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Abstract

Motivation: Comparing and aligning protein sequences is an essential task in

bioinformatics. More speci�cally, local alignment tools like BLAST are widely

used for identifying conserved protein sub-sequences, which likely correspond to

protein domains or functional motifs. However, to limit the number of false

positives, these tools are used with stringent sequence-similarity thresholds and

hence can miss several hits, especially for species that are phylogenetically distant

from reference organisms. A solution to this problem is then to integrate

additional contextual information to the procedure.

Results: Here, we propose to use domain co-occurrence to increase the

sensitivity of pairwise sequence comparisons. Domain co-occurrence is a strong

feature of proteins, since most protein domains tend to appear with a limited

number of other domains on the same protein. We propose a method to take this

information into account in a typical BLAST analysis and to construct new

domain families on the basis of these results. We used Plasmodium falciparum as

a case study to evaluate our method. The experimental �ndings showed an

increase of 16% of the number of signi�cant BLAST hits and an increase of 28%

of the proteome area that can be covered with a domain. Our method identi�ed

2 473 new domains for which, in most cases, no model of the Pfam database

could be linked. Moreover, our study of the quality of the new domains in terms

of alignment and physicochemical properties show that they are close to that of

standard Pfam domains.

Availability: Software implementing the proposed approach and the

Supplementary Data are available at:

https://gite.lirmm.fr/menichelli/pairwise-comparison-with-cooccurrence
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Background

Proteins are macromolecules essential for the structuring and functioning of liv-

ing cells. Proteins generally have di�erent functional regions which are conserved

along evolution (Zmasek and Godzik, 2011) and are commonly termed as �func-

tional motifs� or �domains�. Domains/motifs are found in di�erent proteins and

combinations (Bornberg-Bauer and Albà, 2013) and, as such, are functional protein

subunits above the raw amino-acid level. Domain identi�cation is thus an essential

task in bioinformatics.

Two kinds of approaches can be used to identify these regions of a target protein.

Pro�le analysis, also known as sequence-pro�le comparison, is a powerful method.

This non ab initio method requires a database of protein domains. Pfam is one of

the most widely used databases (Finn et al, 2016). In this database, each family of

domains is de�ned from a manually selected and aligned set of protein sequences,

which is used to learn a pro�le hidden Markov model (HMM) of the domain. To

identify protein domains, each HMM of the database is used to compute a score

that measures the similarity between the sequence and the domain. If the score

is above a prede�ned threshold, the presence of the domain in the protein can be

asserted. However this method may miss several domains when applied to an organ-

ism that is phylogenetically distant from the species used to train the HMM. This

may happen for two reasons. First, if the protein sequence has encountered many

evolution events, the HMM of the database may poorly �t the sequence speci�city of

the distant organism. Di�erent approaches can be used in this case; see for example

(Terrapon et al, 2012) for a few solutions to this problem. Another possibility is that

some domains of the query organism are simply absent from the database. Databases

like Pfam were built with eukaryotic sequences that originate mostly from plants,

fungi and animals, and very few from the other groups. Hence, the proportion of

proteins covered by a Pfam domain in plants, fungi and animals is around twice

that found in the other super-groups on the eukaryote tree (Chromalveolates and

Excavates) (Ghouila et al, 2014). For example, in Plasmodium falciparum, which is

the organism responsible for the deadliest form of malaria, only 22% of its protein

residues are covered by a Pfam domain while this percentage is as high as 44% for

both yeast (Saccharomyces cerevisiae) and humans.
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An alternative approach for identifying protein domains is to run an ab initio

approach based on sequence-sequence comparison using pairwise comparison tools

like FASTA (Pearson and Lipman, 1988) or BLAST (Altschul et al, 1990). These

tools look for local similarities between a query protein and a sequence database

like Uniprot (The UniProt Consortium, 2015). Because domains are sub-sequences

conserved throughout evolution, local similarities between proteins usually corre-

spond to these regions. Tools like BLAST use speci�c scoring functions for assessing

similarities, and provide estimates of p-values (and e-values) under speci�c score

distribution hypotheses. As sequence-sequence approaches do not include informa-

tion from other homologous sequences, they may be more prone to false positives

than sequence-pro�le approaches. Therefore, they are usually used with stringent

score thresholds and hence may also miss several homologies. Di�erent versions

of BLAST were developed to improve the sensitivity. For example, PSI-BLAST

(Altschul, 1997), which constructs a position-speci�c score matrix (PSSM) to per-

form incremental searches, PHI-BLAST (Zhang et al, 1998), which uses a motif to

initiate hits, or DELTA-BLAST (Boratyn et al, 2012), which searches a database of

pre-constructed PSSMs before searching a protein-sequence database to yield better

homology detection.

