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Abstract 

Despite decades of research, visions of transforming neuropsychiatry through the development 
of brain imaging-based ‘growth charts’ or ‘lab tests’ have remained out of reach. In recent years, 
there is renewed enthusiasm about the prospect of achieving clinically useful tools capable of 
aiding the diagnosis and management of neuropsychiatric disorders. The present work explores 
the basis for this enthusiasm. We assert that there is no single advance that currently has the 
potential to drive the field of clinical brain imaging forward. Instead, there has been a 
constellation of advances that, if combined, could lead to the identification of objective brain 
imaging-based markers of illness. In particular, we focus on advances that are helping to: 1) 
elucidate the research agenda for biological psychiatry (e.g., neuroscience focus, precision 
medicine), 2) shift research models for clinical brain imaging (e.g., big data exploration, 
standardization), 3) break down research silos (e.g., open science, calls for reproducibility and 
transparency), and 4) improve imaging technologies and methods. While an arduous road 
remains ahead, these advances are repositioning the brain imaging community for long-term 
success. 
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As progress is made toward the prevention and treatment of cardiovascular disease and 
cancers, neuropsychiatric disorders are accounting for an increasing proportion of the unmet 
disease burden throughout the lifespan (Walker, McGee, and Druss 2015)(Whiteford et al. 
2015). Yet our approaches for diagnosing and treating these disorders remain grounded in 
advances dating back to the late 19th to mid-20th centuries. Over the past two decades, clinical 
brain imaging has sought to address this gap and has succeeded in revealing biological 
correlates for a broad array of illnesses (Lagopoulos et al. 2009; Castellanos and Proal 2012; 
Strakowski, Delbello, and Adler 2005; Etkin and Wager 2007; Savitz, Rauch, and Drevets 2013; 
Rane et al. 2015). However, the inability to find clear relationships between abnormal brain 
function and traditional diagnostic classifications of neuropsychiatric illness has hindered the 
pace of progress. In particular, it has resulted in an inadequate biological understanding of 
these illnesses and difficulty for imaging to: 1) identify meaningful biological indices of clinical 
diagnosis, prognosis or risk (i.e., biomarkers), and 2) facilitate the development of novel targets 
for therapeutic interventions (Kapur, Phillips, and Insel 2012). In short, despite decades of effort, 
visions of transforming clinical practice for neuropsychiatric illness through developing objective 
imaging-based ‘growth charts’ or ‘lab tests’ for the brain have remained out of reach. 

In recent years, efforts focused on mapping the human connectome (the wiring diagram of the 
human brain) (Craddock et al. 2013)(D. C. Van Essen and Ugurbil 2012) and its functional 
interactions (Kelly et al. 2012) have sparked renewed enthusiasm about the possibility of 
realizing clinically useful biomarkers for neuropsychiatric illness. We consider a biomarker to 
have clinical utility if it not only correlates with the presence of an illness, but can help to inform 
diagnosis, treatment selection/evaluation, assessments of risk, and prognosis (Rubinov and 
Bullmore 2013)(Fornito and Bullmore 2015)(Fox and Greicius 2010).  This renewed enthusiasm 
is not without its detractors, who ask what is different from the past, what is the ‘game changer’? 
Here, we argue that there is no single game changer. Instead, we review a constellation of 
advances that together improve the chances of delivering biological markers of illness for 
neuropsychiatric disorders.  

 

Elucidation of the research agenda for biological psychiatry 

The first key question for any pursuit focused on developing clinically useful measures from 
brain imaging is: what are we trying to accomplish? The vast majority of clinical brain imaging 
research has focused on extreme comparisons between groups of individuals with a clean 
Diagnostic and Statistical Manual of Mental Disorders (DSM–5) diagnosis (such as major 
depressive disorder with no comorbidities) and “pure” controls (Kapur, Phillips, and Insel 2012). 
Such studies do not reflect the “real world” challenges for the assessment of neuropsychiatric 
disorders. Nearly half of all individuals affected by mental illness meet criteria for two or more 
mental health disorders (Bijl, Ravelli, and van Zessen 1998), and DSM classifications for these 
disorders likely include a heterogenous mix of biological profiles. The real power of brain 
imaging will be in differentiating seemingly overlapping clinical disorders, as well as subtypes of 
the same disorder, rather than simply differentiating typical individuals from those affected by 
one or more disorders. This ability to differentiate could also help to  improve the assignment, 
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targeting, and monitoring of treatment interventions, and provides a more pragmatic scenario for 
translating brain imaging research to the clinic.   

