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Single nucleus RNA-Seq (sNuc-Seq) profiles RNA from tissues that are preserved or 

cannot be dissociated, but does not provide the throughput required to analyse 

many cells from complex tissues. Here, we develop DroNc-Seq, massively parallel 

sNuc-Seq with droplet technology. We profile 29,543 nuclei from mouse and human 

archived brain samples to demonstrate sensitive, efficient and unbiased 

classification of cell types, paving the way for charting systematic cell atlases. 

 

Single cell RNA-seq has become an instrumental approach to interrogate cell types, 

dynamic states and functional processes in complex tissues1,2. However, current protocols 

require the preparation of a single cell suspension from fresh tissue, a major roadblock in 

many cases, including clinical deployment, handling archived materials and application 

in tissues that cannot be readily dissociated. In particular, in the adult brain, harsh 

enzymatic dissociation harms the integrity of neurons and their RNA, biases data in 

favour of recovery of easily dissociated cell types, and can only be used on samples from 

young organisms, precluding, for example, those obtained from deceased patients with 

neurodegenerative disorders. To address this challenge, we3 and others4 developed single 

nucleus RNA-seq (e.g., sNuc-Seq3 and Div-Seq3) for analysis of RNA in single nuclei 

from fresh, frozen or lightly fixed tissues. sNuc-Seq can handle even minute samples of 

complex tissues that cannot be successfully dissociated, and provide access to archived or 

banked samples, such as fresh-frozen or lightly fixed samples. However, it relies on 

sorting nuclei by FACS into plates (96 or 384 wells), and thus cannot easily be scaled to 

profiling tens of thousands of nuclei (such as human brain tissue) or large numbers of 

samples (such as tumor biopsies from a patient). Conversely, massively parallel single 
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cell RNA-seq methods, such as Drop-Seq5, InDrop6 and related commercial tools7,8 can 

be readily applied at this scale9 in a cost-effective manner10, but require a single cell 

suspension as input. 

 

To address this challenge, we developed DroNc-seq (Fig. 1a), a massively parallel single 

nucleus RNA-seq method that combines the advantages of sNuc-Seq with the scale of 

droplet microfluidics to profile thousands of nuclei at very low cost and massive 

throughput. DroNc-Seq was modified from Drop-Seq5 to accommodate for the smaller 

size and relatively lower amount of RNA in nuclei compared to cells. Specifically, we 

modified the microfluidics design (Supplementary Fig. S1A, B) to generate smaller co-

encapsulation droplets (75 µm diameter) and flow parameters; we optimized the nuclei 

isolation protocol to reduce processing time and increase capture efficiency 

(Supplementary Fig. S1C); and we changed the downstream PCR conditions 

(Methods). We validated for single nucleus specificity using species-mixing 

experiments5, in which we combine nuclei from human 293 cells and mouse 3T3 cells in 

one DroNC-seq run, to assess single nucleus purity, as previously performed for cells5 

(Supplementary Fig. S1D). Notably, the DroNc-Seq device and workflow are 

compatible with current Drop-Seq platforms. 

 

DroNc-Seq robustly generated high quality expression profiles from nuclei isolated from 

a mouse cell line (3T3, 4,442 nuclei), adult mouse brain tissue (9,219), and adult human 

post-mortem frozen archived tissue (20,324 nuclei). It detected, on average 3,152 genes 

(6,614 transcripts) for 3T3 nuclei, 1,500 genes (2,614 transcripts) for nuclei from adult 
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mouse brain, and 1,000 genes (1,337 transcripts) for nuclei from human post mortem 

brain tissue (Methods, Fig. 1b). 

 

To assess Dronc-Seq’s throughput and sensitivity, we profiled the same 3T3 cell culture 

at both the single cell (with Drop-Seq) and single nucleus (with DroNc-Seq) levels, each 

sequenced to an average depth of 120,000 reads per nucleus or cell. Both methods 

yielded high quality libraries, detecting, on average, 4,770 and 3,152 genes for cells and 

nuclei, respectively (Fig. 1c). DroNc-Seq had somewhat reduced throughput, with 2,982 / 

300,000 input nuclei passing filter (~1%), compared to 5,175 / 100,000 cells (5%) 

passing filter per run. The average expression profile of single nuclei was well-correlated 

with the average profile of single cells (Pearson r=0.87, Fig. 1d), albeit somewhat lower 

than the correlation between the average profiles of two replicates of Drop-Seq (r=0.99) 

or DroNc-Seq (r=0.99). Those genes with significantly higher expression in nuclei (e.g., 

the lncRNAs Malat1 and Meg3) or cells (mitochondrial genes Mt-nd1, Mt-nd2, Mt-nd4, 

Mt-cytb) (Fig. 1d) were consistent with their known distinct enrichment in nuclear vs. 

non-nuclear compartments (Supplementary Table 1). Interestingly, while in both 

methods over 85% of reads align to coding loci, in cells 80% of these reads map to exons, 

whereas in nuclei 56% map to exons and 32% to introns (Fig. 1e), reflecting the 

enrichment of nascent, pre-processed transcripts in the nuclear compartment3,11-14. 

