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Competition for substrates is a ubiquitous selection pressure faced by microbes, yet in-6

tracellular trade-offs can prevent cells from metabolizing every type of available substrate.7

Adaptive evolution is constrained by these trade-offs, but their consequences for the repeata-8

bility and predictability of evolution are unclear. Here we develop an eco-evolutionary model9

with a metabolic trade-off to generate networks of mutational paths in microbial communities10

and show that these networks have descriptive and predictive information about the evolv-11

ing communities. We find that long-term outcomes, including community collapse, diversity,12

and cycling, have characteristic evolutionary dynamics that determine the entropy, or re-13

peatability, of mutational paths. Although reliable prediction of evolutionary outcomes from14

environmental conditions is difficult, graph-theoretic properties of the mutational networks en-15

able accurate prediction even from incomplete observations. In conclusion, we present a novel16

methodology for analyzing adaptive evolution and report that the dynamics of adaptation are17

a key variable for predictive success.18

Elucidating the factors that influence the emergence, diversity, and stability of microbial communities is a19

central interest in both ecology and evolution [1]. To predict and control community structure and function,20

it is necessary to understand how interactions between microbes and the environment manifest as selective21

pressures driving microbial adaptation and diversification [2].22

Microbes frequently grow on mixtures of metabolic resources where competition for growth-limiting sub-23

strates is a ubiquitous selection pressure. Surveys have revealed that microbes do not simultaneously use all24

available substrates; instead, each species in a community specializes to a few substrates [3, 4]. This obser-25

vation is anticipated by ecological (resource-ratio) theory, which posits that constraints in the capacity of an26

organism to use multiple substrates are necessary for diversifying selection in homogeneous environments [5],27

and is supported by competition experiments where trade-offs in using one substrate over another maintain28

metabolic polymorphisms [6, 7, 8, 9, 10].29

The conditions under which a microbial population can invade another, and whether a stable commu-30

nity can be formed, are the subject of ecological invasion analysis. These analyses typically either assume31

competition between infinitesimally-varying phenotypes [11, 12] or are not concerned with the mutational32

paths [13, 14] that may be generated through successive mutations and invasions. Advances in experimental33

evolution, however, now enable tracking of microbial lineages for hundreds of generations [15, 16] and expose34

how sequences of mutations shape the evolutionary process through competition between possibly disparate35

phenotypes [8]. Moreover, these experiments reveal evolutionary trajectories with both parallel and unique36

dynamics [17, 18], as well as variability in long-term outcomes [10].37

To investigate how the interplay between metabolic constraints, environmental conditions, and the dis-38

tribution of mutations influences the adaptation process, we developed a model that combines microbial39

chemostat ecology with an evolutionary process. At the ecological level, microbes compete for two growth-40

limiting substrates, and we incorporate a phenomenological metabolic trade-off between the consumption of41

one substrate relative to the other. Cells inherit this phenotype through nearly-faithful clonal reproduction,42

but rare mutations can change the degree of substrate specialization. We do not restrict the size-effect of43

mutations so that, in the extreme case, any phenotype can mutate to any other. We determine and analyze44

all mutational paths and stable microbial communities that may arise to describe the entire adaptation45

process.46

We begin by introducing the eco-evolutionary model and show that adaptation dynamics over mutational47

paths can be visualized as a network through constructing a Markov process over a finite set of possible48

communities. Multiple long-term behaviors emerge, including quasi-periodic outcomes and outcomes with49

many exclusive stationary states. Next, we show that these evolutionary outcomes are not restricted to50
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distinct environments and that small environmental perturbations can change one type of outcome to another.51

In spite of this sensitivity to environmental conditions, the processes that lead to each evolutionary outcome52

have characteristic adaptation dynamics, which are reflected in graph-theoretic properties of the mutational53

paths. Finally, we show that evolutionary outcomes can be predicted using these network properties from54

incomplete observations of evolving microbial communities — even without knowledge of environmental55

conditions.56

57

Results58

Microbial ecology in the chemostat with two substrates59

Microbial evolution is often studied in chemostats, and we focus on a chemostat model of microbial ecol-60

ogy [19, 20]. To investigate metabolic adaptation on multiple substrates, we extend the standard chemostat61

model [21] to include two growth-limiting substrates, which we name u and v (Supplementary Section 1.1).62

The two substrates are individually sufficient for microbial growth — i.e. they are perfectly substitutable [22].63