 

A shift away from disorder-focused definitions of psychiatry 

The biological psychiatry community has come to accept the limitations of efforts to map current 
psychiatric nosologies onto the brain (T. Insel et al. 2010; Kapur, Phillips, and Insel 2012). 
Although a logical starting point for the field, efforts to map classifications in current diagnostic 
manuals (e.g., DSM 5) to the brain, or to other biological modalities (e.g., genes) have had 
mixed success. The field has yet to find reproducible and generalizable one-to-one mappings 
between diagnoses and patterns of brain abnormality. This is not surprising, as these disorders 
were defined based on the detection of clusters of signs and symptoms of psychiatric illness, 
not based on biology. 

While frustrating, this lack of specificity has given rise to a new agenda for the biological 
psychiatry community - namely, the development of a neuroscience-based diagnostic 
classification system for mental health and learning disorders. The NIMH Research Domain 
Criteria project (RDoC) has taken a lead role in pushing a neuroscience-focused agenda for 
neuropsychiatry (Cuthbert and Insel 2013). The calls for an increased neuroscience focus are 
not necessarily intended to be a complete rejection of classical nosologies, but rather, a 
challenge to rethink the existing diagnostic boundaries. Within a given domain of illness such as 
ADHD, researchers are being asked to find biologically-based subtypes that can help explain 
variation among affected individuals. These subtypes would have the potential to be more 
informative than the rudimentary subdivisions defined by clinical observation, such as inattentive 
versus hyperactive-impulsive versus combined for ADHD (Gates et al. 2014).  

Researchers are also being challenged to use neuroscience to rethink existing boundaries for 
domains of illness that extend across multiple diagnostic categories, such as depression (e.g., 
bipolar, unipolar, atypical, and chronic) (T. R. Insel and Cuthbert 2015). For example, a recent 
review by (McTeague, Goodkind, and Etkin 2016) highlighted the presence of broad 
perturbations in behavioral indices of cognitive control for a range of disorders (mood, anxiety, 
psychotic and substance use disorders); they argued that only the severity of the perturbations 
observed appears to depend on the specific disorder being examined. Consistent with these 
behavioral findings, imaging studies have reported abnormalities within the frontoparietal 
multiple demands system (Duncan 2010) across the range of disorders, particularly in dorsal 
anterior cingulate and bilateral insular cortices. Such observations motivate further research that 
looks across diagnostic labels in clinically diverse samples for commonalities in impairments 
and in biology (see (Van Dam et al. 2016) for another recent example); this  research in turn has 
the potential to guide development of transdiagnostic treatments for impairments of interest. 

Researchers are also being challenged to consider comorbid illnesses, which too often are 
overlooked in applications of the current diagnostic nosology in brain imaging research, despite 
undeniably high rates. For example, a recent US-based study found the following comorbidities 
for adults with ADHD (Willcutt 2012): social phobia: 29.3%, specific phobia: 22.7%, bipolar 
disorder: 19.4%, major depressive disorder: 18.6%, intermittent explosive disorder: 19.6%, and 
substance use disorder: 15.2%. The integration of neuroscientific data will allow us to determine 
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when seemingly disparate symptoms are actually linked to a common biological origin, and 
when seemingly similar phenomena have different biological origins. 

