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Abstract 17 

An increasing number of studies highlight common brain regions and processes in 18 

mediating conscious sensory experience. While most studies have been performed in the 19 

visual modality, it is implicitly assumed that similar processes are involved in other sensory 20 

modalities. However, the existence of supramodal neural processes related to conscious 21 

perception has not been convincingly shown so far. Here, we aim to directly address this issue 22 

by investigating whether neural correlates of conscious perception in one modality can predict 23 

conscious perception in a different modality. In two separate experiments, we presented 24 

participants with successive blocks of near-threshold tasks involving tactile, visual or auditory 25 

stimuli during the same magnetoencephalography (MEG) acquisition. Using decoding 26 

analysis in the post-stimulus period between sensory modalities, our first experiment 27 

uncovered supramodal spatio-temporal neural activity patterns predicting conscious 28 

perception of the feeble stimulation. Strikingly, these supramodal patterns included activity in 29 

primary sensory regions not directly relevant to the task (e.g. neural activity in visual cortex 30 

predicting conscious perception of auditory near-threshold stimulation). We carefully replicate 31 

our results in a control experiment that furthermore show that the relevant patterns are 32 

independent of the type of report (i.e. whether conscious perception was reported by pressing 33 

or withholding a button-press). Using standard paradigms for probing neural correlates of 34 

conscious perception, our findings reveal a common signature of conscious access across 35 

sensory modalities and illustrate the temporally late and widespread broadcasting of neural 36 

representations, even into task-unrelated primary sensory processing regions. 37 

 38 
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 39 

Introduction 40 

While the brain can process an enormous amount of sensory information in parallel, 41 

only some information can be consciously accessed, playing an important role in the way we 42 

perceive and act in our surrounding environment. An outstanding goal in cognitive 43 

neuroscience is thus to understand the relationship between neurophysiological processes 44 

and conscious experiences. However, despite tremendous research efforts, the precise brain 45 

dynamics that enable certain sensory information to be consciously accessed remain 46 

unresolved. Nevertheless, progress has been made in research focusing on isolating neural 47 

correlates of conscious perception (1), in particular suggesting that conscious perception - at 48 

least if operationalized as reportability (2) - of external stimuli crucially depends on the 49 

engagement of a widely distributed brain network (3). To study neural processes underlying 50 

conscious perception, neuroscientists often expose participants to near-threshold (NT) stimuli 51 

that are matched to their individual perceptual thresholds (4). In NT experiments, there is a 52 

trial-to-trial variability in which around 50% of the stimuli at NT-intensity are consciously 53 

perceived. Because of the fixed intensity, the physical differences between stimuli within the 54 

same modality can be excluded as a determining factor leading to reportable sensation (5). 55 

Despite numerous methods used to investigate conscious perception of external events, most 56 

studies target a single sensory modality. However, any specific neural pattern identified as a 57 

correlate of consciousness needs evidence that it generalizes to some extent, e.g. across 58 

sensory modalities. We argue that this has not been convincingly shown so far. 59 

In the visual domain, it has been shown that reportable conscious experience is present 60 

when primary visual cortical activity extends towards hierarchically downstream brain areas 61 

(6), requiring the activation of frontoparietal regions in order to become fully reportable (7). 62 

Nevertheless, a recent MEG study using a visual masking task revealed early activity in 63 

primary visual cortices as the best predictor for conscious perception (8). Other studies have 64 

shown that neural correlates of auditory consciousness relate to the activation of fronto-65 

temporal rather than fronto-parietal networks (9, 10). Additionally, recurrent processing 66 
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between primary, secondary somatosensory and premotor cortices have been suggested as 67 

potential neural signatures of tactile conscious perception (11, 12). Indeed, recurrent 68 

processing between higher and lower order cortical regions within a specific sensory system 69 

is theorized to be a marker of conscious processing (6, 13, 14). Moreover, alternative theories 70 

such as the global workspace framework (15) extended by Dehaene et al. (16) postulates that 71 

the frontoparietal engagement aids in ‘broadcasting’ relevant information throughout the brain, 72 

making it available to various cognitive modules. In various electrophysiological experiments, 73 

it has been shown that this process is relatively late (~300 ms), and could be related to 74 

increased evoked brain activity after stimulus onset such as the so-called P300 signal (17–75 

19). Such late brain activities seem to correlate with perceptual consciousness and could 76 

reflect the global broadcasting of an integrated stimulus making it conscious. Taken together, 77 

theories and experimental findings argue in favor of various ‘signatures’ of consciousness from 78 

recurrent activity within sensory regions to a global broadcasting of information with 79 

engagement of fronto-parietal areas. Even though usually implicitly assumed, it is so far 80 

unclear whether similar spatio-temporal neural activity patterns are linked to conscious access 81 

across different sensory modalities. 82 

In the current study, we investigated conscious perception in different sensory systems 83 

using multivariate analysis on MEG data. Our working assumption is that brain activity related 84 

to conscious access has to be independent from the sensory modality: i.e. supramodal 85 

consciousness-related neural processes need to exhibit spatio-temporal generalization. Such 86 

a hypothesis is most ideally tested applying decoding methods to electrophysiological signals 87 

recorded while probing conscious access in different sensory modalities. The application of 88 

multivariate pattern analysis (MVPA) to EEG/MEG measurements offers increased sensitivity 89 

in detecting experimental effects distributed over space and time (20–23). MVPA is often used 90 

in combination with a searchlight method (24, 25), which involves sliding a small spatial 91 

window over the data to reveal areas containing decodable information. The combination of 92 

both methods provides spatio-temporal detection of optimal decodability, determining where, 93 

when and for how long a specific pattern is present in brain activity. Such multivariate decoding 94 
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analyses have been proposed as an alternative in consciousness research, complementing 95 

other conventional univariate approaches in order to identify neural activity predictive of 96 

conscious experience at the single trial level (26). 97 

Here, we acquired MEG data while each participant performed three different standard 98 

NT tasks on three sensory modalities with the aim of characterizing supramodal brain 99 

mechanisms of conscious perception. In the first experiment we show how neural patterns 100 

related to perceptual consciousness can be generalized over space and time within and –most 101 

importantly- between different sensory systems by using classification analysis on source-102 

level reconstructed brain activity. In an additional control experiment, we replicate the main 103 

findings and exclude the possibility that our observed patterns are due to response preparation 104 

