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Abstract9

Puttick et al. (2017) performed a simulation study to compare accuracy between methods10
inferring phylogeny from discrete morphological characters. They report that a Bayesian11
implementation of the Mk model (Lewis, 2001) was most accurate (but with low resolution),12
while a maximum likelihood (ML) implementation of the same model was least accurate. They13
conclude by strongly advocating that Bayesian implementations of the Mk model should be the14
default method of analysis for such data. While we applaud investigations into accuracy and15
alternative methods of analysis, this conclusion is based on an inappropriate comparison of the16
ML point estimate with the Bayesian consensus. We revisit these issues through simulation by17
considering uncertainty in ML reconstructions, and demonstrate that Bayesian and ML estimates18
are generally concordant when conventional edge support thresholds are considered. We therefore19
disagree with the conclusions of Puttick et al. (2017), and consider their prescription of any20
default method to be unfounded. Instead, we recommend caution and thoughtful consideration of21
the model or method being applied to a morphological dataset.22
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Comparing point estimates to consensus summaries24

Puttick et al. (2017) report that ML tree inference under the Mk model results in higher25
topological error than Bayesian implementations. However, this result is driven precisely by the26
comparison of maximum likelihood point estimates (MLE) to Bayesian majority-rule (BMR)27
consensus trees. MLE topologies are fully resolved, but this stems from the standard binary tree28
searching algorithms employed and not from an explicit statistical rejection of unresolved nodes.29
Therefore, individual MLE estimates may contain edges with negligible statistical support. On30
the other hand, consensus summaries, independent of phylogenetic method, may have reduced31
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resolution as a product of uncertainty arising by summarization across conflicting sampled32
topologies. Thus, a direct comparison between a consensus tree (i.e., BMR) and a point estimate33
(i.e., MLE) is inappropriate. BMR topologies of Puttick et al. (2017) are more accurate because34
poorly supported conflicted edges were collapsed, while MLE topologies were fully resolved,35
even if poorly supported. While contrasting MLE and Bayesian maximum a posteriori (MAP)36
trees would be a more appropriate comparison of optimal point estimates, the incorporation of37
uncertainty is an integral part of all phylogenetic analysis. Therefore, comparison of consensus38
trees from Bayesian and ML analyses hold more practical utility for systematists. For these39
reasons, we argue that the results of Puttick et al. (2017) are an artifact of their comparison40
between fundamentally incomparable sets of trees.41

Support metrics are available for morphological characters42

To avoid drawing untenable conclusions, it is de rigueur of any phylogenetic analysis to explicitly43
assess edge support. Systematists often accomplish this via non-parametric bootstrap sampling44
(Felsenstein, 1985), though other measures exist (see below). Puttick et al. (2017) did not assess45
edge support in their ML estimates, stating that morphological (but not genetic) data do not meet46
an underlying assumption of the bootstrap statistical procedure that phylogenetic signal is47
distributed randomly among characters. The authors do not explain the meaning of this statement,48
and no references are provided to support the assertion. Non-parametric bootstrapping has been a49
staple of phylogenetic reconstruction for decades, including for the analysis of discrete50
morphological characters. Bootstrapping works via the assumption that the observed characters51
are a representative sample from a population of possible characters evolving under the same52
process, and thus can be resampled to assess confidence in parameters (Felsenstein, 1985). While53
morphological matrices typically include only variable characters (i.e., an ascertainment bias),54
this is an informative subset of the possible characters, and should not be thought of as misleading55
calculations. Were this otherwise, the original sample would be likewise suspect, as the use of56
model-based phylogenetic inference (such as Mk) explicitly assumes characters evolve according57
to the same process. Concerns about the interpretation and use of the bootstrap exist (Sanderson,58
1995), the primary of which involves the assumption that individual characters are statistically59
independent. However, it is reasonable to assume that individual sites in a morphological matrix60
would be more independent than adjacent sites from the same gene, and genetic datasets are61
routinely bootstrapped. We therefore disagree with the claims of Puttick et al. (2017) that62
bootstrapping is inappropriate for morphological data, or at least any more inappropriate than for63
genetic data.64

There are also other methods researchers can use to assess edge support in a likelihood65
framework. Jackknifing, unlike bootstrapping, samples without replacement, conditioning on66
strict subsets of the observed data. More recently, the SH-like test (Guindon et al., 2010)67
computes support for each internal edge in the MLE tree by considering all nearest neighbour68
interchanges (NNIs). This test is implemented in several software packages including RAxML69
(Stamatakis, 2014), one of the programs used by Puttick et al. (2017). Alternatively, ML70
programs frequently offer an option to collapse edges on a MLE tree that fall below some71
minimum threshold length. Use of any of these options would enable a fairer comparison of72
likelihood and Bayesian reconstructions.73
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ML and Bayesian comparisons incorporating uncertainty74