 

The emerging concept of precision medicine 

Over the past five years, the concept of precision medicine has emerged as a guiding approach 
for the future of healthcare research and practice (Collins and Varmus 2015)(Mirnezami, 
Nicholson, and Darzi 2012). The medical community has traditionally relied on the use of a one-
size-fits-all approach to the prevention and treatment of an identified disease, where the same 
treatment is applied to all individuals with a given diagnosis. Unfortunately, such strategies fail 
to take into account inter-individual variability, resulting in a trial and error approach to figuring 
out who will respond well to a given intervention and who will not, as well as who will have an 
adverse reaction and who will not. Precision medicine attempts to minimize the trial and error 
aspect of interventions by stratifying individuals based on one or more factors that are predictive 
of response. Candidate predictors that could potentially guide stratification include biological 
factors such as genes, immunological profiles, and imaging findings, as well as lifestyle and 
environmental exposures. It is worth noting that precision medicine differs from the concept of 
personalized medicine in that it is not calling for us to engineer treatments for the individual, but 
rather to select from existing treatments the one that is most likely to work for an individual 
(Sipka 2016). Arguably, this is a more attainable goal. A demonstration of the potential role for 
brain imaging in precision medicine comes from a recent study that was able to: a) identify four 
biological subtypes of depression in a sample of 711 individuals using resting-state functional 
magnetic resonance imaging (fMRI) measures of brain connectivity, and b) use subtype 
information to predict responsiveness to transcranial magnetic stimulation therapy (Drysdale et 
al. 2017). 

By emphasizing stratification, proponents of precision medicine have fueled ambitions to make 
brain imaging more clinically useful. Psychiatric researchers have long sought to develop clinical 
tools that could be helpful in the diagnostic process for complex cases, much the way a strep 
test can be used to disambiguate the causes of a sore throat in primary care settings and guide 
treatment. Stratification heralds a broader research agenda that focuses on the assessment of 
prognosis (e.g., likelihood of disease progression or treatment response) and risk (e.g., 
likelihood of developing a disease or comorbid disease). The development of objective 
measures of risk and prognosis are essential for efforts focused on early intervention or 
prevention. 

While the prospect of bringing the precision medicine model to psychiatry is a source of 
excitement (Kapur, Phillips, and Insel 2012; T. R. Insel and Cuthbert 2015; Hahn, Nierenberg, 
and Whitfield-Gabrieli 2016), a number of logistical and infrastructural challenges exist for its 
implementation (Joyner and Paneth 2017).  The biggest (and most costly) challenge is obtaining 
longitudinal data from individuals to identify predictors of clinically relevant outcomes, especially 
in dedicated research studies. An attractive solution is to leverage the longitudinal clinical data 
obtained in clinical settings (past and future) for the purposes of research; however, the 
implementation of such strategies is hindered by privacy concerns, poor data quality and 
limitations in interoperability among differing electronic health record systems. Efforts such as 
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the NIH-funded Informatics for Integrating Biology and the Bedside (i2b2; 
https://www.i2b2.org/)(Weber et al. 2009) are working to bridge these gaps and facilitate 
discovery efforts (see (Lingren T 2017) and (Doshi-Velez F 2017) for examples). 

 

Shifting research models for clinical brain imaging 

Bringing the individual into focus 

There is a key confusion in the literature between brain-based differences that are informative to 
scientists and those that are useful to clinicians. Scientific tradition has long established the 
pursuit of statistical significance as the goal of identifying differences among individuals, with the 
threshold set at a minimum standard of p < 0.05 (following appropriate statistical correction for 
multiple comparisons). Consistent with this tradition, myriad clinical brain imaging studies have 
worked to demonstrate statistically significant brain differences between affected individuals and 
comparisons. These differences have proven to be highly useful in the generation and testing of 
scientific models of psychiatric illness, and are well-justified for such pursuits. However, as 
highlighted by several recent works (Kapur, Phillips, and Insel 2012)(Castellanos et al. 2013), 
population-level differences in brain or behavior indices have little direct clinical applicability, as 
they are not sufficiently informative about the individual standing in front of a clinician. A far 
more challenging set of standards is required to derive tools that can be used for clinical 
purposes. As highlighted in a recent review (Castellanos et al. 2013), effect sizes required for a 
clinically useful biomarker can range between a Cohen’s d of 1.5 and 3.0 depending on the 
nature of the application (e.g., screening, diagnosis). Such effect sizes are rare in the clinical 
brain imaging literature (Müller et al. 2017; Thompson et al. 2017; Schmaal et al. 2016), though 
they represent the true goal for which studies focused on clinical applications should strive - not 
the more traditional pursuit of p < 0.05 significance. Consistent with the requirements of any 
laboratory test, sufficient accuracy/validity, reliability/precision, sensitivity and specificity must 
also be established for brain-based biomarkers before any conversation of clinical application 
should begin.   