/ selection. 105 

 106 

 Materials and Methods 107 

Participants 108 

Twenty-five healthy volunteers took part in the initial experiment conducted in Trento 109 

and twenty-one healthy volunteers took part in the control experiment performed in Salzburg. 110 

All participants presented normal or corrected-to-normal vision and no neurological or 111 

psychiatric disorders. Three participants for the initial experiment and one participant for the 112 

control experiment were excluded from the analysis due to excessive artifacts in the MEG data 113 

leading to an insufficient number of trials per condition after artifact rejection (less than 30 114 

trials for at least one condition). Additionally, within each experiment six participants were 115 

discarded from the analysis because false alarms rate exceeded 30% and/or near-threshold 116 

detection rate was over 85% or below 15% for at least one sensory modality (due to threshold 117 

identification failure and difficulty to use response button mapping during the control 118 

experiment, also leaving less than 30 trials for at least one relevant condition in one sensory 119 

modality: detected or undetected). The remaining 16 participants (11 females, mean age: 28.8 120 

years; SD: 3.4 years) for the initial experiment and 14 participants (9 females, mean age: 26.4 121 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 21, 2019. ; https://doi.org/10.1101/115535doi: bioRxiv preprint 

https://doi.org/10.1101/115535


 5 

years; SD: 6.4 years) for the control experiment, reported normal tactile and auditory 122 

perception. The ethics committee of the University of Trento and University of Salzburg 123 

respectively, approved the experimental protocols that were used with the written informed 124 

consent of each participant. 125 

  126 

Stimuli 127 

To ensure that the participant did not hear any auditory cues caused by the piezo-128 

electric stimulator during tactile stimulation, binaural white noise was presented during the 129 

entire experiment (training blocks included). Auditory stimuli were presented binaurally using 130 

MEG-compatible tubal in-ear headphones (SOUNDPixx, VPixx technologies, Canada). Short 131 

bursts of white noise with a length of 50 ms were generated with Matlab and multiplied with a 132 

Hanning window to obtain a soft on- and offset. Participants had to detect short white noise 133 

bursts presented near hearing threshold (27). The intensity of such transient target auditory 134 

stimuli was determined prior to the experiment in order to emerge from the background 135 

constant white noise stimulation. Visual stimuli were Gabor ellipsoid (tilted 45°) back-projected 136 

on a translucent screen by a Propixx DLP projector (VPixx technologies, Canada) at a refresh 137 

rate of 180 frames per second. The stimuli were presented 50 ms in the center of the screen 138 

at a viewing distance of 110 cm. Tactile stimuli were delivered with a 50 ms stimulation to the 139 

tip of the left index finger, using one finger module of a piezo-electric stimulator (Quaerosys, 140 

Schotten, Germany) with 2 × 4 rods, which can be raised to a maximum of 1 mm. The module 141 

was attached to the finger with tape and the participant’s left hand was cushioned to prevent 142 

any unintended pressure on the module (28). For the control experiment (conducted in another 143 

laboratory; i.e. Salzburg), visual, auditory and tactile stimulation setups were identical but we 144 

used a different MEG/MRI vibrotactile stimulator system (CM3, Cortical Metrics). 145 

  146 

Task and design 147 

The participants performed three blocks of a NT perception task. Each block included 148 

three separate runs (100 trials each) for each sensory modality, tactile (T), auditory (A) and 149 
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visual (V). A short break (~1 min) separated each run and longer breaks (~4 min) were 150 

provided to the participants after each block. Inside a block, runs alternated in the same order 151 

within subject and were pseudo-randomized across subjects (i.e. subject 1 = TVA-TVA-TVA; 152 

subject 2 = VAT-VAT-VAT; …). Participants were asked to fixate on a central white dot in a 153 

grey central circle at the center of the screen throughout the whole experiment to minimize 154 

eye movements. 155 

A short training run with 20 trials was conducted to ensure that participants had 156 

understood the task. Then, in three different training sessions prior to the main experiment, 157 

participants’ individual perceptual thresholds (tactile, auditory and visual) were determined in 158 

the shielded room. For the initial experiment, a 1-up/1-down staircase procedure with two 159 

randomly interleaved staircases (one up- and one downward) was used with fixed step sizes. 160 

For the control experiment we used a Bayesian active sampling protocol to estimate 161 

psychometric slope and threshold for each participant (60). 162 

The main experiment consisted of a detection task (Figure 1A). At the beginning of 163 

each run, participants were told that on each trial a weak stimulus (tactile, auditory or visual 164 

depending on the run) could be presented at random time intervals. 500 ms after the target 165 

stimulus onset, participants were prompted to indicate whether they had felt the stimulus with 166 

an on-screen question mark (maximal response time: 2 s). Responses were given using MEG-167 

compatible response boxes with the right index finger and the middle finger (response button 168 

mapping was counterbalanced among participants). Trials were then classified into hits 169 

(detected) and misses (undetected stimulus) according to the participants’ answers. Trials with 170 

no response were rejected. Catch (above perceptual threshold stimulation intensity) and Sham 171 

(absent stimulation) trials were used to control false alarms and correct rejection rates across 172 

the experiment. Overall, there were 9 runs with 100 trials each (in total 300 trials for each 173 

sensory modality). Each trial started with a variable interval (1.3–1.8 s, randomly-distributed) 174 

followed by an experimental near-threshold stimulus (80 per run), a sham stimulus (10 per 175 

run) or a catch stimulus (10 per run) of 50 ms each. Each run lasted for approximately 5 min. 176 

The whole experiment lasted for ~1h. 177 
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Identical timing parameters were used in the control experiment. However, a specific 178 

response screen design was used to control for motor response mapping. For each trial the 179 

participants must use a different response mapping related to circle’s color surrounding the 180 

question mark during response screen. Two colors (blue or yellow) were used and presented 181 

randomly after each trial during the control experiment. One color was associated to the 182 

following response mapping rule: “press the button only if there is a stimulation” (for near-183 

threshold condition: “detected”) and the other color was associated to the opposite response 184 

mapping: “press a button only if there is no stimulation” (for near-threshold condition: 185 

