 2008; Jiao et al., 2012; Mi et al., 2013; Chen et al., 2013).

A model-based alternative to Frequentist TEA, which more directly
addresses some of the multiple testing issues (for example, by modeling
the ways that an observed gene list can be broken down into comple-
mentary gene sets), is Bayesian TEA. In contrast to Frequentist TEA,
which just rejects a null hypothesis that genes are chosen by chance, the
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Figure 1: Model-based explanation of observed genes (O;) using ontology terms
(T;), following Bauer et al. (2010). Other variables and hyperparameters are de-
fined in the text. Circular nodes indicate continuous-valued variables or hyper-
parameters; square nodes indicate discrete-valued (boolean) variables. Dashed
lines indicate deterministic relationships; shaded nodes indicate observations.
Plates (rounded rectangles) indicate replicated subgraph structures.
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Bayesian TEA explicitly models the alternative hypothesis that the gene
set was generated from a few random ontology terms. This approach
was introduced by Lu et al. (2008) and further developed by Bauer et al.
(2010), who implemented model-based testing in Java and R (Bauer et al.,
2011). However, the model-based approach remains significantly less well-
explored than frequentist approaches.

The graphical model underpinning Bayesian TEA is sketched in Fig-
ure 1. For each of the m terms there is a boolean random variable T}
(“term j is activated”). For each of the n genes there is a directly-observed
boolean random variable O; (“gene i is observed in the gene set”), and
one deterministic boolean variable H; (“gene ¢ is activated”) defined by
H;=1- HjeG,; (1 —1T}) where G; is the set of terms associated with gene
¢ (including directly annotated terms, as well as ancestral terms implied
by transitive closure of the directly annotated terms). The probability
parameters are 7w (term activation), a (false positive) and 3 (false nega-
tive), and the respective hyperparameters are p = (po,p1), a = (ao,a1)
and b = (bg, b1). The model is

P(T;=1r) = =
P(Oz = 1|Hz = O,CY) = «
PO;=1H;=1,8) = 1-p

with = ~ Beta(p), @ ~ Beta(a) and 8 ~ Beta(b). The model of Bauer
et al. (2010) is similar but used an ad hoc discretized prior for 7, a and
B.

Most Bayesian and Frequentist TEA implementations are designed
for desktop use. Several Frequentist TEA implementations are designed
for the web, such as DAVID-WS (Jiao et al., 2012) and Enrichr (Chen
et al., 2013) which has a rich dynamic web front-end. However, web-facing
Frequentist TEA implementations generally require a server-hosted back
end that executes code. Further, there are no web-based Bayesian TEA
implementations.
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Results

In developing our Bayesian TEA sampler, we introduce a collapsed version
of the model in Figure 1 by integrating out the probability parameters.
Let ¢, = Z;n T; count the number of activated terms, ¢y = Z:l H; the

activated genes, ¢, = Z? O;(1— H;) the false positives and ¢, = Z:L O, H;
the false negatives. Then

P(T,Ola,b,p) = Z(cp;m, p)Z(ca;n — cg,a) Z(cv; ¢q, b)
where
B(N — k + Ao,k + A1)
B(Ao, A1)

is the beta-Bernoulli distribution for k& ordered successes in N trials with
hyperparameters A = (Ao, A1), using the beta function

[(z)I'(y)
I(x+y)

Z(k;N,A) =

1
B(z,y) :/ N1 — )Yt =
0

Integrating out probability parameters improves sampling efficiency and
allows for higher-dimensional models where, for example, we observe mul-
tiple gene sets and give each term its own probability m; or each gene
its own error rates (o, 8;). Our implementation by default uses uninfor-
mative priors with hyperparameters a = b = p = (1,1) but this can be
overridden by the user.

The MCMC sampler uses a Metropolis-Hastings kernel (Gilks et al.,
1996). Each proposed move perturbs some subset of the term variables.
The moves include flip, where a single term is toggled; step, where any
activated term and any one of its unactivated ancestors or descendants
are toggled; jump, where any activated term and any unactivated term
are toggled; and randomize, where all term variables are uniformly ran-
domized. The relative rates of these moves can be set by the user.