Both substrates are added continuously to the chemostat, and cells grow in proportion to their concentra-64

tions. The chemostat is diluted at a constant rate, and populations must therefore grow at least as fast as65

the dilution rate to survive being washed out. At steady-state, the growth rate of a surviving population is66

equal to the chemostat dilution rate (Fig. 1A).67

Cells in the chemostat encounter both u and v substrates but cannot simultaneously specialize to using68

both. To investigate how a metabolic constraint affects adaptation [23], we consider a phenomenological69

trade-off between the import capacity for the two substrates (Supplementary Section 1.2). We parameterize70

the metabolic specialization of each cell by a number between zero and one, s: values near zero indicate that71

the cell specializes to v; values near one indicate u specialization. Cells inherit their phenotype (their value72

of s) from their parent nearly always without variation through clonal replication and cells cannot change73

their phenotype (Fig. 1B).74

We can interpret the metabolic specialization, s, in two ways, using a common mathematical formulation75

(Supplementary Section 1.5). In the first interpretation, cells can always import both substrates but increase76

the rate of import for u at the expense of decreasing the import rate for v. The maximal import rate for77

u is multiplied by s; the maximal import rate for substrate v is multiplied by (1 − s) (Supplementary78

Section 1.3). Such a constraint may arise if a finite resource is shared between the production of the u and v79

permeases [24, 25, 26] or through antagonistic pleiotropy [27, 6, 7]. In the second interpretation, cells adopt80

a mixed strategy (following evolutionary game theory [28]) of randomly switching between two metabolic81

programmes, each exclusive to only one substrate. Then, the probability of adopting the u metabolic82

programme is s and the probability of adopting the v programme is (1− s) (Supplementary Section 1.4).83

We model the microbial life cycle through a sequence of substrate import, metabolism, and growth84

processes. Specifically, we structure the microbial population to discrete growth states that the cell progresses85

through to replicate. Cells metabolize u and v molecules at substrate-specific rates and obtain a substrate-86

specific yield in terms of growth state increments. Cells replicate when they have accumulated enough yield87

to exceed a threshold number of growth states (Fig. 1C).88

A cell will almost always produce offspring that inherit its metabolic phenotype, but, rarely, a mutation will89

result in a phenotypically-distinct population. The new mutant will compete with the pre-existing resident90

population for extracellular substrates. We follow the theory of adaptive dynamics and include phenotype91

mutations only on evolutionary timescales [11, 12]: we assume that mutations are sufficiently rare that92

mutant phenotypes emerge only after the chemostat model has reached steady state. The ecological and93

evolutionary timescales are separated in this weak-mutation limit.94

In our spatially homogeneous model at most two populations can co-exist on two substrates because of95

the competitive exclusion principle [29]. A mutant population is at first rare and must grow faster than96

the dilution rate to survive wash-out in the chemostat. When the chemostat contains a single phenotypic97

population, for example, invasion by a mutant has three possible outcomes: the mutant becomes extinct,98

the resident becomes extinct, or the two phenotypes co-exist in a community (Fig. 1D).99

Markov process of mutation-limited adaptation100

Frequency-dependent selection gives rise to multiple mutational paths, which are contingent on the sequence101

and outcome of mutation and invasion events. Rare mutations generate a series of competition events102

between the resident and mutant populations with different metabolic phenotypes. Successful invasion103
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Figure 1: We model microbial ecology in the chemostat with two growth-limiting, substitutable, substrates (u and v)
and a metabolic trade-off where specialization in one substrate reduces specialization in the other. A. The chemostat
is a homogeneous environment with continuous addition of the two substrates and continuous dilution at fixed rates.
The model is parameterized by the chemostat’s dilution rate, and a pair of influx rates, import rates, metabolic rates,
and yields for the two substrates. B. The metabolic specialization of a cell is parameterized by a number between
zero and one, s: values near zero indicate a v-specialist; values near one indicate u-specialist; intermediate values
are substrate generalists. C. Cells increment their growth state by different amounts depending on the yield of the
substrate. Cells replicate when their growth state exceeds a critical value. When a cell encounters a u substrate
molecule, the probability that it will successful import this molecule is its phenotype value (s); when a cell encounters
a v substrate molecule, the probability that a cell imports a molecule of v substrate is (1−s). D. Competition between
a (high abundance) resident phenotype and a (low abundance) invading phenotype follows a rare mutation event and
has three possible qualitative outcomes.