 

Clustering9 of 5,592 nuclei profiled from frozen adult mouse hippocampus (3 samples) 

and prefrontal cortex (3 samples) (each with >20,000 reads per nucleus, Methods) 

revealed groups of nuclei corresponding to known cell types (e.g., GABAergic neurons) 
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and anatomical distinctions between the brain regions and within the hippocampus (e.g., 

CA1, CA3, dentate gyrus; Fig. 1f). Neurons of the same class but from different brain 

regions (and different samples) group together, as was also the case for GABAergic 

neurons, glia and endothelial cells (Fig. 1f-g). Among the non-neural cells, different glia 

cell types, including astrocytes, oligodendrocytes and oligodendrocyte precursor cells 

(OPC), readily partitioned into separate clusters, despite their relatively low RNA levels 

and correspondingly lower numbers of detected genes (Fig. 1f). Finally, DroNc-Seq of 

mouse hippocampus compared well to sNuc-Seq of the same region15, maintaining the 

ability to detect the same cell types and correlated cell-types specific signatures (Fig. 1h, 

Supplementary Table 2) with increased throughput, despite a lower number of genes 

detected per nucleus in the massively parallel setting.  

 

To demonstrate the utility of DroncSeq on archived human tissue, we profile adult (40-65 

years old) human post-mortem frozen brain tissue archived by the GTEx project16. We 

analysed 10,368 nuclei (each with >20,000 reads per nucleus) from five frozen post-

mortem archived samples of adult human hippocampus and prefrontal cortex, revealing 

distinct nuclei clusters corresponding to the known cell types in these regions (Fig. 2a). 

We readily annotated each cell type cluster post-hoc by its unique expression of known 

canonical marker genes (Fig. 2b), including rare types, such as adult neuronal stem cells 

specifically found in the hippocampus (Fig. 2a, cluster 9). Although the human archived 

samples vary in the quality of the input material, DroNc-Seq yielded high-quality 

libraries of both neurons and glia cells from each sample (Fig. 2c, bottom), and each 
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cluster was supported by multiple samples (Fig. 2c, top), demonstrating the robustness 

and utility of DroNc-Seq for clinical applications.  

Finally, we determined cell-type specific gene signatures for each human cell type cluster 

(Fig. 2d), as well as a pan-neuronal signature, a pan-glia signature, and signatures for 

neuronal stem cells and endothelial cells (Supplementary Table 3). Signatures are 

enriched for key relevant pathways (FDR<0.01, Methods). For example: Neuronal stem 

cells signatures are enriched for the expression of genes regulated by NF-kB in response 

to TNF signalling17; Endothelial cells are enriched for the expression of immune 

pathways, such as MHC I genes and interferon signalling (Fig. 2e), consistent with the 

known role of interferon signalling in modulation of the blood brain barrier18. Moreover, 

we captured finer distinctions between closely related cells (Fig. 2f and Supplementary 

Fig. 2), such as, distinct sub-types of GABAergic neurons (Fig. 2f), each robustly 

identified across biological replicates (Supplementary Fig. 3a), and often from both 

brain regions (Fig. 2g). Two of the GABAergic neuron sub-clusters are specific to the 

hippocampus (Supplementary Fig. 3a, Fig. 2f, clusters 1 and 4); these too are supported 

by multiple samples (Supplementary Fig. 3a). We associated each GABAergic neuron 

sub-cluster with a distinct combination of canonical markers (Fig. 2h), as previously 

reported in the mouse brain3,19,20.  

In conclusion, DroNc-Seq is a massively-parallel single nucleus RNA-seq method, which 

is robust, cost-effective, and easy to use. Our results show that DroNc-Seq profiling from 

both mouse and human frozen archived brain tissues successfully identified cell types and 

sub-types, rare cells, expression signatures and activated pathways, opening the way to 
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systematic single nucleus analysis of complex tissues that are either inherently 

challenging to dissociate or already archived. This will help create vital atlases of human 