Surprisingly, so far domain co-occurrence has not been used to improve the sen-

sitivity of sequence-sequence approaches in proteins. Domain co-occurrence is a

strong feature of proteins, based on the fact that many protein domains tend to

appear with a limited number of other domains on the same protein (Bornberg-

Bauer and Albà, 2013). A well known example are domains PAZ and PIWI, which

are frequently found together (see Figure 1): when assessing proteins with the PAZ

domain, the PIWI domain is frequently found. Functional studies have shown that

domains that co-occur in proteins are more likely to display similar functions than

domains that appear in separate proteins (Ye, 2004). Co-occurrence information has

already been used for improving the sensitivity of sequence-pro�le approaches (Ter-

rapon et al, 2009). However, it could also be of great help for sequence-sequence

homology detection. For example, Figure 2 reports homologies found between a

Plasmodium falciparum protein and three proteins from Uniprot. Most of these hits

have moderate e-values and, taken independently, cannot be considered with high

con�dence. However, every hit actually co-occurs with one or two other hits on
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the same protein, and these co-occurrences are present in all three proteins. Taken

altogether, this information adds strong evidence on the identi�ed homologies.

Here we propose a new method to take co-occurrence into account in a typical

BLAST analysis and to construct new domain families based on these results. Our

procedure is based on the analysis of co-occurring hit density along the query pro-

tein. We designed a procedure that uses this density to identify hit clusters that sign

domain boundaries. We present our approach and propose a statistical test to assess

the relevance of the identi�ed clusters. Finally, we apply our approach to the entire

P. falciparum proteome and show that, on this organism, it allows us to increase

the number of signi�cant hits by 16%. Moreover, our procedure for identifying new

domain families enables us to increase proteome area that can be covered with a

domain by 28%.

Results

Our aim is to improve the sensitivity of pairwise comparison tools such as BLAST

using co-occurrence information. The core of our approach is a new scoring func-

tion that takes co-occurrence information into account for assessing BLAST hits.

This new scoring function allows us to identify interesting hits that would not be

considered solely on the basis of BLAST results because of too high e-values.

Discovering domains from BLAST results

The initial step is to perform a BLAST search of the query protein against a protein

sequence database. In the experiments below, we used the UniRef50 database and

the BLASTP software package (Altschul et al, 1990) with default parameters and

a max e-value set at 10−2. This search gives us a list of all similarities found for the

query sequence. Each pair of similar sub-sequences is called a hit. All hits smaller

than 30 residues are removed, and in case of overlapping hits on a target protein only

the hit with the lowest e-value is considered. Note that BLAST controls sequence

complexity by automatically discarding low-complexity sub-sequences (default pa-

rameters).

Next we use the BLAST results to discover potential domains. Our hypothesis is

that domains are the most conserved protein sub-sequences. Under this hypothesis,

domains should correspond to regions with the highest number of hits in a classical

BLAST search. Hence, we use the density of hits per residue to identify the potential
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domains of a given protein. The main drawback of this approach is that it can

potentially produce many false positives. First, high peaks can also be due to low

complexity regions that have not been properly masked by BLAST. Second, even if

a peak corresponds to a domain, all hits that compose the peak are not necessarily

true occurrences of this domain, and the proportion of contaminants can be high in

certain cases. To avoid a maximum of false positives, our solution is to look at hits

for which we have found a co-occurring hit. We de�ne a co-occurring hit as another

hit involving the same query and target proteins and that does not overlap with the

former hit on any two proteins. Hence, rather than working on the hit density, we

work on the co-occurring hit density, i.e. the density of hits with a co-occurring hit

(see Figure 3). The goal is then to identify clusters of homologous hits that would

represent protein domains. This is a di�cult problem because all hits in a peak

do not have the same length and are not perfectly aligned. Moreover, two adjacent

domains on the query protein can also be adjacent in certain target proteins. In this

case, the two domains would appear as a single long hit and may create ambiguity.

We developed an iterative heuristic for this problem. The method focuses on the

co-occurring hit density, and starts by identifying the position associated with the

highest peak. All hits covering this speci�c residue are selected and used to de�ne

the boundaries of the domain. This is done by iteratively selecting an homoge-

neous subset of these hits, i.e. by incrementally removing hits whose begin and end

positions are too far from the other selected hits (see Methods for details on the al-

gorithm). At the end of this process we identify a cluster of similar hits, i.e. similar

in context because they share the co-occurrence property, and similar in sequence

because they are located on the same region on the query protein. The cluster de-

�nes a protein domain family, with the di�erent hits being di�erent occurrences of

the domain in di�erent proteins. The region covered by this domain is then masked,

and the whole procedure is resumed until no new domain can be identi�ed on the

protein.

Evaluating cluster relevance

Selecting only hits that have a co-occurring hit should allow us to avoid many

false-positives. However, co-occurrence can also be detected simply by chance. To

control this, for each cluster (domain family), we compare the number of hits with
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co-occurring hits to the total number of hits in the cluster, and we estimate the

probability of observing as many co-occurring hits in a cluster by chance. We use a

binomial test for this purpose, and the p-value is computed as:

p-value =
n∑

k=m

(
n

k

)
pk(1− p)n−k. (1)

m is the number of target proteins with a hit in the cluster and a co-occurring hit

outside the cluster; it is given by the red curve of Figure 3. n is the total number

of target proteins with a hit in the cluster; it is given by the blue curve of Figure 3.

p is the prior probability that a hit in the cluster has a co-occurring hit outside

the cluster, given the total number of hits outside the cluster. This probability

depends on the query protein and on the cluster. For example, some proteins may

have several low complexity regions with a lot of hits on UniRef50. In this case, it

is easier for a hit in a given cluster to have co-occurring hits outside the cluster.