by a new population modifies the chemostat environment through changing the steady-state levels of the104

substrates, and therefore the context in which future mutation and invasion events occur is modified through105

such ecological niche construction and destruction [23, 8, 2, 30, 18].106

To generate the mutational paths, we first create an invasion map for the outcome of competitions between107

dynamically-stable communities of resident phenotypes and possible mutant phenotypes that may invade.108

To do so efficiently, we developed a dynamic programming algorithm to simulate invasion events assuming109

rare mutations on a discretized phenotype space (Fig. 2A). Briefly, the algorithm treats the invasion map as a110

tree: nodes are communities of phenotypes that can co-exist at steady-state and these are connected by edges111

representing single mutation and invasion events. The algorithm constructs the tree by iteratively perturbing112

each steady-state (parent node) to introduce a small mutant population. The resulting competition is113

simulated (Supplementary Section 1.6), and the steady-state outcome is analyzed and recorded as a connected114

steady-state (child node). We avoid redundant simulations, and so avoid recursive expansions of the tree,115

by appropriately terminating branches (Supplementary Section 2.1).116

To define a Markov process of adaptation, we require the probability that a community will transition117

from one state to another as a result of a single mutation and invasion event (Supplementary Section 2.2).118

The probability of such a transition is proportional to the abundance of cells in the source state and to119

the propensity with which each cell generates the mutation that effects the transition to the target state120

(according to the deterministic invasion map). We will only be concerned with the sequence of transitions121

between one community state to another and not with the waiting time between such events. In this case,122

the distribution of mutations is the most important factor for determining which of the possible states will123

next follow a current state.124

We use a uniform distribution of mutations in phenotype space centered on a resident phenotype, sx,125

with maximum mutation size ∆Smax. Mathematically, a mutant phenotype sy can be generated by a cell126

with phenotype sx if |sy − sx| ≤ ∆Smax. The mutation probabilities are chosen so that all of the discrete sy127

values that can be generated from sx are equally likely after correcting for boundary effects (Fig. 2B,D). The128
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distribution of mutations affects both the mutational paths and the stationary behavior of the adaptation129

process, and we parse the invasion map using uniform distributions with different maximum mutation sizes130

to investigate this dependency.131

To complete the description of mutation-limited adaptation as a Markov process, we must choose an132

initial distribution of ancestral states. Most laboratory evolution experiments start with isogenic strains,133

and, similarly in our model, adaptation starts with equal probability from any viable population comprising134

a single phenotype (rather than a community).135

To determine the long-term evolutionary outcome of an adaptation process, we classify the states of the136

Markov process as either transient or recurrent. Transient states represent microbial communities that may137

only be visited once on a mutational path. A recurrent state, however, will always re-emerge once established,138

and the endpoints of mutational paths are always recurrent states (Fig. 2C,E). Recurrence occurs either when139

a microbial community cannot be invaded by any mutant that can be generated from the community (an140

evolutionarily-stable state [28]) or if there is a sequence of mutation and invasion events that returns to the141

community.142
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Figure 2: The Markov process of adaptation is generated from two components — simulations of ecological invasion
and calculations of the transition probabilities based on the probabilities of each potential mutation — and is demon-
strated with an example that has three phenotypes (labeled A, B, and C). A. To discover all dynamically-stable
populations and communities, we simulate mutation and invasion events in a space of discrete phenotypes assuming
rare mutations. We construct an invasion map as a tree: nodes are steady-states labeled with extant phenotypes.
Each state is perturbed with a small mutant population and the resulting steady-state after competition is connected
to the parent node. The algorithm dynamically truncates the tree to avoid any recursion. B. To calculate transi-
tion probabilities between resident states, we parse the invasion map in A with a mutational process. We assume
uniformly distributed mutations with a maximum mutation size, ∆Smax, centered on the resident phenotype. The
matrix elements show the conditional probability that phenotype sx generates mutant phenotype sy. C. The Markov
process in B visualized through its directed network graph. States are classified as either transient (circles) or recur-
rent (squares). D-E. As in B-C, but with a larger maximum mutation size (∆Smax). The recurrent states, as well
as the mutational paths of the process, depend on the distribution of mutations.