tissues and clinical samples. 
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Figure 1. DroNc-Seq: Massively parallel single nucleus RNA-Seq. (a) Overview of 
DroNc-Seq. (b-e) Quality measures. (b) Distribution of number of genes detected (X 
axis) in DroNc-Seq of nuclei isolated from 3T3 mouse cells line, mouse frozen brain 
tissue, and human frozen archived brain tissue (Methods). (c) Distribution of number of 
genes detected per 3T3 cell (by Drop-Seq) or nucleus (by DroNc-Seq). (d) The percent of 
reads (Y axis) mapped to the: genome, exons, introns, intergenic regions and rRNA loci 
(X axis) of the mouse genome, for cells and nuclei. (e) Scatter plot comparing the 
average expression levels detected in single 3T3 nuclei (Y-axis, by DroNc-seq) and cells 
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(X-axis, by Drop-Seq). Red dots mark outlier genes highly expressed in one but not the 
other experiment. (f-h) DroNc-Seq analysis of adult frozen mouse hippocampus (hip) and 
prefrontal cortex (PFC) brain regions. (f) A 2 dimensional t-stochastic neighbourhood 
embedding (tSNE) plot of 5,592 DroNc-Seq nuclei profiles from adult frozen mouse 
hippocampus (hip) (3 samples) and prefrontal cortex (PFC) (2 samples, each with 
>20,000 reads per nucleus), colored by clustering and labelled post hoc by cell types and 
anatomical distinctions (1. PFC=pyramidal neurons from the PFC, 2. CA=pyramidal 
neurons from the hip CA, 3. GABAergic= GABAergic neurons, 4. DG=granule neurons 
from the hip dentate gyrus (DG), 5. ASC=astrocytes, 6. ODC=oligodendrocytes, 7. 
OPC=oligodendrocyte precursor cells, 8. EC= endothelial cells). (g) Number of nuclei (Y 
axis) from each sample (PFC = blue gradient, hip =yellow gradient) associated with each 
cluster (X axis), showing that each cluster is supported by multiple samples, and most by 
both brain regions. (h) Signatures of differentially expressed genes. Right: The average 
expression in each DroNc-Seq cluster (column) of signature genes (Methods, rows) that 
are differentially expressed in the DroNc-Seq data for each cell type cluster derived from 
the DroNc-Seq data (numbered as is f). Expression is centred per row (color bar). Right: 
The average expression in each relevant DroNc-Seq cluster (numbered as is f, column) of 
signature genes previously identified on sNuc-Seq profiles3 for the corresponding cell 
types, showing that DroNc–seq captures similar diversity in nuclear RNA profiles 
between cell types. 
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Figure 2. DroNc-Seq distinguished cell types and signatures in adult post-mortem 
human brain tissue. (a) Cell type clusters. tSNE embedding of 10,368 DroNc-Seq 
nuclei profiles from adult frozen human hippocampus and prefrontal cortex (PFC), each 
with >20,000 reads per nucleus. Clusters are color-coded and labelled post-hoc (1. 
PFC=pyramidal neurons from the PFC, 2. CA=pyramidal neurons from the hip CA, 3. 
GABAergic= GABAergic neurons, 4. DG=granule neurons from the hip dentate gyrus 
(DG), 5. ASC=astrocytes, 6. ODC=oligodendrocytes, 7. OPC=oligodendrocyte precursor 
cells, 8. MG=Microglia, 9. Stem=neuronal stem cells, 10. EC=endothelial cells) (b) 
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Marker genes. Shown is the same plot as in (a) but with cells colored by the expression 
level of known cell type marker genes. (ID4 - stem cells, GAD1 – GABAergic neurons, 
PLP1 – ODC, PTPRC – microglia, CAMK2 – excitatory neurons, PDGFRA – OPC, 
CLDN5 – EC, PPFIA2 – DG, SLC1A2 – ASC) (c) Successful DroNc-Seq across samples 
of different quality. Top: Number of nuclei (Y axis) from each sample (color code) 
associated with each cluster (X axis), showing that each cluster is supported by nuclei 
from multiple samples. Bottom: Number of nuclei passing quality filters (Y axis) 
recovered from each of 19 human tissue samples from 9 donors (X axis, sorted). (d) Cell 
type signatures. Heatmaps of the average expression of signature genes (rows; FDR 
<0.01) in nuclei in each of the clusters in (a). (e) Interferon signalling and MHC I genes 
in single endothelial cells. Shown is the expression of each gene across the nuclei in the 
endothelial cluster in (a). (f-h) Sub-types of GABAergic neurons. (f,g) tSNE embedding 
of DroNc-Seq nuclei profiles from the GABAergic neuronal cluster (in a), color coded by 
sub-clusters (f) or brain region (g).  (h) Heatmap of the average expression of known 
marker genes of sub-types of GABAergic interneurons, in each of the nuclei sub-clusters 
in (f) (columns). 
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