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Pluripotent stem cells (PSCs) exist in multiple stable states, each with specific cellular 20 
properties and molecular signatures. The process by which pluripotency is either maintained 21 
or destabilized to initiate specific developmental programs is poorly understood. We have 22 
developed a model to predict stabilized PSC gene regulatory network (GRN) states in 23 
response to combinations of input signals.  While previous attempts to model PSC fate have 24 
been limited to static cell compositions, our approach enables simulations of dynamic 25 
heterogeneity by combining an Asynchronous Boolean Simulation (ABS) strategy with 26 
simulated single cell fate transitions using Strongly Connected Components (SCCs). This 27 
computational framework was applied to a reverse-engineered and curated core GRN for 28 
mouse embryonic stem cells (mESCs) to simulate responses to LIF, Wnt/β-catenin, 29 
FGF/ERK, BMP4, and Activin A/Nodal pathway activation. For these input signals, our 30 
simulations exhibit strong predictive power for gene expression patterns, cell population 31 
composition, and nodes controlling cell fate transitions. The model predictions extend into 32 
early PSC differentiation, demonstrating, for example, that a Cdx2-high/Oct4-low state can 33 
be efficiently and robustly generated from mESCs residing in a naïve and signal-receptive 34 
state sustained by combinations of signaling activators and inhibitors.  35 

 36 

One Sentence Summary: Predictive control of pluripotent stem cell fate transitions 37 

 38 
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INTRODUCTION 1 

Single cell-level heterogeneity in gene expression is common in pluripotent stem cells 2 
(PSCs)1 (and indeed other stem cell types2). There are two scenarios from which this heterogeneity 3 
emerges.  Either different closely related cell types coexist, or individual cells transition 4 
dynamically between different cell states3–5. This diversity results in families of gene regulatory 5 
networks (GRNs), each with potentially unique responsiveness to endogenous or exogenous 6 
perturbations6–8. One manifestation of this is that different subpopulations of cells have higher 7 
probabilities of generating specific types of differentiated cells following treatment with 8 
differentiation-inducing ligands9,10. 9 

Distinct PSCs and their associated GRNs appear to be stabilized through extrinsic signals 10 
(or signal modifiers)11, which are typically either supplemented into the medium or endogenously 11 
produced12,13. For example, mESCs cultured in LIF and BMP4, upon replacement with bFGF and 12 
Activin A, transition into epiblast stem cells (EpiSCs)14,15. Additionally, dual small molecule 13 
inhibition of MEK and glycogen synthase kinase-3ß (GSK3ß) (referred to as the 2i condition) 14 
drives mESCs back into naïve/ground state pluripotency, a state which closely resembles early, 15 
pre-implantation stage epiblast16–18. GRNs themselves do not only serve as responsive elements to 16 
external stimuli, but also as stimulus sources themselves (via autocrine/paracrine signaling), 17 
resulting in combined endogenous/exogenous feedback loops13 that influence cell fate transition 18 
probabilities.  19 

Here we describe a simulation framework that quantitatively depicts each PSC 20 
subpopulation as a compilation of heterogeneous gene expression profiles. The computational 21 
framework uses a pruned mESC GRN consisting of 29 key genes to simulate regulation of Oct4, 22 
Sox2, and Nanog (as well as other mESC-associated genes) as a function of signaling inputs.  23 
Existing Boolean models that simulate the regulation of PSC GRNs19–21 treat each subpopulation 24 
as discrete, steady-state gene expression profiles (i.e. attractors) derived from unique or randomly 25 
set initial profiles after rounds of Boolean updates, where genes are toggled on and off to satisfy 26 
the Boolean logic that scaffolds the GRN. While the steady-state attractor approach simulates the 27 
presence of different cell states (i.e. subpopulations) within a total PSC population, it does not 28 
simulate gene expression variability within each PSC subpopulation. Importantly, these 29 
approaches do not capture observations gathered from single cell transcriptome data wherein 30 
variability1,21 and dynamics22,23 of gene expression have been observed between individual cells 31 
within a subpopulation. We therefore aimed to group closely related gene expression profiles into 32 
constructs that enabled the prediction of subpopulation composition. To do this we used an 33 
asynchronous Boolean simulation (ABS) strategy. While in a synchronous Boolean paradigm all 34 
genes in the GRN toggle simultaneously to produce each condition, ABS toggles individual genes 35 
asynchronously, resulting in a wider catalogue of transitional expression profiles24. Instead of 36 
depicting subpopulations as steady-state attractors, we account for transitional cell states by 37 
organizing transitional gene expression profiles into groups with strongly connected components 38 
(SCC) forming a closed loop between profiles (Figure S1a). Uniquely, this methodology allows 39 
the simulation outputs to be quantitatively compared with experimental observations from both 40 
single cell- and population-level experiments (Figure S1b.). This strategy more closely depicts the 41 
underlying biology of dynamic GRNs. In addition, our model also includes feedback loops from 42 
the GRN to signaling pathway components, thus allowing for the exploration of a broader and 43 
more nuanced array of GRN outputs such as the exit from pluripotency as a consequence of the 44 
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activation and inhibition of different combinations of five major pluripotency-related signaling 1 
pathways (LIF/pStat3, Wnt/β-catenin, Bmp4/pSmad1/5/8, Activin A/pSmad2/3 and bFGF/pERK).  2 