Hierarchy of evolutionary outcomes143

To investigate the effect of the environment and mutational parameters on the adaptation process, we ran-144

domly sampled 10, 000 environmental parameter sets (Supplementary Section 3.1). For each set of parame-145

ters, we calculated the invasion map using 11 discrete phenotype values ranging from a pure v-specialist to a146

pure u-specialist: s ∈ {0.0, 0.1, . . . , 0.9, 1.0}. We parsed each invasion map with uniform mutation distribu-147

tions with increasing maximum mutation sizes, ∆Smax ∈ {0.1, 0.2, . . . , 0.9, 1.0}, to generate ten adaptation148
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processes. We then analyzed the 100, 000 resulting adaptation processes to determine their long-term evo-149

lutionary behavior.150

We classify the evolutionary outcome of an adaptation process according to the number and type of its151

recurrent states (Fig. 3A). At a high level, we differentiate between processes with either a single recurrent152

state or multiple recurrent states. A recurrent state may be a dimorphic community, with two-coexisting153

phenotypes, or a monomorphic population with a single phenotype. We classify phenotypes as either (u or154

v) substrate specialists, when s ∈ {0.0, 1.0}, or substrate generalists, when s ∈ {0.1, 0.2, . . . 0.8, 0.9}, and we155

distinguish between the possible community combinations of specialists and generalists in a recurrent state.156

We observed two qualitatively different behaviors in processes with multiple recurrent states, which we157

named ‘multi-stationary’ and ‘cycling’. Multi-stationary outcomes have many exclusive recurrent states158

where each recurrent state is reached with some probability. We found that the number of recurrent states159

and their stationary probability depended on the maximum mutation size (Fig. 3B, C). In these cases,160

we expect replicate evolution experiments to eventually show divergent phenotypic variability [8, 10, 31].161

Cycling outcomes, on the other hand, are processes where no microbial community is completely resistant to162

invasion, and the adaptation process continually cycles between a set of states through mutation and invasion163

events. This cycling can be either periodic (Fig. 3D left) or aperiodic and unpredictable — albeit confined164

to a closed class of recurrent states (Fig. 3D right). These community changes occur at the evolutionary165

time-scale [32]. For example, in a dimorphic community of one specialist and one generalist population,166

mutation and invasion events can drive the generalist to extinction; this extinction leaves an unexploited167

metabolic niche that a newly-emergent generalist population can fill, thereby repeating the cycle (Fig.3D).168

Both of these evolutionary outcomes are qualitatively reproduced in stochastic simulations of mutational169

paths on a continuous phenotype space (Supplementary Section 2.3).170

Visualizing the networks not only conveys information on the evolutionary outcomes but also on the171

adaptation dynamics. For example, we found that some adaptation processes had bottle-necked mutational172

paths: all mutational paths have to transition through a few common community states before reaching173

a recurrent state (Fig. 3E). We will later quantify these network properties to characterize the adaptation174

dynamics and construct a predictive model.175

Sensitivity of adaptation to environmental conditions176

In light of the multiplicity and complexity of evolutionary outcomes, we investigated how particular outcomes177

are associated with the environmental parameters of the model. These parameters describe the chemostat178

set-up (substrate influx and dilution rates) and the properties of the two substrates (their yields, maximal179

import rates, and metabolic rates).180

Although some evolutionary outcomes were more likely to be associated with certain environments, no181

clear pattern emerged (Fig. 4A). Using a nearest-neighbors algorithm to estimate the density of evolutionary182

outcomes, we observed that metabolically diverse (dimorphic) communities are most likely to emerge when183

the influx rates for the two substrates are similar and when the dilution rate is low. As the disparity in supply184

of the substrates increases, we find that communities undergo evolutionary cycling, perhaps signalling the185

onset of ecological collapse [33]. At even greater ratios of substrate influx, microbial communities disappear,186

leaving a population of a single specialist as the only evolutionary outcome.187

Even by using combinations of environmental parameters to characterize outcomes, substantial unpre-188

dictability remained. We developed a hierarchical classification model, which combines six statistical estima-189

tors to make predictions (Supplementary Section 3.2). Its overall performance (a mean recall of 0.78 over the190

eight evolutionary outcomes), however, did not suggest that a reliable predictive map from environmental191

parameters to evolutionary outcomes could easily be formed.192

We can partly understand this unpredictability by considering how the different evolutionary outcomes193

are distributed in parameter space, where distinct clusters do not appear to exist. For each outcome, we first194

performed hierarchical clustering using the pairwise Euclidean distance in a standardized parameter space195

(Supplementary Section 3.3) and then aligned these clusters with samples from other outcomes to assess196

their overlap (Fig. 4B). In general, while parameter sets that produced the same outcomes did form clusters,197

these were not distinct: a sample or cluster from one outcome is typically proximal to samples or clusters198

from other outcomes. Environmental perturbations are therefore often likely to cause a qualitative shift in199

the long-term community.200

In particular, monomorphic specialists ‘permeate’ parameter space, and are typically close to all other201

outcomes. By calculating the distribution of shortest-distances from one type of outcome to either the same202

outcome or one of the other seven possibles outcomes, we can estimate the magnitude of the environmental203

change required to both maintain the type of outcome and to alter one outcome to another (Supplementary204