Prior probability p is estimated by the total number of proteins with a hit on the

query protein outside the cluster, divided by the total number of proteins in the

database. It is conveniently computed by N−n+m
U , with N being the total number

of proteins with a hit on the query protein and U the total number of proteins in the

database (UniRef50). The number of proteins overlapping a cluster are computed

on the position with the highest density of hits. If several residues have the same

density, the central position is selected. In the following, clusters with a p-value

higher than 10−2 are discarded.

Estimating the number of false discoveries

The procedure described above is intended to be applied to all proteins of a given

organism. For each discovered domain, the computed p-values allows us to check

that the number of co-occurring hits cannot be found by mere chance. This ensures

that the hits that compose a cluster likely occur from the same domain family.

However, this does not ensure that the query protein is homologous to this particular

family. Indeed, a protein may fortuitously possess two regions that resemble two

domains that are frequently found together. In this case, we may observe many

co-occurring hits, but the protein regions will not be homologous to the identi�ed

domain families. Although this should rarely happen, it is important to estimate the
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number of false positives detected by our procedure when it is applied to a whole

proteome.

We designed a statistical procedure for this purpose. First, our approach is run

on all proteins of the query organism, and the number of domains below a given

p-value threshold is computed. Then all BLAST hits are randomly shu�ed among

all proteins, and the procedure is resumed on these random data. By comparing

the number of domains �identi�ed� in the random data to the number of domains

identi�ed in real data, we can get an estimate of the proportion of false positives

of our procedure. However, it is important to preserve the homology relationship

between hits during the randomization process. Hence, the hits are not shu�ed

independently among the proteins but by entire clusters (see Methods). Once the

hits have been randomly distributed on proteins, the number of co-occurring hits

are computed in each cluster, and a p-value is estimated as above. The number of

clusters below the chosen p-value threshold is computed, and the entire procedure

is resumed several times (e.g. 10 times) to get a better estimate of the number

of domains that can be identi�ed in random data. This number is then used to

estimate the FDR of the procedure:

FDR =
mean number of discovered domains under H0

number of discovered domains in real data
. (2)

Learning new models

Once new domain families have been identi�ed with the above procedure, an addi-

tional and optional step is to learn an HMM for each cluster. Only clusters with at

least 5 sequences are considered to learn a model. We �rst realigned the sequences

of each cluster using MUSCLE software (Edgar, 2004), with default parameters.

Flanking positions with less than 75% residues were removed. Then, each multiple

sequence alignment (MSA) was used to train a HMM representing the corresponding

domain family using HMMER (Eddy, 1998) (see Methods).

Integrating known domains into the procedure

In order to focus on regions that are not already covered by a known domain, an

interesting improvement is to include known domain information in the procedure.

This is done at two levels. First, prior to the BLAST search, regions already covered

by a Pfam domain are masked by replacing the covered residues by the unknown
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residue (X) which is ignored by BLAST. Next, when searching for co-occurring hits,

known Pfam domains are also considered as potential co-occurring hits. Namely, if

a query protein A has a BLAST hit on a target protein B, and if both A and

B have the same Pfam domain D (and that D does not overlap the considered

hit on A and B), then the BLAST hit is considered as having a co-occurring hit.

Integrating known domain information has two advantages. First, it enables us to

speed up the BLAST search by masking part of the query sequences. Second, by

integrating accurate homology information, it also minimizes the chance of detecting

false positive co-occurrences and improves the quality of the results.

Experiments on P. falciparum proteins

We applied our procedure to Plasmodium falciparum proteins. Each protein se-

quence (release February 21 2016, on Uniprot) was used to run a BLAST search

against the UniRef50 database (October 2015) (Suzek et al, 2015) restricted to

eukaryotic sequences, which gathers 2 784 993 sequences from 2 753 reference organ-

isms with a maximum of 50% similarity between each pair of sequences.

We �rst ran our approach without integrating the known Pfam domains in the

procedure (see Table 1). We identi�ed a total of 19 100 clusters (4 633 with at least

5 hits) distributed on 4 394 di�erent proteins (1 915 with a cluster with at least 5

hits). Among the 19 100 clusters, 9 337 have a p-value below 1% (3 531 with at least

5 hits) on 2 633 di�erent proteins (1 524 with a cluster with at least 5 hits). These

clusters cover 37.96% of residues in the P. falciparum proteome. Clusters with at

least 5 hits cover 13.87% of residues. The FDR of the procedure is estimated at 6%.