In recent years, the increasing popularity of machine learning in the imaging community 
(Pereira, Mitchell, and Botvinick 2009; Lemm et al. 2011; Davatzikos et al. 2005) has brought 
with it shifts in the design of experiments from testing for clinical differences among populations 
to individual-level prediction of clinical variables, such as diagnostic status. For those focused 
on the development of clinical tools, this shift is necessary, as it brings the target closer to direct 
clinical applications. However, as highlighted in greater detail elsewhere (Castellanos et al. 
2013), care needs to be taken in the handling of findings from prediction-based studies, as a 
number of factors can limit their readiness for clinical application. Such factors include the level 
of rigor involved in cross-validation approaches (e.g., leave-one-out, k-fold, split-half, and 
independent-sample) (Varoquaux and Craddock 2013) and how well a study sample reflects the 
real-world characteristics of a diseased population. 

 

The big data research model 

Following decades of innovations in technology and methods, the neuroscience of the 21st 
century is increasingly being defined by large-scale efforts to understand complex brain systems 
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using massive datasets (Sejnowski, Churchland, and Movshon 2014; Kandel et al. 2013; 
Poldrack and Gorgolewski 2014) (Craddock, Tungaraza, and Milham 2015). This approach to 
scientific investigation, referred to as the "big data" research model, has already yielded 
unprecedented results in diverse domains such as genetics, physics, astronomy and medicine. 
The brain imaging community – which historically has been criticized for its reliance on 
underpowered samples, approximate replications and a research silo culture – has emerged as 
an entry point for the big data model in neuroscience.  

The implications of the big data model are multifold for the future of clinical brain imaging. First, 
in contrast to the more traditional scientific model ingrained in the imaging community, 
questions, not hypotheses, are the guiding light for investigations. The exploratory focus of the 
big data model is not intended to minimize the value of hypothesis-driven research. Instead, it is 
intended to be a complementary approach, capable of leading to the formation of novel 
hypotheses through the detection of previously unknown associations. The big data model also 
enables researchers to look for multivariate relationships which may not be readily accessible 
with more traditional models (Varoquaux and Craddock 2013). The application of unsupervised 
learning methods (e.g., cluster analysis) to neuroscientific data can be used to identify 
previously unappreciated groupings of individuals within a given domain of illness (e.g., novel 
subtypes for ADHD or depression), or to build links across behaviorally defined boundaries that 
do not reflect known underlying neurobiology (Gates et al. 2014; Miranda-Dominguez et al. 
2014).  Supervised learning techniques can be used to develop predictive models for precision 
medicine (Craddock et al. 2009; Castellanos et al. 2013).  

It is important to note that from a clinical application perspective, the value of large-scale 
datasets is not their ability to increase statistical power. Our ability to detect small to moderate 
effects will undoubtedly increase with sample size; while these can be valuable for appreciating 
scientifically interesting population-level associations, as previously discussed, clinical utility 
hinges instead on the detection of large effects that can be used to meaningfully generate 
predictions about an individual. As such, the value of big data samples for clinical imaging lies in 
their ability to represent the broader range of clinical and biological heterogeneity in populations 
of interest, which is essential for creating more generalizable and informative research tools. 
Additionally, large sample sizes enable more rigorous cross-validation approaches, such as 
split-half cross-validation(Strother et al. 2002).  