“undetected”). The association between one response mapping and a specific color (blue or 186 

yellow) was fixed for a single participant but was predefined randomly across different 187 

participant. Importantly, by delaying the response-mapping to after the stimulus presentation 188 

in a -for the individual- unpredictable manner, neural patterns during relevant periods 189 

putatively cannot be confounded by response selection / preparation. Both experiments were 190 

programmed in Matlab using the open source Psychophysics Toolbox (61).  191 

  192 

MEG data acquisition and preprocessing 193 

MEG was recorded at a sampling rate of 1kHz using a 306-channel (204 first order 194 

planar gradiometers, 102 magnetometers) VectorView MEG system for the first experiment in 195 

Trento, and Triux MEG system for the control experiment in Salzburg (Elekta-Neuromag Ltd., 196 

Helsinki, Finland) in a magnetically shielded room (AK3B, Vakuumschmelze, Hanau, 197 

Germany). Before the experiments, individual head shapes were acquired for each participant 198 

including fiducials (nasion, pre-auricular points) and around 300 digitized points on the scalp 199 

with a Polhemus Fastrak digitizer (Polhemus, Vermont, USA). Head positions of the individual 200 

relative to the MEG sensors were continuously controlled within a run using five coils. Head 201 

movements did not exceed 1 cm within and between blocks. 202 

Data were analyzed using the Fieldtrip toolbox (62) and the CoSMoMVPA toolbox (63) 203 

in combination with MATLAB 8.5 (MathWorks Natick, MA). First, a high-pass filter at 0.1 Hz 204 

(FIR filter with transition bandwidth 0.1Hz) was applied to the continuous data. Then the data 205 
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were segmented from 1000 ms before to 1000 ms after target stimulation onset and down-206 

sampled to 512 Hz. Trials containing physiological or acquisition artifacts were rejected. A 207 

semi-automatic artifact detection routine identified statistical outliers of trials and channels in 208 

the datasets using a set of different summary statistics (variance, maximum absolute 209 

amplitude, maximum z-value). These trials and channels were removed from each dataset. 210 

Finally, the data were visually inspected and any remaining trials and channels with artifacts 211 

were removed manually. Across subjects, an average of 5 channels (± 2 SD) were rejected. 212 

Bad channels were excluded from the whole data set. A detailed report of remaining number 213 

of trials per condition for each participant can be found in supplementary material (see SI 214 

Appendix Table S1). Finally, in all further analyses and within each sensory modality for each 215 

subject, an equal number of detected and undetected trials was randomly selected to prevent 216 

any bias across conditions (64). 217 

 218 

Source analyses 219 

Neural activity evoked by stimulus onset was investigated by computing event-related 220 

fields (ERF). For all source-level analyses, the preprocessed data was 30Hz lowpass-filtered 221 

and projected to source-level using an LCMV beamformer analysis (65). For each participant, 222 

realistically shaped, single-shell headmodels (66) were computed by co-registering the 223 

participants’ headshapes either with their structural MRI or – when no individual MRI was 224 

available (3 participants and 2 participants, for the initial experiment and the control 225 

experiment respectively) – with a standard brain from the Montreal Neurological Institute (MNI, 226 

Montreal, Canada), warped to the individual headshape. A grid with 1.5 cm resolution based 227 

on an MNI template brain was morphed into the brain volume of each participant. A common 228 

spatial filter (for each grid point and each participant) was computed using the leadfields and 229 

the common covariance matrix, taking into account the data from both conditions (detected 230 

and undetected; or catch and sham) for each sensory modality separately. The covariance 231 

window for the beamformer filter calculation was based on 200 ms pre- to 500 ms post-232 

stimulus. Using this common filter, the spatial power distribution was then estimated for each 233 
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trial separately. The resulting data were averaged relative to the stimulus onset in all 234 

conditions (detected, undetected, catch and sham) for each sensory modality. Only for 235 

visualization purposes a baseline correction was applied to the averaged source-level data by 236 

subtracting a time-window from 200 ms pre-stimulus to stimulus onset. Based on a significant 237 

difference between event-related fields of the two conditions over time for each sensory 238 

modality, the source localization was performed restricted to specific time-windows of interest. 239 

All source images were interpolated from the original resolution onto an inflated surface of an 240 

MNI template brain available within the Caret software package (67). The respective MNI 241 

coordinates and labels of localized brain regions were identified with an anatomical brain atlas 242 

(AAL atlas; (68)) and a network parcellation atlas (29). 243 

  244 

Multivariate Pattern Analysis (MVPA) decoding 245 

MVPA decoding was performed for the period 0 to 500 ms after stimulus onset based 246 

on normalized (z-scored) single trial source data downsampled to 100Hz (i.e. time steps of 10 247 

ms). We used multivariate pattern analysis as implemented in CoSMoMVPA (63) in order to 248 

identify when and what kind of common network between sensory modality is activated during 249 

the near-threshold detection task. We defined two classes for the decoding related to the task 250 

behavioral outcome (detected and undetected). For decoding within the same sensory 251 

modality, single trial source data were randomly assigned to one of two chunks (half of the 252 

original data). 253 

For decoding of all sensory modalities together, single trial source data were pseudo-254 

randomly assigned to one of the two chunks with half of the original data for each sensory 255 

modality in each chunk. Data were classified using a 2-fold cross-validation procedure, where 256 

a Bayes-Naive classifier predicted trial conditions in one chunk after training on data from the 257 

other chunk. For decoding between different sensory modality, single trial source data of one 258 

modality were assigned to one testing chunk and the trials from other modalities were 259 

assigned to the training chunk. The number of target categories (e.g. detected / undetected) 260 
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was balanced in each training partition and for each sensory modality. Training and testing 261 

partitions always contained different sets of data. 262 

First, the temporal generalization method was used to explore the ability of each 263 

classifier across different time points in the training set to generalize to every time point in the 264 

testing set (21). In this analysis we used local neighborhoods features in time space (time 265 

radius of 10ms: for each time step we included as additional features the previous and next 266 

time sample data point). We generated temporal generalization matrices of task decoding 267 

accuracy (detected/undetected), mapping the time at which the classifier was trained against 268 

the time it was tested. Generalization of decoding accuracy over time was calculated for all 269 

trials and systematically depended on a specific between or within sensory modality decoding. 270 

The reported average accuracy of the classifier for each time point corresponds to the group 271 

average of individual effect-size: the ability of classifiers to discriminate ‘detected’ from 272 