To measure the effect of comparing BMR and MLE trees, we used the simulation code from75
Puttick et al. (2017) to generate 1000 character matrices, each of 100 characters on a fully76
pectinate tree of 32 taxa, as these settings generated the most discordant results in Puttick et al.77
(2017). Each matrix was analyzed in both Bayesian and ML frameworks using the Mk+G model78
(Lewis, 2001). Bayesian reconstructions were performed using MrBayes v3.2.6 (Ronquist et al.,79
2012), using the same settings as Puttick et al. (2017): 2 runs, each with 5 x 105 generations,80
sampling every 50 generations, and discarding the first 25% samples as burnin. As in Puttick81
et al. (2017), we summarized each analysis with a BMR consensus tree (i.e. only edges with >=82
0.5 posterior probability are represented). Likelihood analyses were performed in RAxML v8.2.983
(Stamatakis, 2014). For each simulated matrix we inferred both the MLE tree and 20084
nonparametric bootstrap trees. Accuracy in topological reconstruction was assessed using the85
Robinson-Foulds (RF) distance (Robinson and Foulds, 1981), which counts the number of86
unshared bipartitions between trees. We measured the following distances from the true simulated87
tree: dBMR, the distance to the Bayesian majority-rule consensus; dMLE, the distance to the MLE88
tree; dML50, the distance to the MLE tree which has had all edges with <50% bootstrap support89
collapsed. Finally, for each matrix we calculate DMLE = dMLE - dBMR, and DML50 = dML50 - dBMR.90
These paired distances measure the relative efficacy of ML and Bayesian reconstructions: values91
of D greater than 0 indicate that ML produces less accurate estimates (that is, with a greater RF92
distance from the true generating tree).93

As demonstrated by Puttick et al. (2017), MLE trees are indeed less accurate than BMR trees94
(Figure 1; DMLE), with MLE trees on average having an RF distance 17.6 units greater than the95
analogous Bayesian consensus distance. However, when collapsing MLE edges with less than96
50% bootstrap support, Bayesian and ML differences are normally distributed around 0 (Figure 1;97
DML50), indicating that when standardizing the degree of uncertainty in tree summaries there is no98
difference in topology reconstruction accuracy. These results support the argument that the99
original comparisons made in Puttick et al. (2017) of MLE and BMR trees are inappropriate.100
Depending on the level of uncertainty involved, an optimal point estimate from a distribution101
(e.g., MLE or MAP) may be arbitrarily distant from a summary of the same distribution. And so,102
the differences in MLE vs. BMR are not expected to be consistent.103

The expected concordance of Bayesian and ML results104

Our results reveal much greater congruence between Bayesian and ML estimates than suggested105
by Puttick et al. (2017). This is to be expected. ML and Bayesian tree construction methods106
should yield similar results under the conditions in which they are often employed. While107
Bayesian tree reconstruction differs from ML by incorporating prior distributions, the methods108
share likelihood functions. In phylogenetics, researchers typically adopt non-informative priors,109
with a few exceptions (e.g., priors on divergence time parameters). Arguments can be made for110
pseudo-Bayesian approaches when care is taken to ensure that priors used are truly uninformative,111
which result in posterior probabilities that mirror the likelihood and are therefore congruent with112
ML (Alfaro and Holder 2006; Gelman et al. 2014). If prior distributions are formulated113
thoughtfully, as with Wright et al. (2016), in shaping the Mk model using hyperpriors to114
accommodate character change heterogeneity, Bayesian methods can outperform ML.115
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Figure 1: Topological accuracy of ML vs. Bayesian reconstructions. D measures how much larger
ML distances are from the true tree (dML) than are Bayesian distances (dBMR). MLE trees are
indeed less accurate than BMRs (DMLE), but when conventional bootstrap thresholds are employed
(DML50) the difference in efficacy disappears.

Alternatively, inappropriate priors can positively mislead (Gelman et al., 2014). Generally, when116
informative prior distributions are known or can be estimated using hierarchical approaches,117
Bayesian reconstruction methods may be strongly favored over ML. It is unclear whether Puttick118
et al. (2017) intend to draw the comparisons discussed above as they do not describe any reasons119
to prefer Bayesian over ML in principle.120

Although our results demonstrate general concordance between ML and Bayesian approaches121
when uncertainty is represented, further simulation work is needed to determine the extent and122
conditions of this concordance. Issues surrounding the application of Bayesian methods are123
particularly important in paleontology, where researchers often conduct inference upon very124
limited data. In these cases, it may be desirable to construct informative prior distributions when125
conducting Bayesian analyses (Gelman et al., 2014). The questions posed by Puttick et al. (2017)126
are critically important as statistical morphological phylogenetics moves forward. However, their127
inappropriate comparison between ML and Bayesian approaches leaves the relative performance128
of the two implementations of the Mk model unresolved.129

We conclude by stating that we are not advocating one method over another for morphological130
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phylogenetic reconstruction. Methods differ in model (Mk vs. parsimony), inferential paradigm131
(parsimony vs. ML/Bayesian), assumptions (prior distributions, model adequacy), interpretation,132
and means to incorporate uncertainty (ML/parsimony vs. Bayesian). We therefore recommend133
caution and thoughtful consideration of the biological question being addressed and then134
choosing the method that will best address that question. All inferential approaches possess135
strengths and weaknesses, and it is the task of researchers to determine the most appropriate given136
available data and the questions under investigation. The excitement of new morphological data137
sources and new means for analyzing these data should not overshadow the obligation to apply138
methods thoughtfully.139
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