 

Rethinking phenotyping 

Arguably, the most valuable aspect of brain imaging data is actually the associated phenotypic 
data; a given anatomical, diffusion or resting-state fMRI dataset has little value if we don’t know 
anything about the individual from which the images were acquired or the context within which 
they were acquired. Unfortunately, many researchers are only beginning to realize the 
importance of careful phenotyping. While the community has focused on the reliability of 
imaging measures for years, many cognitive and behavioral measures are brought directly into 
imaging studies without sufficiently establishing their reliability. Consistency in demographic, 
cognitive, and behavioral measures used across studies is also a challenging issue resulting 
from the lack of standards; for example, a multitude of questionnaires exist, each providing 
slightly different information. In response to these challenges, there is a growing focus on the 
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development of standardized data elements that can be included in all studies, known as 
‘common data elements’ (“General Standards - NINDS Common Data Elements”)(Simmons and 
Quinn 2014)(Thurmond et al. 2010), as well as standardized (semi-structured and structured) 
clinical interviews with defined mechanisms for establishing inter-rater reliability (e.g., ADOS 
(Lord et al. 2008) for autism).  

A common alternative to the use of DSM labels for the characterization of phenotypic variation 
is the use of dimensional psychiatric assessments (e.g., (Achenbach 2016)). Typically reliant on 
questionnaires, the tendency of such approaches is to probe for the presence or absence of 
symptoms. However, this practice frequently results in the creation of truncated distributions, 
with little variance among those individuals who are without symptoms. Recent efforts are 
attempting to draw attention to the value of designing instruments that can index both strengths 
and weaknesses related to particular domains of function. For example, the Strengths and 
Weaknesses of ADHD Symptoms and Normal Behavior Rating Scales (SWAN) is a rating scale 
that was explicitly designed to index the broader range of attentional function across individuals, 
yielding near-normal distributions (Hay et al. 2007; Arnett et al. 2013; Lakes, Swanson, and 
Riggs 2012); such distributions are optimal for application in population studies. The Extended 
Strengths and Weaknesses Assessment of Normal Behavior (E-SWAN; http://eswan.org) is 
currently under development to extend the design concept from the SWAN to a broader range 
of psychiatric domains. 

Researchers are also beginning to turn their attention to mobile technologies such as 
smartphone applications (Bot et al. 2016) and wearable devices to collect cognitive, behavioral, 
mood, and physiological data using active and passive data collection methods. Active methods 
include explicit self reports, from occasional and detailed survey instruments to more frequent 
and brief interactions, sometimes referred to as “ecological momentary assessments,” as well 
as the performance of tasks probing various domains of function (e.g., memory). Passive 
methods usually involve sensors worn on some part of the body that can unobtrusively collect 
high temporal frequency data (e.g., accelerometry actigraphs, photoplethysmography, 
electrodermal activity, electromyography, etc.). Passive methods can collect objective, real-
world data about participants to track cognitive, behavioral, mood, and physiological states, 
detect medication response, etc. (Chaibub Neto E 2017), in ways that could never be achieved 
before (Glenn and Monteith 2014; Maetzler et al. 2013)(Adams et al. 2016).  Collecting and 
analyzing these different sources of data help to foster a high-dimensional view of health. 

 

From research silos to a global scientific community 

As biological psychiatry research adopts an agenda with a greater focus on neuroscience and 
precision medicine, and an emphasis on research models that collect and analyze larger and 
more varied datasets, new challenges arise. In particular, increased demands for sophisticated 
informatics and analysis resources far surpass the capabilities of any single investigative team, 
consortium or scientific discipline (Neuro Cloud Consortium 2016). The field can overcome such 
seemingly insurmountable obstacles in the realization of clinically useful biomarkers by shifting 
away from the status quo, where discovery is hampered by the limited resources and 
capabilities of competing research entities, to a collaborative model that leverages the combined 
strengths of the research field as a whole. Widescale, effective collaboration demands 
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significant sharing, which is in line with the tenets of open science - a commitment to providing 
unrestricted access to all ideas, data, tools, and other artifacts generated in the scientific 
process (Carvalho 2015). In recognition of the benefits of this shift, funding institutions and 
research organizations are turning to, and in some cases mandating, open science as a means 
of addressing the massive requirements of this enterprise. 