Section 3.4). Assuming that the probability of environmental perturbation is inversely proportional to its205

magnitude, a change in the environment is approximately as likely to preserve a diverse community as to206
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Figure 3: The model generates multiple evolutionary outcomes and complex networks of mutational paths. Qualitative
network properties of adaptation dynamics can be visualized and conveyed through graphical representation. A. We
hierarchically classify adaptation processes according to their evolutionary outcome using the number and type
of recurrent states. Labels show the outcome frequencies obtained from parameter sampling. B-E. Networks of
mutational paths from four sets of environmental parameters demonstrate the scope of the model’s dynamic and
stationary behavior. Circles are transient states; squares are recurrent states; colors denote the number and type of
metabolic phenotypes in each (microbial community) state following A. B. The maximum mutation size (∆Smax)
affects the mutational paths and long-term outcomes of adaptation (compare recurrent states between left and right
networks). C. A process with multiple, non-connected, recurrent states has more than one evolutionarily stable
state, each of which is reached with some (stationary) probability. D. A process where multiple recurrent states are
connected exhibits quasi-periodic evolutionary cycling. E. An example of a potentially bottle-necked process. The
network consists of two highly-connected (top and bottom) subgraphs, which are themselves connected via only a
few mutation and invasion transitions.

lead to its collapse to a monomorphic specialist (Fig. 4C, right). The converse, however, is not true: a207

monomorphic specialist population is far less likely to transition to a diverse community (Fig. 4C, left).208

We conclude that prediction of evolutionary outcomes from environmental conditions, even in simple209

chemostat environments, is likely to be challenging. Evolutionary outcomes are only the endpoints of the210

adaptive process, however, and we next investigate if the dynamics of these processes (the mutational paths)211

are characteristic of their endpoints.212

Adaptation dynamics and mutational paths213

The mutational paths of the Markov process describe the dynamics of adaptation, and the processes we214

construct have tens to millions of mutational paths in spite of a relatively small number (eleven) of discrete215

phenotypes and a maximum of two co-existing populations in each community.216

We analyze adaptation dynamics by enumerating the mutational paths of a process (Supplementary217

Section 4.1), calculating their probabilities, and determining their properties (Fig. 5A). For example, we218

define the path length as the number of state transitions, from an ancestral state to a recurrent state, in one219
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Figure 4: Complex association between the environment and evolutionary outcomes undermines the stability of
microbial communities and complicates prediction. A. Evolutionary outcomes are more likely to be associated with
some parameter values, but without a simple dependence. We estimated the empirical outcome densities from
parameter sampling using a nearest-neighbors algorithm. For all parameter combinations except the dilution rate,
we show densities at absolute value because of the symmetry about zero. B. Evolutionary outcomes form clusters
in parameter space but these are not distinct. We used Euclidean distance in a standardized parameter space to
perform within-outcome hierarchical clustering and then aligned clusters with samples from other outcomes to assess
their overlap. We only plot a representative sample (1%) of the dataset, which preserves the observed frequencies
of each outcome. C. Environmental perturbations often cause community collapse and only rarely create diverse
communities. We calculated the standardized parameter distance from each process to the closest process in all
other outcome classes to form the distribution of shortest-distances. Monomorphic specialists are generally closer
to other monomorphic specialists than they are to outcomes with diverse communities (left). In contrast, processes
with diverse outcomes are as close to each other as they are to monomorphic specialists (right). Here ‘other outcome’
refers to the labeled outcome in each panel that is not a monomorphic specialist.

realization of the adaptation process (a single run of an evolution experiment).220

The degree to which adaptive evolution is repeatable is of long-standing interest [34, 35], but analyses221

are typically restricted to models with static fitness landscapes [36]. To quantify the repeatability of adap-222

tation in our model, where fitness landscapes change dynamically through eco-evolutionary feedbacks, we223

mathematically define repeatability as the entropy of the path distribution. If replicate experiments are224

likely to follow only a few mutational paths, the entropy is small and repeatability is high; if each replicate225

experiment follows a different mutational path, the entropy is large and repeatability is low.226