 3 

RESULTS 4 

Simulation framework for PSCs 5 

Our simulation framework took advantage of two key strategies. The first is the ABS 6 
strategy, where Boolean logical updates are performed asynchronously on individual nodes 7 
(genes) in each simulation update, allowing for multiple, unique transitional gene expression 8 
profiles to be generated from each single input profile24,25. A profile transition graph, the 9 
accumulation of the transitions between unique expression profiles, is analogous to transitions 10 
between single cell states and is derived from an iterative, random ABS (R-ABS). The relative 11 
transition frequencies from one expression profile to its successor profiles can be calculated by 12 
counting the individual transitions from the source to the target, which in turn determines the 13 
probability of the existence of each profile. 14 

After generation of the profile transition graph through R-ABS, the second key element of 15 
our approach is to use SCC to group unique expression profiles. We define an SCC as the subset 16 
of expression profiles where every profile is capable of transitioning into all other profiles in the 17 
subset and returning to the original profile over an indefinite number of Boolean updates. This is 18 
analogous to a sustained PSC population containing multiple dynamically transitioning 19 
subpopulations31. In the context of population-level PSC state transitions, SCCs represent a 20 
dynamically stabilized population as a cluster of heterogeneous single cell profiles where each cell 21 
state can potentially give rise to any of the other states within the population. The model outputs 22 
provide predictions of the emergence of subpopulations (SCCs) in response to different input 23 
conditions. The gene expression level for any given gene within a particular SCC is predicted by 24 
multiplying the summation of expression profile probabilities where the gene is present (ON) by 25 
the sum of probabilities of all the profiles in the SCC and by further subtracting the probabilities 26 
of the out-going transitions (i.e. GRN profiles produced in the SCC that cannot give rise to all 27 
other cell states in the population) (Fig 1, see Online Methods and Supplementary Notes section 28 
1). The population-averaged gene expression level is thereby calculated by summation of these 29 
values within each SCC, which is weighted by the proportion of sub-populations (the number of 30 
unique profiles in each SCC). 31 

 32 

Mouse ESC-GRN construction 33 

To build our GRN (see Supplementary Notes section 2 and 3 for details on GRN 34 
reconstruction), we first selected 14 pluripotency-specific genes based on prior 35 
knowledge26,27(Oct4, Sox2, Nanog, Klf4, c-Myc, Esrrb, Tbx3, Klf2, Gbx2, Jarid2, Mycn, Lrh1, 36 
Pecam1 and Rex1(Zfp42)), and key lineage specifiers known to drive the exit from 37 
pluripotency28,29(Tcf3, Cdx2, Gata6, Gcnf). EpiSC-enriched transcription factors (TFs), Fgf5, 38 
Eomes, Otx2, and Brachyury (T), were aggregated into a single component in the model termed 39 
EpiSC-enriched transcription factors (EpiTFs) for computational efficiency14,30. We then specified 40 
regulatory relationships among the genes by curation, including 19 regulations encompassing 41 
double positive or double negative regulatory circuits and known self-activations for seven genes 42 
(Supplementary Notes Table M1). 43 
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We next set the key signaling pathways (LIF/pStat3, Wnt/β-catenin, Bmp4/pSmad1/5/8, 1 
Activin A/pSmad2/3, bFGF/pERK and PI3K) as consequential effects of gene ON/OFF states by 2 
extending the gene list to link to signaling activities (Fgf4, Fgfr2, Bmp4 and Activin A/Nodal). 3 
For example, to model FGF activity and downstream MEK/ERK activation, we included stimulus 4 
sources (bFGF or Fgf4) and receptor availability (Fgfr2) in our GRN. To complete signal pathway 5 
integration, we then defined regulatory edges from cytokine/receptor-level signaling to their 6 
downstream effectors and feedback from genes to relevant signaling activities (Fig 2a and 7 
Supplementary Table S1.).  8 