 

Scaling up data resources 

The natural prerequisite to successful implementation of the big data model is the accrual of 
massive-scale, heterogeneous and deeply phenotyped datasets. Few labs can hope to 
generate more than a hundred high quality, well-phenotyped brain image datasets in a year, 
which sets an unreasonably lengthy timeline for the big data agenda. However, the open 
science model can make very large datasets available much more quickly, and in many cases 
more cost effectively, by pooling data collected from many different laboratories. Data sharing 
efforts such as the 1000 Functional Connectomes Project and its International Neuroimaging 
Data-sharing Initiative (Mennes et al. 2013) (FCP/INDI), ADNI (Mueller et al. 2005/7) and 
OpenFMRI (Poldrack et al. 2013) are quickly increasing the scale of analyses that can be 
performed by the brain imaging community. FCP/INDI projects focused on specific disorders, 
such as the Autism Brain Imaging Data Exchange (ABIDE) and ADHD-200 are testaments to 
the type of resources that can be aggregated when researchers in the same topic area 
collaborate rather than compete. 

It is worth noting that the large datasets generated by successful data sharing initiatives require 
considerable image processing, making them potentially unusable by researchers with limited 
access to computational expertise and resources. One solution to this challenge is the creation 
of collaborative efforts such as the Preprocessed Connectomes Project (http://preprocessed-
connectomes-project.org/), in which researchers who have these computational resources 
prospectively collaborate with the entire research field by preprocessing the data and sharing 
the results (Bellec et al. 2016). Data processing steps that require manual interventions can also 
be handled much more quickly and efficiently if performed collaboratively by a large number of 
researchers using crowdsourcing platforms such as Brain Box (http://www.brainbox.co.uk/) or 
through online games such as Eyewire (http://eyewire.org/). 

  

Directing the challenge to the broader scientific community 

Beyond bolstering the efforts of existing community members, open science initiatives remove 
barriers to entry for members of the broader scientific community. Large-scale brain imaging 
data are rife with complexities that push the boundaries of what is possible with conventional 
inferential statistics. Given the need for advanced analysis methods and infrastructures that are 
outside of the areas of expertise for most clinician scientists, it essential to recruit computer 
scientists, engineers, mathematicians, and statisticians to mental health research. The ADHD-
200 (Milham et al. 2012) and ABIDE (A. Di Martino et al. 2014) initiatives demonstrated that 
making data available from a population with a given condition draws focus to that condition and 
engages individuals from a range of disciplines. Contests such as the ADHD-200 Global 
Competition or the Alzheimer’s Disease Big Data DREAM Challenge 
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(https://www.synapse.org/Synapse:syn2290704) can help to accelerate the recruitment of 
investigators from other disciplines (Allen et al. 2016)(Milham 2012). The integration of 
researchers from other domains requires education and training resources, however. Those 
from non-imaging, computational disciplines will need to be educated on the fundamentals of 
brain imaging data, while clinical researchers will need to improve their computational and 
analytical skills to promote the cohesiveness and quality of their research. This is being 
addressed by educational workshops such as Brainhack (Craddock et al. 2016) and 
Neurohackweek (“Neurohackweek” 2016), where interdisciplinary researchers come together to 
learn from one another as they work to address open problems in neuroscience. 

 