Among the 3 531 clusters with at least 5 hits, 2 286 overlap an already known Pfam

domain�only strong overlaps, i.e. greater than one third of the smallest domain,

are considered here. We then assessed the extent to which our automatic procedure

is able to recover the domains of the Pfam database. To answer this question, we

generated the HMM associated with the 3 531 clusters and we compared this HMM

to that of the overlapping Pfam domain. We used HHPred software (Soding et al,

2005) for this purpose (see Methods). Given two HMMs, this tool computes a local

alignment of the HMMs with an associated p-value. From the HMM alignment, we

also computed an overlap ratio by taking the ratio between the overlap length and

the size of the longest HMM into account (see Figure 4). In most cases (87%), the
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HMM/HMM alignment had a signi�cant p-value below 10−10, indicating that our

HMM resembles (at least locally) the Pfam HMM. Moreover in 54% of cases, the

HMM obtained with our cluster has an overlap with the Pfam HMM greater than

80%.

We next challenged our approach for identifying new domains not already covered

by a Pfam domain. As explained above, we included all known Pfam domains in

the procedure, i.e. all P. falciparum protein regions covered by a Pfam domain

were masked before the BLAST search and were used as potential co-occurring hits

during the co-occurrence analysis. This new analysis allowed us to identify a total

of 10 442 clusters (2 572 with at least 5 hits) distributed on 3 680 di�erent proteins

(1 430 with a cluster with at least 5 hits - see Table 1). Among the 10442 clusters,

8530 have a p-value below 1% (2 473 with at least 5 hits) on 3 039 di�erent proteins

(1 378 with a cluster with at least 5 hits). The MSAs of these domain families,

and the HMMs that can be learned from the 2 473 families with at least 5 hits are

provided in the Supplementary Data. These clusters (which are not covered by Pfam

domains) cover 28.28% of the residues in the P. falciparum proteome. Clusters with

at least 5 hits cover 7.12% of residues. For comparison, Pfam domains cover 22%

of this proteome. The FDR of the procedure is estimated at 5.15%. Clusters with

a p-value < 1% gather a total of 335 311 hits. Among these, 46 960 have moderate

e-values (> 10−6) and might not be considered in a classical whole-genome BLAST

analysis. For comparison, the total number of BLAST hits with an e-value below

10−6 is 288 351. Hence, with the 10−6 threshold, the co-occurrence property allowed

us to increase the number of considered hits by 16%.

We �rst investigated the origin of the hits selected by our procedure, compared to

all BLAST hits and the whole Uniref50 database. Each hit was classi�ed according

to its target species in the �ve super-groups covering Eukaryota: Chromalveolata,

Excavata, Rhizaria, Unikont, and Viridiplantae (Keeling et al, 2005). Figure 5.(a)

reports the species distributions in all BLAST hits, only in the hits selected by our

procedure, and in all proteins of the Uniref50 database. We observed slight enrich-

ment of Chromalveolates in the BLAST hits compared to the Uniref50 database,

and substantial enrichment of this super-group in the hits selected by co-occurrence.

This was somewhat expected, considering that the proportion of false positives is
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likely lower for hits in the same super-group as P. falciparum than for hits outside

this super-group. Moreover, this may also indicate that some of the newly discovered

domains are speci�c to Chromalveolates. To assess this hypothesis, we computed

the proportion of hits from Chromalveolates species for each of the 2 473 domains

(see Figure 5.(b)). We found that 326 domains had a strong majority (> 90%) of

hits from Chromalveolates species and hence could be considered as speci�c to this

super-group.

Domain assessment

We next investigated the quality of the newly discovered domains. In all the follow-

ing, we use the domains identi�ed with the procedure integrating the already known

Pfam domains. We used di�erent quality measures (see below) and compared our

results to the same measures applied to Pfam domain families. In order to com-

pare families built on similar sequences, we restricted our analysis to Pfam families

present on a P. falciparum protein, and the associated MSAs were restricted to se-

quences from Uniref50. Moreover, to avoid any bias due to the alignment step, Pfam

families were realigned using the same tool and parameters we used to produce our

models. Next, in order to assess the bene�ts of using co-occurrence information,

we also conducted the same experiments on domains that were predicted using the

total hit density instead of the co-occurring hit density. Namely, we used the same

iterative procedure for identifying hit clusters, but applied it directly to the hit

density (in blue on Figure 3).

It is hard to assess the quality of a multiple sequence alignment in the absence

of other information. We propose to use four types of measures for this. The �rst

measure (Figure 6(a)) is the alignment homogeneity. A good alignment usually has

a minority of insertions and deletions on each position. This can be measured by the

proportion of residues on each position. Namely, this proportion should be either

very low (when a few sequences have an insert at this position) or high (when a few

sequences have a deletion at this position). We measure the homogeneity by

Homogeneity =
1

p× s

p∑
i=1

Max(r(i); r(i)), (3)

with s and p representing the number of sequence and the length of the MSA, re-

spectively, while r(i) and r(i) represent the number of residues and indels (insertion
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or deletion) at position i, respectively. With this formula, a good alignment should

have a score that tends to 1.

The second measure (Figure 6(b)) is the entropy of match states in the align-

ment. Entropy is based on amino-acid classes. Brie�y, amino acids can be grouped

according to physicochemical features. We used the same de�nition of classes as in

the Seaview software package (Gouy et al, 2010).