In our model, the repeatability of adaptation dynamics is associated with the evolutionary outcome of the227

adaptation process and varies with the maximum mutation size (Fig. 5B). Path entropy typically increases228

with maximum mutation size as more mutational paths become possible. Notably, however, dimorphic229

specialist outcomes have a non-monotone path entropy with maximum mutation size (Fig. 5B, blue line)230

because a few mutational paths with large mutations come to dominate the process. We find that processes231

where monomorphic specialist populations are evolutionarily stable have the most repeatable dynamics; in232
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contrast, processes with metabolically diverse communities have the least repeatable adaptation dynamics.233

To compare the dynamics between adaptation processes, we constructed a condensed dynamical profile234

for each through calculating six statistical properties of its mutational paths. These properties were: the235

number of paths, the mean and variance of geodesic (shortest) path length, the mean and variance of all236

paths, and the mean minimum cut size (the smallest number of edges that must be removed from the graph237

to disconnect an initial state from a recurrent state — a measure of the extent of bottle-necks in the process).238

We analyzed the six mutational path properties for processes with different evolutionary outcomes and at239

different maximum mutation sizes (Fig. 5C). The effect of increasing the maximum mutation size depends240

on the evolutionary outcome of the process, but the qualitative trends are consistent. Specifically, larger241

mutations decrease both the mean and the variance of the geodesic path length because recurrent states242

can be reached via fewer mutation and invasion events of larger effect. Larger mutations have a similarly243

decreasing, albeit smaller, effect on the mean and variance of the overall path length. Finally, we found that244

a larger maximum mutation size generally leads to processes with fewer bottle-necks (higher minimum cut245

size), particularly for processes with a single recurrent state.246

The distributions of mutational path properties are multi-modal (Fig. 5C), where the peaks correspond247

to evolutionary outcomes low in the outcome hierarchy (Fig. 3A), suggesting that processes with different248

evolutionary outcomes have characteristic adaptation dynamics. We used discriminant analysis to find249

linear combinations of the six path properties that maximize the separation of the seven viable evolutionary250

outcomes according to their dynamics. We found that different outcomes, particularly those higher in the251

outcome hierarchy (Fig. 3A), occupy different regions in a two-dimensional projection of the discriminant252

space (Fig. 5D). We can therefore conclude that mutational paths characteristically identify processes’ long-253

term outcomes, and we contrast this positive finding with the difficulty of obtaining an association between254

environmental parameters and evolutionary outcomes (Fig. 4).255

The path properties we calculate quantify statistical aspects of the adaptation process; however, enumera-256

tion of paths becomes computationally prohibitive for larger networks and also relies on correct classification257

of states. We next present an alternative graph-theoretic approach that relaxes these constraints and forms258

the basis of a model for predicting evolutionary outcomes from observations of adaptation dynamics.259

Predicting evolutionary outcomes from networks of mutational paths260

To motivate our predictive model, we consider an evolution experiment as the progressive construction of a261

network of mutational paths. In such an experiment, the resident microbial populations in a chemostat [37]262

are periodically assayed, and the transitions between resident communities are used to construct the network.263

To simulate such a procedure, we re-sampled the 100, 000 adaptation processes in our dataset to obtain264

networks at varying stages of completion (Supplementary Section 5.1). Incomplete networks may contain265

spurious recurrent states, which obfuscate the process’s evolutionary outcome (Fig. 6A, top). These states266

appear recurrent because the mutation and invasion events that lead away from these states have not yet267

been observed in the experiment. The predictive objective, then, is to forecast the true recurrent states of268

the complete network from an incomplete sample.269

Our predictive model relies on quantifying how networks change with accumulating observations. As we270

have shown earlier, evolutionary outcomes have characteristic mutational paths. To use the information en-271

coded in the entire network of mutational paths at once, we measure graph-theoretic properties that quantify272

abstract features of the network. Specifically, for each network, we calculated six centrality measures [38] that273

characterize different aspects of network topology (Supplementary Section 4.2 and Supplementary Figure 6).274

Though less interpretable from an ecological or evolutionary perspective compared to path properties (such275

as path length) a network’s centrality distributions nevertheless contain valuable predictive information. For276

each network we calculate the six centrality distributions and summarize each through its mean and variance.277

As mutation and invasion events are observed, new vertices and edges are added to the network, and the278

resulting changes in network topology are reflected in changes in the centrality statistics (Fig. 6A, bottom).279

We identified both invariant and informative topological changes as networks are progressively completed280