Increasing the focus on reproducible research and transparency 

Current estimates suggest that as many as 50% of scientific findings cannot be reproduced 
(Ioannidis 2005). Excepting rare cases of blatant fraud, the lack of reproducibility in research 
can be attributed to a variety of factors, ranging from underpowered sample sizes, differences in 
experimental methods, and heterogeneous samples, to liberal statistical thresholding, 
insufficient descriptions of study procedures and errors in in-house software (Müller et al. 2017; 
Eklund, Nichols, and Knutsson 2016; Woo, Krishnan, and Wager 2014). Open science is 
increasingly heralded as a solution to these challenges. Concepts such as open data sharing, 
open source software, and open lab notebooks are promising to revolutionize research 
practices and dramatically augment reproducibility. From a practical view, such levels of 
transparency are likely to increase the standard of data quality and documentation; researchers 
will know that others will scrutinize their work, and have the opportunity to improve upon the 
original work through feedback and experimentation. Even the publication process is beginning 
to be transformed by open science, as preprint archives such as arXiv, bioRxiv, and Authorea 
are encouraging authors to upload their manuscripts for viewing soon after submission, rather 
than at the end of a review process -- a practice which is dramatically speeding up the 
communication of findings. For example, the manuscript by Eklund et al., 2016 (Eklund, Nichols, 
and Knutsson 2016) that raised concerns about the accuracy of commonly used statistical 
corrections for fMRI was openly available as a preprint one year prior to publication. Venues 
such as Academic Karma, Frontiers, Gigascience and F1000 are pushing the idea of open 
review, where reviewers no longer blind themselves, removing a commonly cited source of bias 
in the publication process. 

Although promising, the implementation of open science is not without its challenges. In 
particular, the field is still working through issues related to protection of privacy for high-
dimensional datasets to ensure the safety of research participants. Mechanisms are still being 
worked out to promote academic accreditation in an open science community (e.g., data papers 
(Gorgolewski, Margulies, and Milham 2013)), as current tenure promotion practices tend to 
engender feelings of competition rather than promote sharing. The recent increase in attention 
to open science by funding agencies such as the NIH and NSF will likely prove to be the 
greatest catalyst to motivate change at all levels. 

 

Breaking down barriers by advancing methods and technologies 
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The maturation of pediatric brain imaging  

The majority of neuropsychiatric illnesses have onsets in the first two decades of life (Kessler et 
al. 2005), when brain structure and function are actively developing and maturing. As such, the 
broader range of neuropsychiatric disorders is increasingly being conceptualized as 
neurodevelopmental disorders (Adriana Di Martino et al. 2014), with origins possibly tracing 
back as early as the fetal and perinatal periods (O’Donnell and Meaney 2016)(Schlotz and 
Phillips 2009). It follows that early detection and interventions, as well as prevention-focused 
efforts, could necessitate early-life and childhood imaging (Koyama et al. 2016). As discussed in 
greater detail elsewhere (Adriana Di Martino et al. 2014)(van den Heuvel and Thomason 2016), 
advances in task-independent brain imaging methods (e.g., resting-state fMRI, morphometry 
MRI, diffusion MRI) are rapidly expanding the window of investigations focused on human brain 
function to early portions of the lifespan, including toddler, infant, neonatal and fetal imaging. 
This expansion is invigorating the developmental imaging community and increasing 
enthusiasm about the potential to develop tools capable of guiding early intervention efforts for 
disorders such as autism and schizophrenia.  

 

Increasing harmonization of methods 

Previously described efforts such as the FCP/INDI have provided examples of the potential to 
quickly amass large-scale datasets through the aggregation of data independently collected at 
different research facilities. However, the lack of coordination in the acquisition of imaging (and 
phenotypic) data can introduce site-related variation in the data that can limit our ability to detect 
underlying biological signals. To address this challenge, recent efforts have demonstrated the 
potential value of accounting for unintended site-related variation through statistical corrections 
(Keshavan et al. 2016), or explicitly optimizing image analysis pipelines and techniques to 
maximize the reproducibility of findings across different imaging sites (Abraham et al., 
n.d.)(Eloyan, Crainiceanu, and Caffo 2013)(Yan, Craddock, Zuo, et al. 2013)(Fortin et al. 2016) 
(Abraham et al. in press).  