Entropy =
1

m

∑
i∈MatchStates

∑
c∈Classes

−pc(i) log2(pc(i)), (4)

withm representing the number of match states in the MSA. We consider a position

as a match state if the number of residues at the position is higher than the number

of indels. pc(i) represents the proportion of residues belonging to class c at position

i. In a good alignment, all residues on a match state tend to belong to the same

amino-acid class and the entropy tends to 0. In a poor alignment, the distribution

of residue classes is equi-probable and the entropy tends to ≈ 3.

The third measure (Figure 6(c)) is the hydrophobicity score:

Hydrophobicity =
Number of hydrophobic match states

Number of match states
(5)

We consider a match state as hydrophobic if the majority of residues at this po-

sition are considered as hydrophobic (residues L, A, F, W, V, M, I, P, C and G).

The hydrophobic residue proportion is commonly used as a measure of globularity,

because globular domains have a stable amount of strong hydrophobic amino acids

(about one third of the sequence) (Dill, 1985). Note that contrary to homogeneity

and entropy it is di�cult to establish what would be a �good� hydrophobic score.

So here we will essentially compare our results to that of Pfam domains.

The last measure (Figure 6(d)) is the complexity of sub-sequences in the MSA.

Complexity =
∑

r∈amino acids

−pr log2(pr), (6)

with pr representing the relative frequency of amino acid r in the sequence at hand.

Contrary to the three previous measures, which are based on the columns (positions)

of the alignments, this one is applied on each sequence independently. Measuring

the sequence complexity is a useful way of identifying repetitive sequences which

are characteristic of non-globular regions (Wootton, 1994).
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As we can see on Figure 6, domain families identi�ed with co-occurrence obtain

quality scores relatively close to that of standard Pfam families. On the contrary,

results obtained with all BLAST hits without the co-occurrence �ltering are far

from the standard Pfam families. This illustrates the interest of the approach and

show that co-occurrence provides a useful way to �lter out results of BLAST search

at genome scale.

Domain comparisons

We next assessed if some of the new domains were similar to known Pfam domain

families that would not have been identi�ed on the P. falciparum proteins (remem-

ber that the known Pfam occurrences have been masked in this experiment), or

to other newly discovered domains (the same family can be identi�ed several time

on given proteome). We thus ran several pro�le/pro�le comparisons using HHPred

(Soding et al, 2005). As above, we computed, for each HMM alignment, a p-value

and an overlap ratio between the two HMMs. We �rst ran an all versus all com-

parison of Pfam HMMs. We identi�ed, for each Pfam HMM, the other Pfam HMM

that most resembles it. Figure 7(a) reports the p-values and overlap ratios of this

analysis. As we can see, most Pfam HMM pairs have a p-value > 10−10 and/or an

overlap ratio below 0.8. Hence we used these two cuto�s as a rough criterion to

decide whether two HMMs are similar or not. Figure 7(b) reports the results of the

comparisons between our new HMMs and Pfam HMMs. With the above criteria,

we found that, on the 2 473 models we produced, only 168 are strictly similar to a

Pfam model and hence likely constitute an undetected occurrence of a known Pfam

domain family. We noted however that a large part of our models get p-values be-

low 10−10, indicating that they locally resemble a Pfam family. While such local

resemblances is quite common between Pfam families themselves (see the numerous

points in the top-left quarter of Figure 7(a)) it is possible that part of these new

domains are actually partial occurrences of already known Pfam families. Genuine

partial occurrences seems quite rare events (Prakash and Bateman, 2015), but it is

known that alignment and annotation artifacts may result in partial domain obser-

vation (Triant and Pearson, 2015). To test this hypothesis, we compared the size of

the new domain to that of the Pfam family that most resembles it. Surprisingly for

the 1955 domains which have good p-value (< 10−10) but low overlap (< 80%) with
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a Pfam family, the new domain is longer than the Pfam family in 89% of the time.

Moreover, most of the time the Pfam model is very short (see Figure 7(c)). Interest-

ingly we observe the same type of short domains in the Pfam vs. Pfam comparison

when restricting to domain pairs with good p-value and low overlap (Figure 7(c)).

Hence, rather than partial domains, the newly identi�ed domain could rather be

viewed as extensions of smaller Pfam domains, something already quite common in

the Pfam database. Finally, we compared our models with each other (Figure 7(d)).

1 215 of the new models did not seem to have close similarities with other new mod-

els, while 1 258 models were similar to one or more other new models. This higher

proportion of redundancy compared to that observed against the Pfam database

was somewhat expected, because domain families often have multiple occurrences

in one proteome (Vogel et al, 2005).

