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Abstract

The t-SNE (t-distributed stochastic neighbor embedding) is a new dimension reduction and visualiza-

tion technique for high-dimensional data. t-SNE is rarely applied to human genetic data, even though it

is commonly used in other data-intensive biological fields, such as single-cell genomics. We explore the

applicability of t-SNE to human genetic data and make these observations: (i) similar to previously used

dimension reduction techniques such as principal component analysis (PCA), t-SNE is able to separate

samples from different continents; (ii) unlike PCA, t-SNE is more robust with respect to the presence of

outliers; (iii) t-SNE is able to display both continental and sub-continental patterns in a single plot. We

conclude that the ability for t-SNE to reveal population stratification at different scales could be useful for

human genetic association studies.
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Background

Genome-wide association study (GWAS) [1, 2, 3, 4, 5, 6] is an approach to type common

genetic variants in a general human population, and by comparing the allele frequency dif-

ference between a group of patients (cases) and a group of normal people (controls), discover

statistical association signals. The genetic variant mostly encountered is the single nucleotide
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polymorphism (SNP) [7]. These associated variants may reside in a protein coding region,

indicating a possible change of transcription products which may play a role in the disease. It

may also sit between genes which probably change a binding motif of a transcription factor

which leads to a change of the transcription (expression) level [8]. A comprehensive database

on statistically significant variants for many human diseases is the GWAS Catalog, first main-

tained by the NHRGI/NIH (National Human Genome Research Institute of National Institute

of Health (USA)), then by the European Bioinformatics Institute (UK), which can be found

at https://www.ebi.ac.uk/gwas/ [9, 10].

A key step in GWAS analysis is to match the ethnicity background of cases and controls.

Failure to do so would confound allele frequency difference due to disease-causing mutations

and difference due to population genetic history. There have been many attempts to correct

this “spurious association” due to “population stratification” [11, 4]: “genomic control” uses

non-functional variants to estimate the amount of population genetic history differences and the

association signal is corrected accordingly [12]; “family-based association” uses untransmitted

alleles as controls thus circumventing the population stratification issue completely when these

type of data are available [13, 14, 15]; K-mean clustering to group sample genotype data

towards the presumed K populations [16]; incorporating co-variance among samples to correct

the association signal [17, 18, 19], etc.

However, the most common practice in dealing with population stratification or other sub-

tle/hidden structures in genetic data is to perform dimensional reduction techniques, such as

MDS (multi dimensional scaling), PCA (principal component analysis), SVD (singular value

decomposition). The reduced dimensions can be directly visualized and, in the case of PCA,

can be used as covariates in the association analysis [20, 21, 22, 23, 24, 25, 26]. Within the Eu-

ropean populations, it is well established that the first PC (PC1) aligns with the north-south

direction (latitude), and the second PC (PC2) aligns with the east-west direction (longitude)

[27].

Though the use of PCA is mostly satisfactory, the method is not without a problem. Most

notably, PCA is highly affected by the presence of outliers. If most of the samples belong to one

homogeneous population with a minority from another different population, the presence of

genetically different minority samples can completely change the principal axes, thus changing
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the distribution of samples along the main PCs. This is because as a linear holistic dimension

reduction method, PCA cannot capture local data characteristics well. Other problems include

the determination of the number of SNPs to be included, the role common vs. rare variants

play in the result, and the number of PCs to be kept.

Here we explore the application of a new dimensional reduction technique, t-SNE (t-

distributed stochastic neighbor embedding) [28], to the genetic data. Similar to MDS, the

aim of t-SNE is to preserve the pairwise distance in high-dimensional space to 2 or 3 lower

dimensions. Unlike MDS or PCA, the preservation in t-SNE is non-linear: t-SNE minimizes

the Kullback-Leibler divergence between two distributions – one distribution that measures

pairwise similarities of input samples in high-dimensional space, another heavy-tailed Stu-

dent’s t-distribution that measures pairwise similarities of corresponding samples in the low-

dimensional embedding space. t-SNE has demonstrated its built-in advantages in capturing

local data characteristics and revealing subtle data structures in visualization, as shown in the

original publication [28].

t-SNE is a popular choice in the analysis of single-cell RNA-seq data (e.g. [29, 30, 31]),

but has not been applied extensively to genetic data. In the single previous publication where

t-SNE was applied to genetic data [32], the main conclusion in is that if t-SNE is considered

as a clustering technique, it performs better than PCA. We are particularly interested in t-

SNE’s claimed ability to “reveal structure at many different scales” [28], as major population

stratification co-exists with other small-scaled shared evolutionary history among samples.