‘undetected’ trials. We summarized time generalization by keeping only significant accuracy 273 

for each sensory modalities decoding. Significant classifiers’ accuracies were normalized 274 

between 0 and 1: 275 

     𝑦𝑡 =  
𝑥𝑡−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
     (1) 276 

Where 𝑥 is a variable of all significant decoding accuracies and 𝑥𝑡 is a given significant 277 

accuracy at time 𝑡. Normalized accuracies (𝑦𝑡) were then averaged across significant testing 278 

time and decoding conditions. The number of significant classifier generalization across 279 

testing time points and the relevant averaged normalized accuracies were reported along 280 

training time dimension (see Figure 3B and 5B). For all significant time points previously 281 

identified we performed a ‘searchlight’ analysis across brain sources and time neighborhood 282 

structure. In this analysis we used local neighborhoods features in source and time space. We 283 

used a time radius of 10ms and a source radius of 3 cm. All significant searchlight accuracy 284 

results were averaged over time and only the maximum 10% significant accuracy were 285 

reported on brain maps for each sensory modality decoding condition (Figure 4) or for all 286 

conditions together (Figure 5C). 287 
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Finally, we applied the same type of analysis to all sensory modalities by taking all 288 

blocks together with detected and undetected NT trials (equalized within each sensory 289 

modality). For the control experiment, we equalized trials based on the 2x2 design with 290 

detection report (“detected” or “undetected”) and type of response (“button press = response” 291 

or “no response”), so that we get the same number of trials inside each category (i.e. class) 292 

for each sensory modality. We performed similar decoding analysis by using different classes 293 

definition: either “detected vs. undetected” or “response vs. no response” (SI Appendix, Figure 294 

S3B and C). 295 

  296 

Statistical analysis 297 

Detection rates for the experimental trials were statistically compared to those from the 298 

catch and sham trials, using a dependent-samples T-Test. Concerning the MEG data, the 299 

main statistical contrast was between trials in which participants reported a stimulus detection 300 

and trials in which they did not (detected vs. undetected). 301 

The evoked response at the source level was tested at the group level for each of the 302 

sensory modalities. To eliminate polarity, statistics were computed on the absolute values of 303 

source-level event-related responses. Based on the global average of all grid points, we first 304 

identified relevant time periods with maximal difference between conditions (detected vs. 305 

undetected) by performing group analysis with sequential dependent T-tests between 0 and 306 

500 ms after stimulus onset using a sliding window of 30 ms with 10ms overlap. P-values were 307 

corrected for multiple comparisons using Bonferroni correction. Then, in order to derive the 308 

contributing spatial generators of this effect, the conditions ‘detected’ and ‘undetected’ were 309 

contrasted for the specific time periods with group statistical analysis using nonparametric 310 

cluster-based permutation tests with Monte Carlo randomization across grid points controlling 311 

for multiple comparisons (69). 312 

The multivariate searchlight analysis results discriminating between conditions were 313 

tested at the group level by comparing the resulting individual accuracy maps against chance 314 

level (50%) using a non-parametric approach implemented in CoSMoMVPA (63) adopting 315 
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10.000 permutations to generate a null distribution. P-values were set at p<0.005 for cluster 316 

level correction to control for multiple comparisons using a threshold-free method for clustering 317 

(70), which has been used and validated for MEG/EEG data (38, 71). The time generalization 318 

results at the group level were thresholded using a mask with corrected z-score>2.58 (or 319 

pcorrected<0.005) (Figure 3A and 5A). Time points exceeding this threshold were identified and 320 

reported for each training data time course to visualize how long time generalization was 321 

significant over testing data (Figure 3B and 5B). Significant accuracy brain maps resulting 322 

from the searchlight analysis on previously identified time points were reported for each 323 

decoding condition. The maximum 10% of averaged accuracies were depicted for each 324 

significant decoding cluster on brain maps (Figure 4 and 5). 325 

 326 

 327 

Results 328 

Behavior 329 

We investigated participants’ detection rate for NT, Sham and Catch trials separately 330 

for the initial and the control experiment. During the initial experiment participants had to wait 331 

for a response screen and press a button on each trial to report their perception (Figure 1A). 332 

During the control experiment, however a specific response screen was used to control for 333 

motor response mapping. At each trial the participants must use a different response mapping 334 

related to circle’s color surrounding the question mark during response screen (see Figure 335 

1C). For the initial experiment and across all participants (N = 16), detection rates for NT 336 

experimental trials were: 50% (SD: 11%) for auditory runs, 56% (SD: 12%) for visual runs and 337 

55% (SD: 8%) for tactile runs. The detection rates for the catch trials were 92% (SD: 11%) for 338 

auditory runs, 90% (SD: 12%) for visual runs and 96% (SD: 5%) for tactile runs. The mean 339 

false alarm rates in sham trials were 4% (SD: 4%) for auditory runs, 4% (SD: 4%) for visual 340 

runs and 4% (SD: 7%) for tactile runs (Figure 1B). Detection rates of NT experimental trials in 341 

all sensory modality significantly differed from those of catch trials (auditory: T15 = −14.44, p 342 
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< 0.001; visual: T15 = −9.47, p < 0.001; tactile: T15 = −20.16, p < 0.001) or sham trials 343 

(auditory: T15 = 14.66, p < 0.001; visual: T15 = 16.99, p < 0.001; tactile: T15 = 20.66, p < 344 

0.001). Similar results were observed for the control experiment across all participants (N = 345 

14), detection rates for NT experimental trials were: 52% (SD: 17%) for auditory runs, 43% 346 

(SD: 17%) for visual runs and 42% (SD: 12%) for tactile runs. The detection rates for the catch 347 

trials were 97% (SD: 2%) for auditory runs, 95% (SD: 5%) for visual runs and 95% (SD: 4%) 348 

for tactile runs. The mean false alarm rates in sham trials were 11% (SD: 4%) for auditory 349 

runs, 7% (SD: 6%) for visual runs and 7% (SD: 6%) for tactile runs (Figure 1B). Detection rates 350 

of NT experimental trials in all sensory modality significantly differed from those of catch trials 351 

(auditory: T13 = −9.64, p < 0.001; visual: T13 = −10.78, p < 0.001; tactile: T13 = −14.75, p < 352 

0.001) or sham trials (auditory: T13 = 7.85, p < 0.001; visual: T13 = 6.24, p < 0.001; tactile: 353 

T13 = 9.75, p < 0.001). Overall the behavioral results are comparable to other studies (27, 354 

28). Individual reaction-times and performances are reported in supplementary materials (see 355 