Looking forward, prospective large-scale data collection consortia such as ADNI (Mueller et al. 
2005/7), the Brain Genomics Superstruct (Holmes et al. 2015), the upcoming NIH Human 
Connectome Lifespan Project (David C. Van Essen 2011), PING (Jernigan et al. 2016), and the 
NIH ABCD Study (“ABCD Study” 2016) have worked to address the challenges of imaging site-
related variation through harmonizing their acquisition protocols, as well as the use of phantoms 
for calibrating data between sites. Among these efforts, ADNI, PING, and the NIH ABCD Study 
have taken on the particular challenge of harmonizing protocols across different MRI scanner 
platforms. The success of these efforts is leading to calls in the brain imaging community for 
increased standardization of data acquisition protocols across sites in general. While the 
provision of basic guidelines for acquisition can improve the overall quality and comparability of 
data, the benefits need to be balanced against the need for continued efforts to innovate data 
acquisition techniques; likely such decisions should be made on a case-by-case basis. At a 
minimum, encouraging and supporting the routine acquisition of data from standardized 
phantoms can facilitate efforts to calibrate data across scanner sites (Gunter JL 2017)(Gouttard 
et al. 2008)(Jovicich J 2017; Keenan et al. 2016)(DeDora et al. 2016). 
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Improving MRI scanner capabilities 

Modern advances in scanning technology are increasing the quality, resolution, and efficiency of 
data collection. Advances in head coil technologies have improved SNR and have enabled 
higher factors of parallel imaging, which combine to increase the resolution and speed for 
structural imaging acquisition. Newly developed simultaneous multislice (SMS) imaging 
sequences have increased the temporal and spatial resolutions achievable for fMRI (Feinberg 
and Setsompop 2013). SMS combined with stronger magnetic field gradients are vastly 
improving the quality of diffusion MRI data that can be acquired during routine clinical 
evaluations. These recent significant gains in MRI technology serve as a valuable reminder that 
MRI is still a young technology and there are still opportunities for improvement. 

In particular, continued innovation in MRI scanning equipment and sequences will be essential 
to fully realize the potential of brain imaging biomarkers and revolutionize clinical practice. Head 
motion is the nemesis of all brain imaging applications, but is particularly problematic when 
relying on quantitative measurements from the data (Van Dijk, Sabuncu, and Buckner 2011; 
Friston et al. 1996; Reuter et al. 2015). Methods for prospectively correcting head motion in 
structural MRI are showing promise (Tisdall et al. 2012), but their efficacy in clinical settings has 
yet to be proven. For fMRI, while a motion-robust scanning sequence has yet to emerge, a 
variety of post-hoc correction techniques have been proposed and evaluated (Power et al. 
2012; Yan, Craddock, He, et al. 2013; Pruim et al. 2015; Friston et al. 1996). The challenges of 
head motion for diffusion MRI are similar to fMRI, and as such are becoming an increasing area 
of focus for future work (Yendiki et al. 2014).  

 

Improved methods for large-scale image processing and analysis 

With every advance in scanning technologies and increase of scale in data analysis comes the 
need for new and improved data processing and analysis tools. The growing availability of 
large-scale datasets is bringing about a change in the design of brain imaging tools, which up to 
now have focused primarily on the needs of smaller scale datasets (Craddock, Tungaraza, and 
Milham 2015). Shortcomings of parametric models of brain imaging data have also highlighted 
the need to switch to more computationally intensive Monte Carlo methods for assessing 
statistical significance (Eklund, Nichols, and Knutsson 2016; Eklund et al. 2012). To make this 
computation possible, a new emphasis is being placed on optimizing image processing to 
minimize its memory footprint and computational demands. Tools that implement and integrate 
with graphical processing units, cloud computing, and other computational infrastructure are 
emerging as potential solutions to the challenge of providing relatively low-cost computational 
resource options to users who do not necessarily have such expertise (Eklund, Andersson, and 
Knutsson 2012). Making this work at a large scale will require a shift from relying exclusively on 
local collaborations to designing software that takes care of these details for the user. 

 

Concluding remarks 

We assert that there is no single advance that currently has the potential to drive the field of 
clinical neuroscience forward. Instead, there has been a constellation of advances that, if 
combined, could bring about the insights, momentum, and direction to discover biomarkers of 
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neuropsychiatric illness. While our focus was on advances that promise to transform multimodal 
imaging studies, there is a broader landscape of change and innovation across the range of 
disciplines focused on biomarker discovery (e.g., genetics, immunology, electron microscopy). 
Over time, the integration of these varied fronts may prove to bring about the most pivotal 
changes yet for clinical neuroscience.  
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