Based on previous studies that reverse-engineered PSC-GRN to elucidate critical 9 
regulations33,34, we performed refined Graphical Gaussian Modeling (GGM) 35 to infer direct 10 
connectedness amongst genes using a collection of 1,295 publicly available microarray expression 11 
datasets for mESCs. (Supplementary Notes section 2). This resulted in a network of 29 genes 12 
including genes which are predicted to be highly correlated with the previously noted core 13 
pluripotency genes (Lefty1, Pitx2, Dusp6, Smad6 and Smad7) listed in Supplementary Table S1. 14 
Regulation directionality between network components was determined by either experimental 15 
evidence or categorizing based on gene functions (Supplementary Notes Table M1). Among 95 16 
gene regulatory relationships identified through the GRN inference, the directionalities for ten 17 
remaining gene pairs left by previous experiments were determined by subsequent model selection 18 
based on fitting to reported single cell gene expression frequency. Taken together, reverse 19 
engineering-based GRN reconstruction, supplemented with manual curation led to an expanded 20 
GRN-signaling hybrid model consisting of 29 defined genes and 105 regulatory interactions 21 
between genes, seven signaling pathway activities and 24 regulations downstream of the signals 22 
(Supplementary Table S1 and Supplementary Notes Table M2). 23 

Boolean logical functions of a target gene define the consequence of the binary states of its 24 
regulators with AND, OR, and NOT logic operators. Knowledge of all possible combinations and 25 
nesting of the operators significantly increase the number of possible models. Although this 26 
extends the capability of the model to describe a variety of regulatory topologies19,21, our focus 27 
was on applying a test model to the R-ABS/SCC approach to predict PSC GRN transitions in 28 
response to a wide range of signaling inputs. We used a biologically relevant and widely adapted 29 
rule where regulatory relationships were defined such that positive and negative inputs were 30 
combined using OR- and AND-functions, respectively. This rule states that a target gene will be 31 
present when one of its activators is present and concomitantly none of its repressors are present. 32 
Exceptions were made for genes whose coded proteins likely make a complex and work 33 
synergistically on regulating target gene expression (e.g. Oct4-Sox2 and Oct4-Cdx2). This resulted 34 
in 27,648 possible models including the unresolved directionalities of the above-mentioned 10 35 
gene pairs, each of which has a distinct GRN topology. Among these possible models, we selected 36 
the top scoring model whose population-average gene expression level minimized Euclidean 37 
distance from single cell expression data of mESCs1,36 in standard culture conditions that contain  38 
LIF and fetal bovine serum (LS) (Supplementary Notes 3-5 and 3-6). 39 

 40 

Model recapitulates distinct PSC states 41 

Using our GRN model and simulation strategy, we assessed the ability to predict PSC 42 
responses to different input signals. Mouse ESCs in LIF + serum medium (LS) were simulated by 43 
toggling LIF as continuously ON and allowing other endogenous signaling to undergo state 44 
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transitions based on network structure (Fig 2b). Using the LS input rule, we identified only one 1 
SCC, which had no outgoing nodes. Five distinct steady-state attractors were also identified in LS. 2 
The predicted population-average gene expression levels of pluripotency-associated transcription 3 
factors were comparable with those reported using single cell RT-PCR in LS conditions (Fig S2a). 4 
Interestingly, the LS model also predicted that Oct4 was likely to co-exist with EpiTFs, while Sox2 5 
showed strong negative correlation to EpiTFs, an observation consistent with previous 6 
reports1,37(Fig S2b).  7 

To demonstrate the ability to predict alternate PSC states in response to changes in input 8 
signaling, we next performed simulations for EpiSCs16,38 and naïve mESCs39 by changing only the 9 
input from LS to bFGF+Activin A (bF+A) or to LIF combined with inhibition of MEK and GSK3ß 10 
(2iL), respectively (Fig 2b). Simulations for both bF+A and 2iL conditions yielded only one PSC-11 
associated SCC (see Methods and Supplementary Note section 5 for details). Notably, despite the 12 
fact that EpiSC gene expression data was not used to construct our generic PSC network, the model 13 
predicted distinct expression levels relative to those in mESC in LS, closely resembling 14 
experimental observations for the EpiSC state (Fig 2c, Fig S2c). Meanwhile, 2iL PSCs did not 15 
show significant differences in expression compared to LS PSCs, including expression of major 16 
pluripotency-supporting factors40, confirming that LIF is sufficient to maintain mESC-specific 17 
gene expression patterns. These data demonstrate that changing model inputs can drive GRN 18 
weighting to that observed in population-level in vitro experiments.  19 