Results

Continental separation

We first examine the ability of t-SNE to separate continental populations (Africa, Asia, Europe,

etc.). GWAS usually refers to genetic association studies using common variants. The new

next-generation-sequencing (NGS) technique, though aiming at typing all variants, also pro-

duces common variants. We use one of the major public NGS data, the 1000 Genomes Project

[33, 34, 35]. We extracted 3825 common variants which pass a quality control (QC) criteria,

and are also present in the Illumina Global Screening Array chip. We use the KING program
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Figure 1: A comparison of three different low-dimensional display of 1000 Genomes Projects data with 3825

SNPs. The number of samples (dots) is 2504, with 661 AFR (African green), 347 AMR (American, orange), 504

EAS (East Asia, purple), 489 SAS (South Asia, blue), and 503 EUR (European, red). (A) PCA (PC1-PC2);

(B) PCA (PC2-PC3); (C) t-SNE (1-2); (D) t-SNE (2-3).

to calculate the inter-sample genetic distances. We override the default setting of KING to

retain only 3 significant digits so that 9 significant digits are kept, in order to improve our

ability to distinguish subtle structures.

Fig.1 shows the results from PCA (top) and t-SNE (bottom) with the first and the second

major dimensions (left column) and the second & third dimension. The number of samples

in each continent (though Asia is split into east and south Asia) are more or less balanced:

661 Africans (AFR), 347 “Americans” (AMR), 504 East Asians (EAS), 489 South Asians, and

503 Europeans (EUR). Note that some subgroups living in continental America is not grouped

with AMR: African-American in Southwest of US (ASW) and African-Caribbean in Barbados
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Figure 2: 3-dimensional t-SNE which combines information from Fig.1(E) and (F). Color scheme: green for

AFR, orange for AMR, purple for EAS, blue for SAS, and red for EUR.

are in the AFR group, Utah CEPH families are in the EUR group, etc.

Although all methods are able to separate continental populations, PCA (1-2 dimensions)

shows an overlap between South Asian and American, whereas t-SNE shows AMR has more

overlap with Europeans. In the 2-3 dimension, PCA shows some link between AMR and EUR,

whereas t-SNE continue to show a strong connection between AMR and EUR. As some AMR

samples, such as those from Colombia, Puerto Rico, and to some extent, Mexico (actually the

samples are Mexican-American), are expected to contain European ancestor, the t-SNE result

is consistent with our external knowledge. As can be seen in the 3D version of t-SNE (Fig.2),

the overlap between AMR and AFR in Fig.1(F) is an artifact, as AMR and AFR are actually

separated.

Treatment of outliers

We compare t-SNE and PCA in a more realistic setting where most of the samples belong to

one ethnic group, whereas a few are either from distinct ethnic groups or a mixed race. For
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Figure 3: A comparison of PCA and t-SNE on a mostly Caucasian dataset (99 Caucasians from Utah (CEU),

USA and 91 Caucasians from UK (GBR) ) with “outliers” included (5 African-American in Southwest (ASW),

5 Mexican-American in Los Angeles (MXL), 2 Chinese in Beijing (CHB), 2 Chinese in South China (CHS)).

(A) PCA (PC1-PC2); (B) t-SNE.

that purpose, we extract 99 Utah residents with North/West European ancestry (CEU), 91

England/Scotland samples (GBR), and 5 African-American in Southwest (ASW), 5 Mexican-

American in Los Angeles (MXL), 2 Chinese in Beijing (CHB), 2 Chinese in South China

(CHS).

PCA (Fig.3 (A)) moves ASW, CHB/CHS far away from the main cluster of roughly 200

Caucasians, whereas MXL samples, though still separated, are closer to the center. However,

though t-SNE (Fig.3 (B)) shows ASW, CHB/CHS as separated groups, the MXL samples are

much closer to other Caucasian samples. In order to see the structure within the Caucasian

group through PCA, the usual procedure is to remove the “outliers” and re-run PCA again
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(e.g. recommended in smartpca). On the other hand, an advantage of t-SNE is to show both

the “outliers” and the main cluster with detail simultaneously, capturing subtle local data

structures and preserving global structures in the low-dimensional space.

To see whether some PCA modifications may exhibit similar properties as t-SNE, we test

two PCA variants: non-negative PCA (NPCA) [36, 37] and derivative component analysis

(DCA) [38]. The purpose of imposing extra constraints in NPCA is that positive and negative

terms in classic PCA may cancel each other, leading to a loss of local feature. The purpose of

DCA is to use derivatives to capture latent patterns and to suppress noise level. Fig.4 and 5

shows the 3D NPCA and DCA plot. Although NPCA and DCA are better than classic PCA

in showing more spreading in CEU/GBR cluster, they are more consistent with classic PCA

than with t-SNE.