(Supplementary Section 5.2). We found that some centrality statistics converge to their complete-network281

value even when the network is mostly incomplete — remaining invariant as more vertices and edges are282

added — while others change considerably during network construction (Fig. 6B). Nevertheless, we noted283

that the most informative centrality statistics (those with distinct distributions for the different outcomes)284

converged gradually (Supplementary Figure 7).285

Differences in network topology, even for incomplete networks, were sufficient to enable reliable prediction286

of evolutionary outcomes using a statistical-learning approach. Centrality statistics provide a projection287

of the mutational path network, through its topology, to a low-dimensional space. We trained a classifier288

to predict evolutionary outcomes from these centrality features using data from incomplete and complete289

networks, the degree of network completion, and the maximum mutation size (Supplementary Section 5.3).290

To avoid biasing against minority outcomes, we used the unweighted mean F1 score (over the outcome291
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Figure 5: Processes with different evolutionary outcomes have characteristic adaptation dynamics, which can be
quantified and compared through the properties of their mutational paths. A. We enumerate mutational paths to
generate the path distribution. Paths begin at a monomorphic state (with equal probability) and end at a recurrent
state. The path probability decreases in proportion to the length of the path. Most mutational paths in a network
are of intermediate length, and only a few paths are either short or long. Statistical properties of adaptation, like the
mean and variance of the path length, are calculated from the path distribution. B. The repeatability of adaptation
dynamics depends on the long-term evolutionary outcome and typically increases with maximum mutation size.
The entropy of the path distribution quantifies repeatability (high entropy implies low repeatability). Points show
the mean path entropy for networks with different outcomes; shaded regions are ± the standard deviation. C.
Mutational path statistics vary with the maximum mutation size and the process’s evolutionary outcome. We plot
the distributions for six statistical path properties, grouping by the number of recurrent states and two extremes
of maximum mutation size. The distributions are multi-modal, and the peaks correspond to outcomes lower in the
classification hierarchy (Fig. 3A). D. Processes with different evolutionary outcomes have characteristic adaptation
dynamics. Linear combinations of the six path properties in C that best separate the adaptation processes in a two-
dimensional projection were identified through linear discriminant analysis. Lines and ellipses were drawn manually.

classes) as the optimization metric. Neither the degree of network completion or the maximum mutation size292

will typically be known during an experiment, and we marginalized over both these variables during testing293

(Supplementary Figure 8). The performance of the classifier improves with increasing network completion294

and is best at intermediate maximum mutation sizes (Fig. 6C). At 50% network completion, the classifier295

predicts the correct long-term outcome for about 85% of all adaptation processes (average F1 score > 0.7),296

which rises to 98% at 60% graph completion (F1 = 0.8).297

We have shown here that our predictive approach can be useful in forecasting changes in the community,298

including the loss of (metabolic) diversity, through incomplete observations of adaptation dynamics. Detect-299

ing the onset of community transitions is an enduring problem, but most approaches focus on catastrophic300

transitions and analyze the dynamics of a single dynamical model [39, 40, 33]. Nevertheless, the loss of bio-301

diversity following environmental disturbance can, as we have shown, involve a series of ecological transitions302

mediated by multiple mutation and invasion events, and our network approach can address this challenge.303
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Figure 6: Evolutionary outcomes can be predicted from graph-theoretic properties of incomplete networks of mu-
tational paths. To generate incomplete networks we sampled networks to varying degrees of completion. For both
complete and incomplete networks, we calculated and summarized six network centralities, which characterize differ-
ent aspects of network topology, through their mean and variance. Statistics for the twelve centralities summarize
mutational networks through a low-dimensional space. A. The state of network completion affects its topological
properties, which is reflected in the centrality statistics. For an example process (top), we show the progression of
four centrality statistics (bottom) to highlight the variability in their convergence as a function of network completion.
Dark blue lines show the mean and light blue lines show the standard deviation for 100 network samples at differ-
ent stages of network completion. B. We characterized the centrality statistics both by how quickly they converge
to their complete-network value (feature error, left) and by how well they can discriminate between evolutionary
outcomes (feature information, right). The plots show the mean of feature error (the normalized difference between
the complete- and incomplete- values of the centrality statistic) and the mean of the mutual information between
the centrality statistic and the evolutionary outcomes. We found both invariant (e.g. mean of HITS authority) and
informative (e.g. variance of in-degree) centrality statistics (Supplementary Section 5.2) as well as a dependency on
the maximum mutation size. C. Evolutionary outcomes can be predicted with a statistical classifier trained on the
twelve centrality statistics from partial and complete networks. We assessed classifier performance via the unweighted
mean of the F 1 score, taken over the seven evolutionary outcomes, and report the mean performance on the test
set for a ten-fold cross-validation. Top and right line plots show mean performance, with standard deviation in
shaded regions, taken over the columns (network completion) and rows (maximum mutation size). The red line is
the benchmark performance of a naive classifier, which predicts following the empirical frequencies of the outcomes.
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Discussion304