We next asked if we could manipulate GRN nodes directly and observe shifts between PSC 20 
states. This was done by setting individual genes ON (gain of function; GOF) or OFF (LOF), 21 
permanently, regardless of the states of their effectors. These simulations predicted Klf4, Nanog, 22 
Esrrb, Myc, and Gbx2 as drivers of EpiSC to ESC transition, and Tcf3 to be an inhibitor (Fig 2d, 23 
Fig S2d). These de novo results are consistent with previous experimental observations14,41–46. The 24 
model also predicted that activating BMP4 while in bF+A conditions (i.e. EpiSC GRN) buoyed 25 
Oct4, Sox2, and Nanog (OSN) levels (Fig S2e); an observation that may explain the positive role 26 
of BMP4 in early stages of EpiSC reversion41. Taken together, we demonstrate the ability to 27 
quantitatively compare levels between different stable cell states by manipulating both extrinsic 28 
signals and/or endogenous GRN components. 29 

 30 

LIF stabilizes PSCs while 2i up-regulates OSN 31 

Although LS and 2i with and without LIF (2iL and 2i-L, respectively) are sufficient to 32 
support stable PSCs17,44,47,48, and analysis of the GRN supported under these different input culture 33 
conditions are substantially similar17,19, clear morphological and phenotypic differences exist 34 
between cells cultured in baseline LIF + Serum  vs. those supplemented with 2i (Fig 3a). We thus 35 
next sought to determine if our Boolean simulation approach could inform this biology using 36 
quantitative metrics related to GRN properties. To do this we developed mathematical 37 
formulations for three relevant metrics termed “pluripotency”, “susceptibility”, and 38 
“sustainability” (Supplementary Notes section 4).  Briefly, pluripotency is defined as the 39 
population-average OSN expression level (sum of Oct4, Sox2, and Nanog levels). Sustainability 40 
is a score that reflects stability of an SCC in the absence of further perturbation and susceptibility 41 
quantifies the difference between an unperturbed SCC and an SCC with a perturbation of a GRN 42 
component (see “Calculation of population properties based on SCC” section in Methods for full 43 
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formulations). These metrics serve as a foundation for quantitative comparisons of GRN 1 
properties, especially in dynamically stabilized cell states. 2 

In the established stable PSCs supported by LS, 2iL and 2i-L, the pluripotency score was 3 
predicted to be higher in 2i(+/- L) than in LS (Fig 3b-i). This prediction was validated in vitro with 4 
immunocytochemistry for Oct4, Sox2, and Nanog (Fig S3a) and is consistent with data from 5 
previous reports35. The observed tighter correlations between pairs of individual OSN components 6 
in 2i-containing conditions, in which mESCs exhibited increased absolute levels and homogeneity 7 
of OSN than in the LS condition (Fig. S3b), indicate higher self-sustenance and homogeneity of 8 
the core network. Upon examining sustainability, our simulation scored the 2i-L model lower than 9 
the 2iL and LS models (Fig 3b-ii). As the sustainability score reflects the ability of a subpopulation 10 
in a given condition to maintain itself over time, the prediction infers that the presence of LIF 11 
raises the intrinsic stability of the subpopulation. This is consistent with the observations that LIF 12 
does not affect the pluripotency of mESCs in 2i-supplemented conditions, but enhances colony-13 
forming efficiency49,50. Finally, to measure the susceptibility metric upon perturbations in GRN 14 
topology in silico, we tested the magnitude of expression changes by removing each single 15 
regulatory relationship from the original model network. This analysis identified key differences 16 
between 2iL and 2i-L. Overall, our simulation demonstrated that the GRN in 2i-L was more 17 
susceptible to perturbations of GRN topology than in conditions that contained LIF (Fig. 3b-iii and 18 
Fig.S3c). For example, the removal of the positive regulatory link from Nanog to Esrrb decreased 19 
OSN expression levels in 2i-L but not in LS and 2iL. This indicates that this link lacks built-in 20 
redundancy to be able to sustain OSN levels in the absence of LIF signaling. This confirmed the 21 
results from Dunn et al. that dual LOF of Nanog and Esrrb results in significant loss of pluripotency 22 
in 2i-L but not in 2iL19. Additionally, experimental validation using single and double gene LOF 23 
studies in 2i-L and 2iL performed in the study19 revealed that our model was able to accurately 24 
predict the outcomes of context-dependent LOF as well as the heightened susceptibility of mESCs 25 
cultured in 2i-L when compared to those cultured in 2iL (Fig S3d). Taken together, our simulations 26 
suggest that 2i drives PSCs into a naïve state expressing homogeneous levels of OSN, in part by 27 
supporting the OSN sub-network. Furthermore, the addition of LIF to 2i increased sustainability 28 
and decreased susceptibility of the overall GRN which, potentially by functional redundancy or 29 
additive effects50(Fig. 3c), are predicted to create barriers to the exit from pluripotency.  30 