SI Appendix Table S2). 356 

  357 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 21, 2019. ; https://doi.org/10.1101/115535doi: bioRxiv preprint 

https://doi.org/10.1101/115535


 14 

 358 
Figure 1. Experimental designs and behavioral results. (A-B) Initial experiment; (C-D) Control experiment; (A) 359 

After a variable inter-trial interval between 1.3-1.8 s during which participants fixated on a central white dot, a 360 

tactile/auditory/visual stimulus (depending on the run) was presented for 50 ms at individual perceptual intensity. 361 

After 500 ms, stimulus presentation was followed by an on-screen question mark, and participants indicated their 362 

perception by pressing one of two buttons (i.e. stimulation was ‘present’ or ‘absent’) with their right hand. (B & D) 363 

The group average detection rates for NT stimulation were around 50% across the different sensory modalities. 364 

Sham trials in white (no stimulation) and Catch trials in dark (high intensity stimulation) were significantly different 365 

from the NT condition in grey within the same sensory modality for both experiments. Error bars depict the standard 366 

deviation. (C) Identical timing parameters were used in the control experiment; however, a specific response screen 367 

design was used to control for motor response mapping. Each trial the participants must use a different response 368 

mapping related to circle’s color surrounding the question mark during response screen. Two colors (blue or yellow) 369 

were used and presented randomly during the control experiment. One color was associated to the following 370 

response mapping rule: “press the button only if there is a stimulation” (for near-threshold condition: “detected”) 371 

and the other color was associated to the opposite response mapping: “press a button only if there is no stimulation” 372 

(for near-threshold condition: “undetected”). The association between one response mapping and a specific color 373 

(blue or yellow) was fixed for a single participant but was predefined randomly across different participant. 374 

 375 
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 376 

Event-related neural activity 377 

To compare poststimulus processing for ‘detected’ and ‘undetected’ trials, evoked 378 

responses were calculated at the source level for the initial experiment. As a general pattern 379 

over all sensory modalities, source-level event-related fields (ERF) averaged across all brain 380 

sources show that stimuli reported as detected resulted in pronounced post-stimulus neuronal 381 

activity, whereas unreported stimuli did not (Figure 2A). Similar general patterns were 382 

observed for the control experiment with identical univariate analysis (see SI Appendix Figure 383 

S2). ERFs were significantly different over the averaged time-course with specificity 384 

dependent on the sensory modality targeted by the stimulation. Auditory stimulations reported 385 

as detected elicit significant differences compared to undetected trials first between 190 and 386 

210 ms, then between 250 and 425ms and finally between 460 and 500 ms after stimulus 387 

onset (Figure 2A – left panel). Visual stimulation reported as detected elicits a large increase 388 

of ERF amplitude compared to undetected trials from 230-250ms and from 310-500 ms after 389 

stimulus onset (Figure 2A – middle panel). Tactile stimulation reported as detected elicits an 390 

early increase of ERF amplitude between 95 and 150 ms then a later activation between 190 391 

and 425 ms after stimulus onset (Figure 2A – right panel). Source localization of these specific 392 

time periods of interest were performed for each modality (Figure 2B). The auditory condition 393 

shows significant early source activity mainly localized to bilateral auditory cortices, superior 394 

temporal sulcus and right inferior frontal gyrus, whereas the late significant component was 395 

mainly localized to right temporal gyrus, bilateral precentral gyrus, left inferior and middle 396 

frontal gyrus. A large activation can be observed for the visual conditions including primary 397 

visual areas, fusiform and calcarine sulcus and a large fronto-parietal network activation 398 

including bilateral inferior frontal gyrus, inferior parietal sulcus and cingulate cortex. The early 399 

contrast of tactile evoked response shows a large difference in the brain activation including 400 

primary and secondary somatosensory areas, but also a large involvement of right frontal 401 

activity. The late contrast of tactile evoked response presents brain activation including left 402 
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frontal gyrus, left inferior parietal gyrus, bilateral temporal gyrus and supplementary motor 403 

area. 404 

 405 

 406 
Figure 2. NT trials event-related responses for different sensory modalities: auditory (left panel), tactile 407 

(middle panel) and visual (right panel). (A) Source-level absolute value (baseline-corrected for visualization 408 

purpose) of group event-related average (solid line) and standard error of the mean (shaded area) in the detected 409 

(red) and undetected (blue) condition for all brain sources. Significant time windows are marked with bottom solid 410 

lines (black line: pBonferroni-corrected < 0.05) for the contrast detected vs. undetected trials. The relative source 411 

localization maps are represented in part B for the averaged time period. (B) Source reconstruction of the significant 412 

time period marked in part A for the contrast detected vs. undetected trials, masked at pcluster-corrected < 0.05. 413 

 414 

Decoding and multivariate searchlight analysis across time and brain regions 415 

We investigated the generalization of brain activation over time within and between the 416 

different sensory modalities. To this end, we performed a multivariate analysis of 417 

reconstructed brain source-level activity from the initial experiment. Time generalization 418 

analysis presented as a time-by-time matrix between 0 and 500 ms after stimulus onset shows 419 

significant decoding accuracy for each condition (Figure 3A). As can be seen on the black 420 

cells located on the diagonal in Figure 3A, cross-validation decoding was performed within the 421 

same sensory modality. However, off-diagonal red cells of Figure 3A represent decoding 422 
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analysis between different sensory modality. Inside each cell, data reported along the diagonal 423 

(dashed line) reveal average classifiers accuracy for a specific time point used for the training 424 

and testing procedure, whereas off-diagonal data reveal a potential classifier ability to 425 

generalize decoding based on different training and testing time points procedure. Indeed, we 426 

observed the ability of the same classifier trained on a specific time point to generalize its 427 

decoding performance over several time points (see off-diagonal significant decoding inside 428 

each cell of Figure 3A). In order to appreciate this result, we computed the average duration 429 

of significant decoding on testing time points based on the different training time points (Figure 430 

3B). On average, decoding within the same modality, the classifier generalization starts after 431 

200 ms and we observed significant maximum classification accuracy after 400 ms (see Figure 432 