Comparison against other automatically generated databases

We compared the results obtained by our procedure to Pfam-B and ProDom (Ser-

vant, 2002), two automatically generated domain databases. Pfam-B was part of

the Pfam database until release 26. Actually, Pfam contained two types of domain

families until this release: the high quality and manually curated Pfam-A fami-

lies (�classical� Pfam domains, which are usually and until here in this article just

called �Pfam�), and Pfam-B families, which were automatically generated by the

ADDA algorithm (Heger and Holm, 2003) on the basis of all parts of Uniprot se-

quences not already covered by a Pfam-A occurrence. ProDom is a protein domain

family database constructed automatically by clustering homologous segments with

the MKDOM2 procedure based on recursive PSI-BLAST searches on the Uniprot

database. Among the 460 125 families contained in Pfam-B (release 26), we found

651 families with at least 5 di�erent proteins of the UniRef50 database. These 651

families cover about 9.70% of the Plasmodium falciparum proteome. The ProDom

database (December 2015 release) contains numerous very small families less than

30 nucleotides long. To be consistent with our experiments and the Pfam database,

these families were not considered in the following. Among all 3 739 157 families

contained in ProDom, we found 1 453 families longer than 30 nucleotides, with at

least 5 proteins of the UniRef50 database, one protein of P. falciparum, and that

did not overlap with a Pfam-A domain. These families cover about 3.99% of the P.
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falciparum proteome. For comparison, clusters with at least 5 hits identi�ed by our

approach cover 7.12% of P. falciparum residues. Hence, in terms of coverage, our

approach (7.12%) lies between ProDom (3.99%) and Pfam-B (9.70%).

We realigned these families using the same tool and parameters used to produce

our models, and for each approach we computed the quality scores presented above

(see Figure 8). As we can see, ProDom, and more importantly Pfam-B families,

have very low homogeneity scores compared to Pfam-A families. This illustrates the

fact that these databases sometimes include in one family di�erent sequences that

cannot be aligned and that should be clustered apart. On the contrary, they have

good entropy scores, even better than that of Pfam-A families. This, however, is a

mechanistic e�ect of the very low number of sequences that compose these families

when they are restricted to UniRef50 sequences, as illustrated in Figure 8 (e). For

Pfam-B, for example, 80% of the considered families have less than 15 sequences in

UniRef50. Hence, it seems that many families include only highly similar sequences,

which obviously provides good entropy scores, but also induces a lack of diversity.

On the contrary, by using co-occurrence information, our approach allows selection

of more diverse sequences without the issue of introducing more false positives. In

terms of hydrophobicity, ProDom has scores comparable to that of our approach

and Pfam-A, while Pfam-B achieves slightly lower scores. Finally, ProDom and

Pfam-B have comparable sequence complexity, but slightly lower than that of our

approach and Pfam-A. Altogether, these results suggest that the domains built

using co-occurrence are globally of better quality than those found in Pfam-B and

ProDom. Note, however, that the purpose of these two databases is di�erent from

and somewhat wider than ours. Indeed, their goal is to build a library that pools all

domain families of every species, while our aim is to �nd new domain occurrences

for a speci�c species (here P. falciparum).

Test against previous release

As an ultimate test, we ran our analysis using an older version of Pfam (release 26)

and computed the number of new domains of the 28 release that this 26 analysis

allowed us to recover. Over the 92 domains referenced in Pfam 28 and not in Pfam

26, we identi�ed a domain on the same region for 54 of them. Careful inspection

of these domains revealed that the new domains often have strong similarity with
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the domains identi�ed by our approach. For example, the domain we identi�ed on

protein O77317_PLAF7 shows high similarity with the domain family PF16876 of

the 28 release (p-value = 4 ∗ 1e−31 and overlap = 0.99).

Gene ontology annotations

The Gene Ontology (GO) Consortium (Ashburner et al, 2000) provides a structured

vocabulary describing gene functions according to three points of view (biological

process, molecular function, and cellular component). Each ontology is organized

as a directed acyclic graph where each node is associated with a term, while edges

describe specialization and generalization relationships. The GO Consortium also

provides a list of protein annotations for most sequenced organisms. With this

information, we tried to associate an annotation with the new domains identi�ed

by our procedure. For each domain (cluster), we gathered annotations associated

with proteins from where the di�erent hits belong to (cluster members). Then we

parsed the GO, and if more than 95% of annotated sequences shared the same

GO term, we annotated the domain with this function. We set a minimum of 5

annotated sequences in a cluster to avoid irrelevant annotations. GO terms that

are direct children of the root node were not considered as signi�cant annotations

and were ignored. Among the 2 473 newly identi�ed domains, we can thus propose

an annotation for 1 394 domains (see Supp. Data). Among these, for 1 273 domains

the proposed annotation is consistent with already known annotations of the P.

falciparum protein where the domain has been identi�ed. For 121 domains, the

proposed annotations extend the known annotations.

To go one step further, we tried to identify other occurrences of our new families

in the P. falciparum proteome. Because of duplication events, it is quite usual to

�nd multiple occurrences of the same domain in a proteome (Vogel et al, 2005).

We ran a HMMScan of our 2 473 new families against P. falciparum proteins with

an e-value threshold of 10−10. If two hits overlapped, only hits with the best e-

value was kept. This way, we were able to identify 843 new domain occurrences on

671 di�erent proteins (with 638 di�erent models) that were not covered by a Pfam

or one of our previously identi�ed domains. These new occurrences allowed us to

propose new annotations for 34 additional proteins.
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Discussion and conclusion

Here we proposed a new method to take co-occurrence into account in a typi-

cal BLAST analysis and to construct new domain families on these results. Our

method is based on the analysis of co-occurring hit density along the query protein.