Based on our quantitative, metric-based analysis, we next hypothesized that pluripotent 31 
GRN supported by different input conditions (2iL and 2i-L) would be differentially susceptible to 32 
exogenous molecular perturbations. Indeed, simulation of all possible signal inputs (Fig. 3d) 33 
predicted that although 2i-containing conditions (2iL; red dots and 2i-L; blue dots) give overall 34 
higher OSN expression levels than +LIF (orange) or – LIF (black) conditions without 2i, the 2i-L 35 
condition has a higher variance of OSN levels (F=0.064, p-val= 8.0e-4; F=0.011, p-val= 2.2e-4;  36 
F=0.136,  p-val= 1.1e-2 for Oct4, Sox2 and Nanog, respectively). Notably, OSN levels were 37 
predicted to decrease in the 2i-L condition only when combined with high BMP4 and low Activin 38 
A/Nodal (2i-L+B-A). To explicitly test these predictions, we measured core pluripotency GRN 39 
responses to combinations of four signaling inputs (LIF, BMP, WNT, and Activin A/Nodal)), both 40 
in silico (Fig.3e) and in vitro (Fig.S3e).To fully recapitulate simulation inputs, all signals that were 41 
turned OFF were validated with the corresponding small molecule inhibitor (e.g. –L in simulations 42 
= Janus kinase (JAK) inhibitor; JAKi (J) in experiments). Because LIF and WNT contribute to the 43 
maintenance of naïve mouse pluripotency51,52, we categorized each condition by the presence or 44 
absence of LIF and WNT signaling. Overall, OSN levels were high for conditions containing LIF 45 
or WNT, both in simulated and in vitro conditions (Fig S3f). Importantly, there was a high degree 46 
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of correlation in OSN levels between in silico simulations and in vitro validations for all conditions 1 
tested (Fig 3f). While OSN levels were expectedly low in mESCs lacking both LIF and WNT 2 
signals and non-specific effects of the inhibitors may also make a contribution, the only condition 3 
robustly low in OSN in the presence of either LIF or WNT was the one that was additionally 4 
supplemented with the Activin signaling receptor (Activin receptor-like kinase 4/5/7, ALK4/5/7) 5 
inhibitor, ALKi, and BMP4 (2iJ+B-A). In conditions without LIF and with high WNT signaling 6 
(2iJ), OSN levels are sustained as high as the conditions with LIF and with low WNT signaling 7 
(Fig S3g). Interestingly, however, susceptibility of 2iJ conditions to perturbation by BMP and 8 
Activin signaling increased (Fig S3g, blue bars). These observations were conserved regardless of 9 
the presence of serum (Fig S3h). Overall these studies demonstrate that pluripotent cell states 10 
maintained under different input signaling conditions are differentially susceptible to pluripotency 11 
GRN destabilization, with the 2iJ conditions being particularly sensitive to perturbation. 12 

 13 

More permissive loss of pluripotency from 2i in the absence of LIF  14 

We next set out to characterize the exit from pluripotency of PSC using the susceptible 2iJ-15 
induced state. We first confirmed that mRNA levels of OSN are also decreased in 2iJ+B-A (2i-16 
L+B-A in silico) with qRT-PCR after two days of culture in the respective conditions. Specifically, 17 
we found that the population-averaged gene expression levels of extra-embryonic lineage 18 
specifiers  Cdx2 and Gata6  were significantly higher in the 2iJ+B-A condition than in the control 19 
conditions (2iL or 2iJ/2i-L) both in the simulation and the experiment (Fig 4a). Differentiation of 20 
naïve mESC to trophoblast stem (TS) cell–like cells occurs upon the forced expression of the 21 
trophoblast master regulator Cdx2, but not typically through the addition of media components53,54. 22 
However, apparent totipotency from mESCs derived in 2i55 has been reported, and SMAD1/5/8 23 
activation helps drive trophoblast gene expression from mouse and human primed PSCs38,56,57. We 24 
thus asked if we could use our increased understanding of pluripotent cell state susceptibility to 25 
specifically direct the exit from pluripotency and access gene expression profiles normally reticent 26 
to differentiation from mESCs. 27 