3B - top panel). 433 

Early differences specific to the tactile modality have been grasped by the classification 434 

analysis by showing significant decoding accuracy already after 100 ms without strong time 435 

generalization for this sensory modality, where auditory and visual conditions show only 436 

significant decoding starting around 250-300 ms after stimulus onset. Such an early dynamic 437 

specific to the tactile modality could explain off-diagonal accuracy for all between modalities 438 

decoding where the tactile modality was involved (Figure 3A). Interestingly, time generalization 439 

analysis concerning between sensory modality decoding (red cells in Figure 3A) revealed 440 

significant maximal generalization at around 400 ms (see Figure 3B - bottom panel). In 441 

general, the time-generalization analysis revealed time-clusters restricted to late brain activity 442 

with maximal decoding accuracy on average after 300 ms for all conditions. The similarity of 443 

this time-cluster over all three sensory modalities suggests the generality of such brain 444 

activation. 445 

Restricted to the respective significant time clusters (Figure 3A), we investigated the 446 

underlying brain sources resulting from the searchlight analysis within and between conditions 447 

(Figure 4). The decoding within the same sensory modality revealed higher significant 448 

accuracy in relevant sensory cortex for each specific modality condition (see Figure 4; brain 449 

plots on diagonal). In addition, auditory modality searchlight decoding revealed also a strong 450 
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involvement of visual cortices (Figure 4: first row, first column), while somatosensory modality 451 

decoding revealed parietal regions involvement such as precuneus (Figure 4: third row, third 452 

column). However, decoding searchlight analysis between different sensory modalities 453 

revealed higher decoding accuracy in fronto-parietal brain regions in addition to diverse 454 

primary sensory regions (see Figure 4; brain plots off diagonal). 455 

 456 

Figure 3. Time-by-time generalization analysis within and between sensory modality (for NT trials). 3x3 457 

matrices of decoding results represented over time (from stimulation onset to 500 ms after). (A) Each cell presents 458 

the result of the searchlight MVPA with time-by-time generalization analysis where classifier accuracy was 459 

significantly above chance level (50%) (masked at pcorrected<0.005). For each temporal generalization matrix, a 460 

classifier was trained at a specific time sample (vertical axis: training time) and tested on all time samples (horizontal 461 

axis: testing time). The black dotted line corresponds to the diagonal of the temporal generalization matrix, i.e., a 462 

classifier trained and tested on the same time sample. This procedure was applied for each combination of sensory 463 

modality, i.e. presented on the first row is decoding analysis performed by classifiers trained on the auditory 464 

modality and tested on auditory, visual or tactile (1st, 2nd and 3rd column respectively) for the two classes: detected 465 

and undetected trials. The cells contoured with black line axes (on the diagonal) correspond to within the same 466 

sensory modality decoding, whereas the cells contoured with red line axes correspond to between different 467 

modalities decoding. (B) Summary of average time-generalization and decoding performance over time for all 468 

within modality analysis (top panel: average based on the 3 black cells of part A) and between modalities analysis 469 

(bottom panel: average based on the 6 red cells of part A). For each specific training time point on the x-axis the 470 

average duration of classifier’s ability to significantly generalize on testing time points was computed and reported 471 
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on the y-axis. Additionally, normalized average significant classifiers accuracies over all testing time for a specific 472 

training time point is represented as a color scale gradient. 473 

 474 

 475 
Figure 4. Spatial distribution of significant searchlight MVPA decoding within and between sensory 476 

modality. Source brain maps for average decoding accuracy restricted to the related time-generalization significant 477 

time-by-time cluster (cf. Figure 3A). Brain maps were thresholded by only showing 10% maximum significant 478 

decoding accuracy for each respective time-by-time cluster. Dark solid lines separate all between sensory modality 479 

decoding brain maps from the cross-validation within one sensory modality decoding analysis on the diagonal. 480 

 481 

Decoding and multivariate searchlight analysis over all sensory modalities 482 

We further investigated the decoding generalizability of brain activity patterns across 483 

all sensory modalities in one analysis by decoding detected versus undetected trials over all 484 

blocks together (Figure 5A). Initially, we performed this specific analysis with data from the 485 

first experiment and separately with data from the control experiment in order to replicate our 486 

findings and control for potential motor response bias (see SI Appendix Figure S3). By 487 
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delaying the response-mapping to after the stimulus presentation in a random fashion during 488 

the control experiment, neural patterns during relevant periods putatively cannot be 489 

confounded by response selection / preparation. Importantly, analysis performed on the 490 

control experiment used identical data in SI Appendix figure S3 B and C, but only trials 491 

assignation (i.e. 2 classes definition) for decoding was different: “detected versus undetected” 492 

(SI Appendix, Figure S3B) or “response versus no response” (SI Appendix, Figure S3C). Only 493 

decoding of conscious report (i.e. “detected versus undetected”) showed significant time-by-494 

time clusters (SI Appendix, Figure S3 A&B). This result rules out a confounding influence of 495 

the motor report and again strongly suggests the existence of a common supramodal pattern 496 

related to conscious perception. 497 

We investigated the similarity of time-generalization results by merging data from both 498 

experiments (see Figure 5A). We tested for significant temporal dynamics of brain activity 499 

patterns across all our data, taking into account that less stable or similar patterns would not 500 

survive group statistics. Overall the ability for one classifier to generalize across time seems 501 

to increase linearly after a critical time point around 100ms. We show that whereas the early 502 

patterns (<250ms) are rather short-lived, temporal generalizability increases showing stability 503 

values after ~350ms (Figure 5B). To follow-up on potential generators underlying these 504 

temporal patterns, we depicted the searchlight results from three specific time-windows (W1, 505 

W2 and W3) regarding the time-generalization decoding and the distribution of normalized 506 

accuracy over time (Figure 5C). W1 from stimulation onset to 250ms depicts the first significant 507 

searchlight decoding found in this analysis; W2 from 250ms to 350ms depicts the first 508 

generalization period where decoding accuracy is low; finally W3 from 350ms to 500ms 509 

depicts the second time-generalization period where higher decoding accuracy were found 510 

(Figure 5B). The depiction of the results highlights precuneus, insula, anterior cingulate cortex, 511 

frontal and parietal regions mainly involved during the first significant time-window (W1), while 512 

the second time-window (W2) main significant cluster is located over left precentral motor 513 

cortices. Interestingly the late time-window (W3) shows stronger decoding over primary 514 

sensory cortices where accuracy are the highest: lingual and calcarine sulcus, superior 515 
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temporal and Heschl gyrus and right postcentral gyrus (Figure 5C). The sources depicted by 516 

the searchlight analysis, suggest strong overlaps with functional brain networks related to 517 

attention and saliency detection (29), especially during the earliest time periods (W1 and W2) 518 