Sub-continental separation

We examine whether t-SNE is able to display sub-continental patterns besides the continental

separation. For that, we extract a denser set of SNPs from chromosome 1 in the 1000 Genomes

Project with the criteria of alternative/minor allele frequency > 0.2, and spacing between

neighboring SNPs > 20, 000 bases. This leads to more than 9000 SNPs, roughly equivalent to

a genome-wide +100,000 SNPs. The use of a single chromosome to represent the whole genome

is justified, as PCAs based on any human chromosome are almost identical (Fig.S3 of [39]).

Only in the extreme case of using SNPs from a region with inversion, may the shape of PCA

be different [40, 39], as the trimodal distribution of the samples reflects the three underlying

configurations [41].

Fig.6 shows the t-SNE with a finer group labeling. We paid particular attention to choose

colors to represent a population’s geographic information within the continent, which is shown

in Fig.7. Generally, we choose a dark color for the population towards the north, and a light

color for those in the south. We also switch the t-SNE-1 and t-SNE-2 so that the north groups

point to the up direction.

The lower-left cluster in Fig.6 contains 5 groups in East Asian: they are, in the rough

ordering from north to south, Japanese in Tokyo (JPT), Han Chinese in Beijing (CHB), Han
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Figure 4: Non-negative PCA (NPCA) of the data used in Fig.3.
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Figure 5: Derivative component analysis (DCA) of the data used in Fig.3.
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Figure 6: t-SNE plot obtained from more than 9000 SNPs on chromosome 1 of the 1000 Genome Projects

(alternative allele frequency > 0.2, spacing between neighboring SNPs longer than 20,000 bases. The expla-

nation of group labels in Africa (ACB, ASW, ESN, GWD, LWK, MSL, YRI), America (CLM, MXL, PEL,

PUR), East Asia (CDX, CHB, CHS, JPT, KHV), South Asia (BEB, GIH, ITU, PJL, STU), Europe (CEU,

FIN, GBR, IBS, TSI) are explained in the text.
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Figure 7: A world map where the location of the 26 populations are marked. Note these specific choices:

the Utah Caucasian CEU is not moved to Europe, and southwest African American ASW is not moved to

Africa; the African Caribbean in Barbados ACB is moved to the west coast of Africa; the Mexican-American

in California MXL is moved to Mexico.
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Chinese in South China (CHS), Chinese Dai in Xishuangbanna (CDX), and Kinh in Ho Chi

Minh City, Vietnam (KHV). The change of color from light (south) to dark (north) can be

clearly seen. However, the CHS points are more scattered

The upper-left cluster in Fig.6 is the South Asia (India subcontinent) populations, with this

ordering in color lightness: Punjabi in Lahore,Pakistan (PJL), Gujarati Indian in Houston US

(GIH), Bengali in Bangladesh (BEB), Indian Telugu in UK (ITU), and Sri Lankan Tamil in

UK (STU). There is no question that PJL in the north, and STU/ITU in the south should be

the two ends of the ordering. The GIH to BEB is a direction from west to east. Nevertheless,

the trend shading change from top to bottom is clear.

The African populations (middle-left cluster) are mostly limited to the western Africa:

Gambian in Western Gambia (GWD), Mende in Sierra Leone (MSL), Yoruba in Ibadan, Nigeria

(YRI), Esan in Nigeria (ESN). The African Caribbean in Barbados (ACB) should also be of a

western Africa origin. Only the Luhya in Webuye, Kenya (LWK) group is on the east coast.

The origin of African-American in Southwest US (ASW) samples is not clear, so we use a

distinctly different color. Interestingly, several ASW samples are closer to the America cluster,

indicating a genetic admixture with native Americans. The west/east representatives of GWD

and LWK do seem to anchor the two ends of the cluster in Fig.6.

The European populations are color ordered by this sequence: Finnish (FIN), Utah Amer-

ican (CEU), British (GBR), TSI for Toscani in Italy, and IBS for Iberian in Spain. Again, we

observe a better separation between the two extremes: FIN at the north, and TSI/IBS at the

south, with CEU and GBR more scattered.