Taking advantage of our framework’s capacity to predict the differentiation trajectories at 28 
exit from pluripotency, we scored individual SCCs and steady-state attractors that contained both 29 
highly expressed lineage markers and lowly expressed Oct4 as candidates for lineage bias.  Cdx2 30 
(Trophectoderm-associated – TE), Gata4/6 (Mesendoderm-associated – ME or Primitive 31 
Endoderm-associated – PE), and EpiTF genes (Post-implantation Epiblast) were specifically 32 
tracked (Fig 4b and Fig S4a).  33 

To further explore conditions yielding induction of TE genes, we measured Cdx2 protein 34 
expression. As Cdx2 can emerge during primitive streak development57, we also co-stained with 35 
Oct4 and lineage markers Gata4 (endoderm) and Brachyury (mesoderm) (Fig 4c). There was a 36 
marked increase in the Cdx2 single-positive subpopulation in 2iJ+B-A, but not in the conditions 37 
lacking 2i, Jaki, BMP4, or ALKi (Fig 4d). The robust contribution of 2iJ+B-A condition towards 38 
a Cdx2-high state over time was confirmed by the frequency of Cdx2+/Oct4- cells after extending 39 
treatment to five days (Fig S4b). To further investigate this Cdx2+ state, we assayed a 40 
supplementary panel of TE markers by flow cytometry and by qRT-PCR. TE-enriched genes, such 41 
as Trop2 and bHLH transcription factor (Hand1) also showed marked increase in expression in 42 
2iJ+B-A relative to controls (Fig. 4e).  TE-enriched surface markers CD40 and CUB domain-43 
containing protein 1 (CDCP1)58 both increased in expression in 2iJ+B-A (Fig 4f and Fig S4c). 44 
Importantly, however, RNA-seq and subsequent principle components analysis (PCA) 45 
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demonstrated that there exists a separation between mESCs in 2iJ+B-A and trophoblast stem cells 1 
(TSCs) (Fig 4g). This suggests that the fate transition of mESCs in 2iJ+B-A to a TE-like state is 2 
incomplete. Meanwhile, overall consistency between the simulation outputs and the differential 3 
expression profiles of mESCs in 2iJ+B-A from those in 2i were confirmed, as the significantly up- 4 
or down-regulated genes in 2iJ+B-A were almost universally predictable (Fig 4h). 5 

Our analysis thus far demonstrates the strong predictive power of the simulation 6 
framework. We next set out to distinguish predictive gene expression changes from functional 7 
developmental states. Specifically we tested whether 2iJ-treated mESCs, which are in a pluripotent 8 
signal responsive state, would contribute to the developing embryo in vivo differently from other 9 
pluripotent conditions. We aggregated 2iJ-treated (2d) mESCs to totipotent host embryos (8-cell 10 
stage embryos) and allowed endogenous cues to guide differentiation of these cells during pre-11 
implantation development. We noted an increased frequency of 2iJ-treated cells localizing to TE 12 
positions in the blastocyst compared to 2iL conditions (Fig 4i, left panel, Fig S4d), which was 13 
confirmed with different cell line55 (Fig S4), however these TE-positioned cells did not express 14 
Cdx2 at the time they were assayed in vivo and many seemed to have initiated apoptosis (Fig 4i, 15 
right panel). These results suggest 2iJ-treated cells are in an altered state of pluripotency, but are 16 
not fully competent to undergo trophoblast differentiation in vivo, either due to incomplete in vitro 17 
programing to a TSC like state or due to competing signals received in vivo. These differences 18 
between 2iJ/2iJ+B-A-treated mESCs and TSCs, as well as the contradictions between simulations 19 
and measurements suggest a requirement for TE-lineage specification on top of the Oct4-20 
low/Cdx2-high state.  21 

Taken together, the in vitro studies confirm the power of the model to predict the cell fate 22 
outcomes of PSCs exposed to complex exogenous signals. We demonstrate that the model can 23 
reveal new biology between different pluripotent cell states including EpiSC.  We also demonstrate 24 
that mESCs cultured in 2i-L represent a unique cell state that exhibits high OSN levels 25 
(pluripotency) but are simultaneously highly responsive to a broad array of differentiation-26 
inducing signals (susceptibility), and develop ad experimentally validate new metrics to 27 
distinguish between these states. Our system also can predict PSC differentiation transitions 28 
including into TE-like cells, as indicated by changes in gene and protein expression. Interestingly, 29 
our analysis also reveals conditions where additional signals or maturation steps may be required 30 
to fully transition cells across fate barriers, such as was observed for the TE-like cells.  31 