(see SI Appendix, Figure S4). 519 

 520 

 521 
 522 
Figure 5. Time-by-time generalization and brain searchlight decoding analysis across all sensory 523 

modalities (for NT trials). Compiled results for both initial and control experiments.  (A) Decoding results 524 

represented over time (from stimulation onset to 500 ms after. Result of the searchlight MVPA with time-by-time 525 

generalization analysis of “detected” versus “undetected” trials across all sensory modalities. Figure shows the 526 

time-clusters where classifier accuracy was significantly above chance level (50%) (masked at pcorrected<0.005). 527 

The black dotted line corresponds to the diagonal of the temporal generalization matrix, i.e., a classifier trained and 528 

tested on the same time sample. Horizontal black lines separate time windows (W1, W2 and W3) (B) Summary of 529 

average time-generalization and decoding performance over time (A). For each specific training time point on the 530 

x-axis the average duration of classifier’s ability to significantly generalize on testing time points was computed and 531 

reported on the y-axis. Additionally, normalized average significant classifiers accuracies over all testing time for a 532 
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specific training time point is represented as a color scale gradient. Based on this summary three time windows 533 

were depicted to explore spatial distribution of searchlight decoding (W1 : [0 250]ms ; W2 : [250 350]ms ; W3 : [350 534 

500]ms). (C) Spatial distribution of significant searchlight MVPA decoding for the significant time clusters depicted 535 

in (A) and (B). Brain maps were thresholded by only showing 10% maximum significant (pcorrected<0.005) decoding 536 

accuracy for each respective time-by-time cluster. 537 

 538 

 539 

Discussion 540 

For a neural process to be a strong contender as a neural correlate of consciousness, 541 

it should show some generalization e.g. across sensory modalities. This has –despite being 542 

implicitly assumed- never been directly tested. To pursue this important issue, we investigated 543 

a standard NT experiment targeting three different sensory modalities in order to explore 544 

common spatio-temporal brain activity related to conscious perception using multivariate and 545 

searchlight analysis. Our findings focusing on the post-stimulus evoked responses are in line 546 

with previous studies for each specific sensory modality, showing stronger brain activation 547 

when the stimulation was reported as perceived (27, 28, 30). Importantly by exploiting the 548 

advantages of decoding, we provide for the first time direct evidence of common 549 

electrophysiological correlates of conscious access across sensory modalities. 550 

 551 

ERF time-course differences across sensory modalities 552 

Our first results suggest significant temporal and spatial differences when univariate 553 

contrast between ‘detected’ and ‘undetected’ trials were used to investigate sensory-specific 554 

evoked responses. At the source level, the global group average activity revealed different 555 

significant time periods according to the sensory modality targeted where modulations of 556 

evoked responses related to detected trials can be observed (Figure 2A). In the auditory and 557 

visual modalities, we found mainly significant differences after 200 ms. In the auditory domain, 558 

perception- and attention-modulated sustained responses around 200 ms from sound onset 559 

were found in bilateral auditory and frontal regions using MEG (31, 32). Using MEG, a previous 560 
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study confirmed awareness-related effects from 240 to 500 ms after target presentation during 561 

visual presentation (33). 562 

Our results show early differences in the transient responses (for the contrast detected 563 

versus undetected) for the somatosensory domain compared to the other sensory modalities, 564 

and have been previously identified using EEG at around 100 and 200 ms (34). Moreover, 565 

previous MEG studies have shown early brain signal amplitude modulation (<200ms) related 566 

to tactile perception in NT tasks (28, 35, 36). Such differences are less pronounced regarding 567 

the contrast between catch and sham trials across sensory modality (see SI Appendix Figure 568 

S1). Early ERF difference for the tactile NT trials can be due to the experimental setup where 569 

auditory and visual targets stimulation emerged from a background stimulation (constant white 570 

noise and screen display) whereas tactile stimuli remain isolated transient sensory targets. 571 

Despite these differences the time generalization analysis was able to grasp similar brain 572 

activity occurring at different time scale across these three sensory modalities. 573 

Source localizations performed with univariate contrasts for each sensory modality 574 

suggest differences in network activation with some involvement of similar brain regions in late 575 

time windows such as: inferior frontal gyrus, inferior parietal gyrus and supplementary motor 576 

area. However, qualitatively similar topographic patterns observed in such analysis cannot 577 

easily be interpreted as similar brain processes. The important question is whether these 578 

neural activity patterns within a specific sensory modality can be used to decode subjective 579 

report of the stimulation within a different sensory context. The multivariate decoding analysis 580 

we performed in the next analysis aimed to answer this question. 581 

 582 

Identification of common brain activity across sensory modalities 583 

Multivariate decoding analysis was used to refine spatio-temporal similarity across 584 

these different sensory systems. In general, stable characteristics of brain signals have been 585 

proposed as a transient stabilization of distributed cortical networks involved in conscious 586 

perception (37). Using the precise time resolution of MEG signal and time-generalization 587 

analysis, we investigated the stability and time dynamics of brain activity related to conscious 588 
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perception across sensory systems. The presence of similar brain activity can be revealed 589 

between modalities using such a technique, even if significant ERF modulation is distributed 590 

over time. As expected, between-modality time-generalization analysis involving tactile runs 591 

show off-diagonal significant decoding due to early significant brain activity for the tactile 592 

modality (Figure 3A). This result suggests the existence of early but similar brain activity 593 

patterns related to conscious perception in the tactile domain compared to auditory and visual 594 

modalities. 595 

Generally, decoding results revealed a significant time cluster starting around 300 ms 596 

with high classifier accuracy that speaks in favor of a late neural response related to conscious 597 

report. Actually, we observed the ability of the same classifier trained on specific time points 598 

with a specific sensory modality condition to generalize its decoding performance over several 599 

time points with the same or another sensory modality. This result speaks in favor of 600 

supramodal brain activity patterns that are consistent and stable over time. In addition, the 601 

searchlight analysis across brain regions provides an attempt to depict brain network 602 

activation during these significant time-generalization clusters. Note that, as seen also in 603 

multiple other studies using decoding (22, 23, 38, 39), the average accuracy can be relatively 604 

low and yet remains significant at the group level. Note however that contrary to many other 605 

cognitive neuroscientific studies using decoding (39, 40), we do not apply the practice of 606 