We designed a clustering procedure to identify clusters of similar hits that sign

domain boundaries and a statistical test to assess the relevance of the identi�ed

clusters. Moreover, we have presented a procedure to estimate the proportion of

false positives in a set of clusters.

We used Plasmodium falciparum as a case study to evaluate our approach. Our

experiments showed an increase of 16% of the number of signi�cant hits and an

increase of 28% of the covered proteome. We identi�ed 8 530 signi�cant hit clusters.

The false detection rate was estimated at around 5%. We used these clusters to

construct new domain families and to enrich databases of known domains. These

models showed quality close to that of standard Pfam models and quite moderate

redundancies with respect to original Pfam models, which indicates that they likely

belong to new domain families that are not yet referenced in the database. Con-

versely, we identi�ed more redundancies among the generated models themselves,

which indicated the presence of multiple occurrences of a same domain family in

the P. falciparum proteome.

Our approach could be improved in several ways. First, clustering is done by an

ad-hoc procedure which involves two parameters that are set empirically. Hence

an interesting improvement would be to integrate an automatic procedure able

to �nd parameter values that best �t the protein at hand. Similarly, the quality

of generated HMMs depends on the parameters of the alignment softwares (here

BLAST and MUSCLE). We used standard parameter values in this study, but

other parameters could certainly help in building better models. This is especially

true for species like P. falciparum, which have amino-acid distributions far from

the classical distribution observed in other species. Finally, the main drawback of

our approach is that it cannot annotate all proteins of a given species. For P.

falciparum, for example, our procedure is unable to identify any cluster in a total of

1 685 proteins. The main reason for this is the existence of mono-domain proteins

for which domain co-occurrence is of no use. In this case, it would be interesting

to identify other features that could replace domains in the co-occurrence analysis.
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For example, tandem repeat sequences or disordered regions that constitute other

classes of conserved protein sequences may be helpful in certain cases.

Methods

Identifying domains from BLAST hits

We used BLASTP software (Altschul et al, 1990), release 2.2.28 with default pa-

rameters and a max e-value set at 10−2. All hits smaller than 30 residues were

removed, and in case of overlapping hits on a target protein only the hit with the

lowest e-value was considered. Then hits were clustered according to algorithm 1.

Each cluster corresponded to a putative domain.

Algorithm 1 Clustering of similar hits
Input: H : a set of co-occurrent hits on a query protein

Output: C : a set of hit clusters. Each cluster C ∈ C is de�ned by a set of hits and a start Cs and

end Ce position on the protein.

C ← ∅
do

H ∗ ← H minus all hits overlapping any cluster C ∈ C

Compute hits density with H ∗

P ← position with highest density

C ← all hits covering P

Cs ← lowest starting position in C

Ce ← highest ending position in C

do

Unstable ← False

N ← C size

Compute Ns and Ne, the number of hits in C covering Cs and Ce, respectively

if Ns < 1/3 ·N then

Cs ← Cs + 1

Unstable ← True

end if

if Ne < 1/3 ·N then

Ce ← Ce − 1

Unstable ← True

end if

Remove hits in C if more than 30% of residues outside range [Cs . . . Ce]

while Unstable

if (Pe− Ps) > 30 then

Add C in C

end if

while at least one new cluster in C
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FDR estimation

First, our approach is run on all proteins of the query organism, and the number

of domains below a given p-value threshold is computed. Then, all BLAST hits are

randomly shu�ed among all proteins. To preserve the homology relationship be-

tween hits during the randomization process, the hits are not shu�ed independently

among the proteins but rather by entire clusters. We thus use the clustering com-

puted from the co-occurring hit density. All hits with no co-occurrence are added

to the cluster they overlap if less than 20% of their residues are outside the cluster.

These clusters of hits are then randomly permuted among proteins. This creates a

situation where each cluster loses its previous co-occurrences but may fortuitously

�nd new ones on the new protein. Once hits have been randomly distributed on pro-

teins, the number of co-occurring hits are computed in each cluster, and a p-value

is estimated with Formula (1). The number of clusters below the chosen p-value

threshold is computed, and the entire procedure is resumed several times (e.g. 10

times) to get a better estimate of the number of domains that can be identi�ed in

random data. This number is then used to estimate the FDR of the procedure with

Formula (2).

HMM learning

HMM are trained using HMMER3 software (release 3.1b2) with the following com-

mand:

hmmbuild -n <hmm_name> �amino �fast <hmm�le_out> <msa�le> ;

with <hmm_name> a name for the trained HMM, �amino speci�es that input

alignement is protein sequence data, �fast assigns columns with >= 50% (default)

residues as match position, <hmm�le_out> the output HMM �le, <msa�le> the

input alignement.