We have shown that a simple model of metabolic adaptation comprising a trade-off in the use of one type of305

substrate over another can generate surprisingly rich behavior. On one hand, this behaviour is sufficiently306

complex that it is difficult to predict the outcomes of adaptation, even qualitatively, from environmental307

parameters. On the other, we have demonstrated that statistical properties of the mutational paths can308

uniquely characterize long-term outcomes. Thus, similarly to structural indicators in evolutionary game309

theory [41, 42] and statistical indicators in ecology [39, 40, 33], the dynamics of adaptation are a key variable310

for the successful prediction of community outcomes.311

Our approach combines elements from the replicator-mutator equation [43, 44] and adaptive dynamics [11,312

45, 12] to couple an ecological model with an evolutionary process. Ecological interactions between cells313

and the environment induce eco-evolutionary feedbacks [11, 45, 23, 2, 30, 18]: resident phenotypes define314

environmental niches for invasion by mutants, which in turn shape niches for future invasion. Such behavior315

is predicted to occur, for example, in the gastrointestinal tract [46, 47]. We formalized adaptation as a316

discrete-time Markov chain because the evolutionary model initiates ecological invasion via rare mutation317

events. This formulation emphasizes the dynamics of adaptation, i.e. the mutational paths [36, 34], rather318

than focusing on isolated phenotype competitions or evolutionary ‘end-points’.319

Several extensions can be made, but are likely to only increase the complexity of the dynamics observed.320

For example, the substrates can be made partly substitutable [22, 5] or their number increased. Growth321

could be parameterized by several phenotypic traits combining multiple metabolic [48, 49] or cellular [26, 50]322

trade-offs. We ignored stochastic extinction of rare mutants, and we anticipate that such effects will change323

the statistical properties, but not the long-term outcomes, of adaptation. Finally, the model operates in324

the ‘strong-selection, weak-mutation’ regime [51], therefore we omit both multiple simultaneously invading325

mutants (clonal interference [52, 53]) and the occurrence of multiple mutations occurring within one invading326

lineage [54, 55].327

The model demonstrates the importance of trade-offs for generating metabolic complexity in microbial328

communities [5, 1]. If a cell is able to evolve its response to one substrate unconstrained by its response329

to the other, then only one evolutionary outcome is possible — a phenotype that maximally depletes both330

substrates — because all other phenotypes will be unable to grow sufficiently fast in the chemostat to survive331

dilution [56, 21]. Metabolic trade-offs, however, preclude this single optimal phenotype and, together with332

dynamically changing environmental niches [8, 2, 18] and a limited distribution of possibly large-effect333

mutations [57], generate complex adaptation dynamics and long-term behaviors. Intracellular trade-offs are334

expected to be common [48, 26, 50], and our results support the idea that the resulting frustration of optimal335

behaviors is a major factor generating the complexity observed in microbial communities.336

Methods337

Model simulations338

We modified the chemostat model [21] to include two substrates and structured populations (Supplementary339

Section 1.5), and simulated the model to steady-state using the numerical integration libraries in Mathemat-340

ica 10 [58] (Supplementary Section 1.5-1.6). Models were dynamically generated, by adding and removing341

invading and extinct populations, as required for the invasion map (Supplementary Section 2.1). The inva-342

sion map was parsed to calculate the state transition probabilities for the Markov process (Supplementary343

Section 2.2).344

Data analysis345

We analyzed the adaptation processes from 10, 000 samples of environmental parameters (Supplementary346

Section 3.1). The path distribution, statistics of path properties (Supplementary Section 4.1), and centralities347

(Supplementary Section 4.2) were calculated for each network and are available as a tabulated dataset. Data348

was analyzed using the Python scikit-learn[59] library for statistical models. Incomplete networks were349

generated by re-sampling the complete-network dataset (Supplementary Section 5.1). Mutual information350

was calculated using non-parametric entropy estimation [60] (Supplementary Section 5.2). The predictive351

model was based on a Random Forest classifier (Supplementary Section 5.3).352
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