"subaveraging" trials to create "pseudo"-single trials, which naturally boosts average decoding 607 

accuracy (41). Also, the statistical rigor of our approach is underlined by the fact that the 608 

reported decoding results are restricted to highly significant effects (Pcorrected<0.005; see 609 

Methods section). Critically, we replicated our results -applying the identical very conservative 610 

statistical thresholds- within a second control experiment when looking at conscious 611 

perception report contrast independently from motor response activity (SI Appendix, Figure 612 

S3). Our results conform to those of previous studies in underlying the importance of late 613 

activity patterns as crucial markers of conscious access (7, 42) and decision-making 614 

processes (10, 43).  615 
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Furthermore in this study, we explored the brain regions underlying time dynamics of 616 

conscious report by using brain source searchlight decoding. Knowing the limitations of such 617 

MEG analysis, especially using low spatial resolution (3cm), we restricted depiction of results 618 

to the main 10% maximum decoding accuracy over all searchlight brain regions. Some of the 619 

brain regions found in our searchlight analysis, namely deep brain structures such as the 620 

insula and anterior cingulate cortex are shared with other functional brain networks such as 621 

the salience network (44, 45). Also the superior frontal and parietal cortex have been 622 

previously found to be activated by attention-demanding cognitive tasks (46). Hence, we would 623 

like to emphasize that one cannot conclude from our study that the observed network identified 624 

in figure 5C is exclusively devoted to conscious report. Brain networks identified in this study 625 

share common brain regions and dynamics with the attentional and salience networks that 626 

remain relevant mechanisms to performing a NT-task. Interestingly this part of the network 627 

seems to be more involved during the initial part of the process, prior to motor brain region 628 

involvement (Figure 5C and SI Appendix Figure S4).  629 

Indeed, some brain regions involved in motor planning were identified with our analysis, 630 

such as precentral gyrus, and could in principle relate to the upcoming button-press to report 631 

the subjective perception of the stimulus. We specifically targeted such motor preparation bias 632 

within the control experiment, in which the participant was unable to predict a priori how to 633 

report a conscious percept (i.e. pressing or withholding a button press) until the response 634 

prompt appeared. Importantly, we did not find any significant decoding when trials used for 635 

the analysis where sorted under response type (e.g. with or without an actual button press 636 

from the participant) compared to subjective report of detection (see SI Appendix, Figure S3 637 

B and C). Such findings could speak in favor of generic motor planning (47) or decision 638 

processes related activity in such forced-choice paradigms (48, 49). 639 

 640 

Late involvement of all primary sensory cortices 641 

Some within-modalities decoding results highlighted unspecific primary cortices 642 

involvement while decoding was performed on another sensory modality. For instance, during 643 
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auditory near-threshold stimulation, the main decoding accuracy of neural activity predicting 644 

conscious perception was found in auditory cortices but also in visual cortices (see Figure 4: 645 

first row, first column). Interestingly, our final analysis revealed and confirmed that primary 646 

sensory regions are strongly involved in decoding conscious perception across sensory 647 

modalities. Moreover, such brain regions were mainly found during the last time period 648 

investigated following the first main involvement of fronto-parietal areas (see Figure 5).  These 649 

important results suggest that sensory cortices from a specific modality contain sufficient 650 

information to allow the decoding perceptual conscious access in another different sensory 651 

modality. These results suggest a late active role of primary cortices over three different 652 

sensory systems (Figure 5). One study reported efficient decoding of visual object categories 653 

in early somatosensory cortex using fMRI and multivariate pattern analysis (50). Another fMRI 654 

experiment suggested that sensory cortices appear to be modulated via a common 655 

supramodal frontoparietal network, attesting to the generality of attentional mechanism toward 656 

expected auditory, tactile and visual information (51). However, in our study we demonstrate 657 

how local brain activity from different sensory regions reveal a specific dynamic allowing 658 

generalization over time to decode the behavioral outcome of a subjective perception in 659 

another sensory modality. These results speak in favor of intimate cross-modal interactions 660 

between modalities in perception (52). 661 

Finally, our results suggest that primary sensory regions remain important at late 662 

latency after stimulus onset for resolving stimulus perception over different sensory modalities. 663 

We propose that this network could enhance the processing of behaviorally relevant signals, 664 

here the sensory targets. Although the integration of classically unimodal primary sensory 665 

cortices into a processing hierarchy of sensory information is well established (53), some 666 

studies suggest multisensory roles of primary cortical areas (54, 55). 667 

Today it remains unknown how such multisensory responses could be related to an 668 

individual’s unisensory conscious percepts in humans. Since sensory modalities are usually 669 

interwoven in real life, our findings of a supramodal network that may subserve both conscious 670 
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access and attentional functions have a higher ecological validity than results from previous 671 

studies on conscious perception for single sensory modality. 672 

Actually, our results are in line with an ongoing debate in neuroscience asking to what 673 

extent multisensory integration emerges already in primary sensory areas (55, 56). Animal 674 

studies provided compelling evidence suggesting that the neocortex is essentially 675 

multisensory (57). Here our findings speak in favor of a multisensory interaction in primary and 676 

associative cortices. Interestingly a previous an fMRI study by using multivariate decoding 677 

revealed distinct mechanisms governing audiovisual integration in primary and associative 678 

cortices needed for spatial orienting and interactions in a multisensory world (58). 679 

 680 

Conclusion 681 

We successfully characterized common patterns over time and space suggesting 682 

generalization of consciousness-related brain activity across different sensory NT tasks. Our 683 

study paves the way for future investigation using techniques with more precise spatial 684 

resolution such as functional magnetic resonance imaging to depict in detail the brain network 685 

involved. However, to our knowledge this is the first study to report significant spatio-temporal 686 

decoding across different sensory modalities near-threshold perception experiment. Indeed, 687 

our results speak in favor of the existence of stable and supramodal brain activity patterns, 688 

distributed over time and involving seemingly task-unrelated primary sensory cortices. The 689 

stability of brain activity patterns over different sensory modalities presented in this study is, 690 

to date, the most direct evidence of a common network activation leading to conscious access 691 

(2). Moreover, our findings add to recent remarkable demonstrations of applying decoding and 692 

time generalization methods to MEG (21–23, 59), and show a promising application of MVPA 693 

techniques to source level searchlight analysis with a focus on the temporal dynamics of 694 

conscious perception. 695 

 696 

 697 
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