32 
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 9 

DISCUSSION 1 

PSCs represent a powerful platform for the simulation of cell fate transitions59. A variety of 2 
methods have been used to model pluripotency. Prior models of mESC-GRNs with ordinary 3 
differential equations revealed mechanistic insights of cell fate transitions, but were limited in the 4 
number of network components around the core OSN network60,61. Recent work has provided an 5 
expanded number of network components in GRN models by use of model fitting and has derived 6 
network connectivity from either population-level knock-in/knock-down data19 or single cell 7 
expression data21. These models, however, were restricted in their ability to simulate 8 
transcriptional heterogeneity and exit from the pluripotent state. The absence of the 9 
interconnections between key signaling modalities for GRNs in these models can partly account 10 
for this shortcoming. To address this limitation, we used expression data from mESCs to populate 11 
our GRN framework and to produce a model of pluripotency that, when perturbed in silico, could 12 
recapitulate the emergence of subpopulations of cells observed under analogous in vitro and in 13 
vivo conditions. Additionally, by integrating principles of graph theory into our asynchronous 14 
Boolean model of pluripotency, we demonstrated the ability to model both exit from pluripotency 15 
and heterogeneity at two levels, the GRN level (fluctuation in gene expression) and the cell 16 
population composition level62–64. Importantly, the model with consensus interactions which 17 
excludes 10 predicted interactions but includes those validated from literature or ChIP-based 18 
genome interaction studies did not accurately predict the OSN levels in the various signal 19 
combinations in Fig.3f (Supplementary Notes 5-4). Also, deletion of any combination of two genes 20 
from the pluripotency supportive genes (Esrrb, Gbx2, Klf2 and Jarid2) in the model failed to 21 
predict the up-regulation of Cdx2 in the 2i-L+B-A condition. These results strongly support the 22 
validity of our PSC model as well as its ability to predict both known and novel effects of input 23 
signals. 24 

The hierarchical differentiation process of PSCs is often illustrated by trajectories of cells 25 
in Waddington’s metaphorical landscape. Each basin is defined as an attractor, from which cells 26 
bifurcate into different downstream attractors that reflect differentiated cell types65,66. By 27 
quantifying pluripotency, susceptibility, and sustainability in our model, we propose that 2i 28 
conditions support a population of cells at the high potential (OSN) state. LIF signaling stabilizes 29 
cells within the stable local valley of the landscape by reinforcing the pluripotency GRN, 30 
increasing the threshold required to induce differentiation, and participating in the shaping of the 31 
landscape with regard to preferential (embryonic) versus non-preferential (extraembryonic) routes.  32 
Conversely, inhibition of JAK-STAT signaling destabilizes the pluripotency GRN and allows the 33 
expression of TE-lineage genes specifically in response to activation of BMP4 and inhibition of 34 
Activin A/Nodal signaling.  35 

Although previous reports have demonstrated the ability of human and mouse primed 36 
pluripotent cells to differentiate into TE-like cells upon activation of BMP signaling56,57, these 37 
results may be condition and cell-line dependent and have not been connected to the underlying 38 
molecular structure of the pluripotency GRN. To date, there has been no evidence of the ability of 39 
cytokines and small molecules to drive TE differentiation from naïve pluripotent cells. A recent 40 
report from Morgani et al. demonstrated that mESC derived in 2i conditions, especially 2iL, 41 
increased the potential to contribute to extra-embryonic lineages including the TE-lineage in 42 
vivo55. Our results, however, showed greater ability to induce TE-lineage genes with active 43 
inhibition of JAK-STAT signaling in the presence of 2i, specifically with Bmp4 signal activation 44 
and Activin A/Nodal signal inhibition, a consequence of destabilization of the PSC GRN in a 45 
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 10 

modified feedback signaling network environment. Our cells may require additional signals, such 1 
as Notch and Hippo67, and other TE differentiation signals that we did not use here (e.g. Elf5), to 2 
complete the programming. For example, DNA methylation of Elf5, a TE-specific transcription 3 
factor, silences its expression and blocks TE differentiation in mESCs, while the FGF-signal can 4 
initiate a positive feedback loop between CDX2 and Eomes through hypo-methylated Elf5 in 5 
TSCs68. Moreover, a higher epigenetic barrier may separate the TE-lineage and ESCs even in the 6 
hypomethylated ground state in 2i69. Nevertheless, our aim for the model was strictly to represent 7 
the exit from pluripotency in silico and validate the models predictions in vitro. 8 