The sampler of Bauer et al. (2010) implemented only the flip move. To
test the relative efficacy of the newly-introduced moves we measured the
autocorrelation of the term variables for one of the GO Project’s test sets,
containing 17 S.cerevisiae mating genes'. The results, shown in Figure 2,
led us to set the MCMC defaults such that the flip, step, and jump moves
are equiprobable, while randomize is disabled.

We have implemented both Frequentist TEA (with Bonferroni cor-
rection) and Bayesian TEA (as described above), in both C++11 and
JavaScript. The JavaScript version can be run as a command-line tool
using node, or via a web interface in a browser, and includes extensive
unit tests. The two implementations use the same random number gen-
erator and yield numerically identical results. The C++ version is about
twice as fast: a benchmark of Bayesian TEA on a late-2014 iMac (4GHz
Intel Core i7), using the abovementioned 17 yeast mating genes and the
relevant subset of 518 GO terms, run for 1,000 samples per term, took
37.6 seconds of user time for the C++ implementation and 79.8 seconds
in JavaScript.

1Gene IDs: STE2, STE3, STE5, GPA1, SST2, STE11l, STE50, STE20, STE4, STE1S,
FUS3, KSS1, PTP2, MSG5, DIG1, DIG2, STE12.
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Figure 2: Autocorrelation of term variables, as a function of the number of
MCMC samples, for several MCMC kernels on a set of 17 S.cerevisiae mating
genes. A rapidly-decaying curve indicates an efficiently-mixing kernel. The

kernel incorporating flip, step and jump moves (defined in the text) mixes most
efficiently.
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Figure 3: ROC curves for Frequentist and Bayesian TEA. The axes are scaled
per term. There are 5,919 ontology terms annotated to S.cerevisiae genes, so (for
example) a false discovery rate of 0.001 corresponds to about 6 falsely reported
terms.
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By contrast, the Frequentist TEA approach is almost instant. How-
ever, its weaker statistical power is apparent from Figure 3, which com-
pares the recall vs specificity of Bayesian and Frequentist methods on
simulated datasets. For values of N from 1 to 4, we sampled N terms
from the S.cerevisiae subset of the Gene Ontology, and generated a corre-
sponding set of yeast genes with false positive rate 0.1% and false negative
rate 1%. The MCMC sampler was run for 100 iterations per term, and
this experiment was repeated 100 times. The model-based approach has
vastly superior recall to the Fisher exact test, and the difference grows
with the number of terms.

Our JavaScript software, when used as a web application, offers a
“quick report” view using Frequentist TEA. For the slower-running but
more powerful Bayesian TEA, the software plots the log-likelihood during
an MCMC sampling run, for visual feedback. The repository includes
setup scripts allowing the tool to be deployed as a “static site”, i.e. con-
sisting only of static files (HTML, CSS, JSON, and JavaScript) that can
be hosted via a minimal web server with no need for dynamic code exe-
cution. This has considerable advantages: static web hosting is generally
much cheaper, and far more secure, than running server-hosted web ap-
plications.

An example wtfgenes static site, configured for the GO-basic ontol-
ogy and GO-annotated genomes from the Gene Ontology website, can be
found at https://evoldoers.github.io/wtfgo.

Discussion

JavaScript genome browsers such as JBrowse (Buels et al., 2016) represent
a broader web trend of producing static sites where possible, for reasons
of security and performance. We have implemented such a static site
generator for ontological term enrichment analysis of gene sets that offers
both Bayesian and frequentist tests. In contrast with existing web services
for Frequentist TEA, such as DAVID-WS or Enrichr, it requires no server
resources and allows comparison of Bayesian and Frequentist approaches.

Model-based TEA is versatile: it can readily be extended to allow for
datasets that are structured temporally (Hejblum et al., 2015), spatially
(Lin et al., 2015), or by genomic region (McLean et al., 2010); to use
domain-specific biological knowledge (Szczurek and Beerenwinkel, 2014);
or to incorporate additional lines of evidence such as quantitative data
(Kalaitzis and Lawrence, 2011). We hope our development of a collapsed
likelihood, and evaluation of different MCMC kernels, will assist these
efforts.

Coincidentally, Fisher’s Exact Test—which we call Frequentist TEA—
was originally motivated by a blind tea-tasting challenge (Fisher, 1935).
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