America samples are the only one which do not form its own cluster, due to the well known

admixture between indigenous America population and European colonists. Although we do

not know the details of individual samples, most AMR samples do not seem to have a large

Africa admixture (with a few exceptions). The Peruvian in Lima (PEL) samples are furthest

away from the EUR cluster, which could be the center for a native America cluster. The

Mexican-American in LA, US (MXL), Colombian in Medellin (CLM), Puerto Rican (PUR),

appear to form a gradient extending from the PEL samples to the EUR samples.

Finally, a 3D t-SNE plot is shown in Fig.8. It illustrates both the continental separation in

4-5 large clusters, as well as sub-continental group patterns with gradient of colors present with
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Figure 8: 3-dimensional t-SNE which expands the plot in Fig.4. The cloud of dots on left is the AFR group,

that on the right is SAS. The middle cluster is EAS, and the top cluster is ERU with a “tail” towards AMR.

each cluster as discussed above. In comparison, the PCA plot (not shown) has sub-populations

belonging to the same continent tightly squeezed, making the separation among them difficult.

Discussion

Application of PCA to genetic data to display sample population stratification is a common

practice [42], and the generic form of PCA plot is easily interpreted (e.g. Supplement Fig.S4

of [34]). However, using t-SNE is new. We show in Fig.1 that t-SNE can separate population

from different continents as well as PCA.

Although some problems in the application of PCA to revealing population stratification

remain in t-SNE, such as identification of the optimal number of SNPs to keep in the data

in order to best show the population structure, whether rare variants should be used, etc,

other problems are not an issue in t-SNE. For example, which high-order PCs should be kept

to reveal the full population structure. In principle, one can use the proportion of variance

explained to select the number of PCs. However, it is not clear what the threshold cutoff should

be, and how to meaningfully interpret the contributions of a higher-order PC in visualization

compared to its lower-order ones. We are less concerned about this issue with t-SNE, as t-SNE

conducts dimension reduction by optimizing Kullback-Leibler distance between the raw data
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distributions, and a low-dimensional distribution in at most 3-dimension space, instead of via

a PC selection.

The main feature of t-SNE, the ability to exhibit structures at multiple scales, is responsible

for two observations in this paper. One is that an outlier in PCA does not appear to be an

outlier in t-SNE. In other words, the display of the pattern in t-SNE is more robust against

a small number of outliers. This property might be compared to robust PCA [43], nonlinear

PCA [44, 45], local PCA [46] (note the meaning of “local” in this local PCA paper [39] refers

to local genomic regions), or other robust methods in dimension reduction [47]. Another

observation that both continental and sub-continental population structures can be viewed in

a single t-SNE plot is also a consequence of this property of t-SNE. t-SNE is better than PCA

at characterizing local structures, while equally well at preserving global structures.

The time computational complexity of standard PCA/SVD is O(min(Np2 + p3, pN2 +N3)

where N is the number of samples and p the number of factors [48]. If N < p, the computational

complexity is O(N3). On the other hand, the computational complexity of t-SNE is O(N2)

[28], which has an advantage over PCA. Of course, in specialized applications such as sparse

matrix, approximate results, or partial results, the computational complexity can be improved

[49, 50, 51].

In conclusion, though the current application of t-SNE in genomics is mostly limited to

gene expression data such as those in single-cell RNA-seq, we found it quite useful in human

genetic data, being able to display both global/continental scale and local/population scale

patterns.

Data and Methods

1000 Genomes Project data

The 1000 Genomes Project is a major effort to sequence the whole genome of more than

1000 samples [33, 34, 35]. The phase 3 1000 Genomes Project data for 2504 individuals was

downloaded from http://www.internationalgenome.org/data.
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Genetic distance between samples

KING (Kinship-based INference for Genome-wide association studies), a computationally ef-

ficient program to calculate the person-person distance based on genetic data, was used:

(http://people.virginia.edu/~wc9c/KING/) [52].

t-SNE

The R (http://www.r-project.org/) implementation of the t-SNE, Rtsne version 0.11 (June 30,

2016) (https://cran.r-project.org/web/packages/Rtsne/ or https://github.com/jkrijthe/Rtsne)

was used.

PCA

The smartpca in the EIGENSOFT package [20] (v6.1.4)

https://data.broadinstitute.org/alkesgroup/EIGENSOFT/ was used for PCA of genotype data.

Other programs

PLINK http://pngu.mgh.harvard.edu/~purcell/plink/ [53] was used for genotype file man-

agement and conversion. The 3D plot was generated by the rgl R package (https://cran.r-

project.org/web/packages/rgl/index.html, 0.97.0). R (http://www.r-project.org/) statistical

package was used for other general analysis and graphics.
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