HMM/HMM comparisons

HMM-HMM comparisons are done using the hhsearch software provided in the

hhsuite (release 2.0.16) with the following command:

hhsearch -i <hmm�le_in> -d <hmm_db> -o <res�le_out> -loc

with <hmm�le_in> the input HMM, <hmm_db> the HMM database to compare

to, <res�le_out> the �le containing results, -loc to search the best local alignement.
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Figures

Figure 1 � The �ve most common domain architectures involving the PAZ domain.

Figure 2 � Extract of BLAST results on query sequence Q8IKH9_PLAF7 on UniRef50

(�elds: query id, subject id, % identity, alignment length, mismatches, gap opens, q.

start, q. end, s. start, s. end, e-value, bit score). Note that some hits are hidden for

clarity. Depending on the target protein, the BLAST result reveals the co-occurrence of

two/three independent sub-sequences (each sub-sequence is highlighted with a di�erent

color).
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Figure 3 � Density of BLAST hits per residue on the sequence CDAT_PLAF7. The

blue line represents the density obtained using all hits. The red line represents the density

obtained using only hits that have a co-occurring hit on the same protein. The �lled

regions in red show hit clusters identi�ed by our method. Lines under the horizontal axis

indicate positions of clusters on this protein. In this example, regions already covered by

a Pfam domain were masked (green regions) so that no hits were identi�ed by BLAST.
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Figure 4 � HMM/HMM comparison of domains identi�ed by our approach that

overlap a known Pfam domain. The x-axis shows the overlap ratio of the local alignment;

the y-axis indicates the negative log of the alignment p-value; the blue line denotes the

10−10 p-value, while the red line denotes the 80% overlap.

(a) (b)

Figure 5 � (a) Hit distribution among the �ve eukaryotic super-groups (Keeling et al,

2005). In green, the distribution in UniRef50 (restricted to eukaryotic sequences); in

blue the distribution of all BLAST hits; in red the distribution of hits selected by co-

occurrence. (b) Distribution of the proportion of Chromalveolate hits in the new families.
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(a) Homogeneity (b) Entropy

(c) Hydrophobicity (d) Sequence complexity

Figure 6 � Quality scores measured on models obtained without co-occurrence (in

blue), models obtained with co-occurrence (in red) and Pfam models (in green).
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(a) Pfam vs Pfam (b) New models vs Pfam

(c) Domain lengths (d) New models vs new models

Figure 7 � HMM/HMM comparison of new domain families and Pfam domain fam-

ilies. In Figures (a), (b) and (d), each point is associated with one particular HMM

and corresponds to the best alignment found between this and all other HMMs. The

x-axis shows the overlap ratio of the local alignment between the two HMMs; the

y-axis indicates the negative log. of the alignment p-value; blue line corresponds to

y = −log(10−10); while the red line corresponds to x = 0.8. Figure (c) shows the

lengths of the models obtained by our approach (red), the lengths of all Pfam models

(green), the lengths of the Pfam models associated with the points depicted in the top

left quarter of �gure (b) (blue), the length of the smallest Pfam model associated with

the points depicted in the top left quarter of �gure (a) (yellow)
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(a) Homogeneity (b) Entropy

(c) Hydrophobicity (d) Sequence complexity

(e) Number of sequences

Figure 8 � Quality scores (a-d) measured on families obtained by our approach (in red),

ProDom families (in yellow), Pfam-B families (in cyan) and Pfam-A families (in green).

Figure (e) shows the number of sequences in the families of the di�erent databases.
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Experiments Without Pfam integration With Pfam integration

all clusters clusters ≥ 5 hits all clusters clusters ≥ 5 hits

number of clusters 19 100 4 633 10 442 2 572

with p-value ≤ 1% 9 337 3 531 8 530 2 473

proteins involved 4 394 1 915 3 039 1 378

residue coverage 37.96% 13.87% 28.28% 7.12%

estimated FDR 6% 5.15%

Table 1 � Summary of the number of new domain occurrences identi�ed by the

approach. In the �Without Pfam integration� experiment, analyses were done on the

entire genome, without masking the already known Pfam domain occurrences in the

BLAST search nor using them as potential co-occuring hits in the co-occurrence analysis.

On the contrary, in the �With Pfam integration� experiment the already known Pfam

domain occurrences were masked in the BLAST search and used as potential co-occuring

hits in the co-occurrence analysis.

Additional Files

Additional �le 1 � New domain families identi�ed in P. falciparum:

Pfalciparum_new_families_fasta.zip

This zip �le contains the new domain families identi�ed in P. falciparum. Each

family is a multiple alignments (fasta format) of the BLAST hits (UniRef50) that

have been used to construct the family.

Additional �le 2 & 3 � HMMs of new domain families identi�ed in P. falciparum:

Pfalciparum_new_families_HMM.hmm & Pfalciparum_new_families_HMM.hhm

Both �les contain the HMMs (either in HMMER or HHPRED format) built from

the families containing at least 5 sequences.

Additional �le 4 � GO annotations of new domain families identi�ed in P. falciparum:

Pfalciparum_new_families_go_annotations.tsv

This �le contains the GO annotations that have been identi�ed for the families

containing at least 5 sequences.
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