We anticipate that our simulation approach, which predicts changes in gene expression of 9 
sustained cell populations in response to signaling inputs, represents a broadly applicable approach 10 
to understanding the key control nodes triggering cell fate transitions. Beyond pluripotency, the 11 
use of our graph-theory based Boolean approach, together with combined modeling of signaling 12 
inputs and GRNs, may provide a new strategy for the prediction of aberrant cell fate transitions in 13 
normal or transformed somatic stem cells. In these systems, the exogenous influences typically 14 
described as components of the stem cell niche, serve to further broaden the likely regulatory 15 
feedback domain70. While the dynamic heterogeneity is conceptually supported by a series of 16 
analyses using single cell tracking techniques7,23, the empirical validation of the SCC approach, 17 
where the heterogeneous population of stem cells is assumed to correspond to SCC in the state 18 
transition graph of the asynchronously updated Boolean model, has not been performed as it 19 
requires live-cell tracking for multi-genes and multi-cells beyond our static cell profiling data 20 
collection. A recently reported in silico technique73, which derives GRN by retracing measured 21 
single cell expression profiles associated with asynchronous Boolean transitions, may possibly be 22 
used to evaluate how each SCC reflects inter-cell variability. However, these methods continue to 23 
face technical issues with respect to thresholding continuous gene expression and the quality of 24 
the single cell expression analysis itself. Another attractive approach is to extend the model into 25 
spatial-temporal metrics to validate predictions for self-organizing expression patterns in a system 26 
where dynamic stability of state-transitions derives inter-cell variability.  As the framework is open 27 
to incorporating other known state stabilizing factors, such as epigenetic or metabolic control, it 28 
provides great opportunities to test hypothetical models of heterogeneity at both the genetic and 29 
cellular (i.e. tumor) level in cancer stem cells70–72.  30 

 31 
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METHODS 9 

Random Asynchronous Boolean Simulation (R-ABS)  10 

Random ABS (R-ABS) has been performed using two assumptions: (i) every combination of 11 
model variables is equally likely to be calculated in a given step, and (ii) the state-space is 12 
generated with all the transition history of a sufficient number of consecutive steps from a 13 
sufficient number of random initial states. In this study, the random asynchronous simulation and 14 
the following calculation was done with 700 consecutive steps from 700 random initial states for 15 
one condition, where robust results can be derived from five independent simulations to reach 16 
similar population average expression probabilities (Supplementary Notes 5-3). Solving the 17 
Boolean equation in an asynchronous manner in each step is coded with Python using BooleanNet 18 
package ver.1.2.6 (http://code.google.com/p/booleannet/).   19 

Calculation of population properties based on strongly connected components (SCC) 20 

Strongly connected components (SCC) are defined as clusters of unique expression profiles 21 
wherein all profiles are self-reachable and have more than one transitions to other profiles. Finding 22 
SCCs from the profile transition graph generated by R-ABS is done using networkx 1.9 python 23 
package.  24 

For a particular SCC with n unique expression profiles, the transient matrix (M) with n 25 
rows and columns is defined.  Each element (mij) of M in row i and column j holds the value of the 26 
edge probability (i.e. accessibility from a source profile j to its target profile i) ranging from 0 to 27 
1, which represents the relative transition frequencies from a specific expression profile to one of 28 
its target profiles among all transitions from the source profile. The profile-probability vi of profile 29 
i indicates the chance that a certain cell resides at profile i in the SCC. The sum of the products of 30 
mij and vj, indicates the profile-probability (vi) of the source profile j, which has a transition path 31 
to i. The distribution approaches a limiting distribution v, where v =M × v is satisfied. Assuming 32 
the cell population is a sum of probabilities of heterogeneous single cell states (profiles), Σn(vn) is 33 
equal to 1. Solving v under these constraints gives the principal eigenvector of M that tells us which 34 
profile is likely to be arrived at after a certain number of simulation steps from any profile in the 35 
SCC.  36 

Sustainability for a particular SCC indicates the probability of out-going cells from the 37 
dynamic stable state, reflecting a quantitative measure of the intrinsic stability of the GRN within 38 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2017. ; https://doi.org/10.1101/115683doi: bioRxiv preprint 

https://doi.org/10.1101/115683
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

the SCC. The sustainability score (Sscc) is defined as Sscc = 1 - (Σj(vj) × Σk(vjk)), ranging from 0 to 1 
1, assuming profile j (inside the SCC) has out-going edges towards profile k (outside the SCC). 2 
The expression frequency (p) of model component (g) in a particular SCC can be calculated as a 3 
summation of all v with ON-expression of the gene: 4 

!",$%% = 	$()) ∙ +,
-

,
∙ .	(," = 01) 	3	(," = 044)  5 

where jg denotes the binary state of g in the profile j. To avoid overestimation of v and to maintain 6 
calculation accuracy of population-average expression level, we defined the thresholds for SCCs 7 
to be considered in the analysis as the number of profiles >10 and sustainability score > 0.7. As a 8 
larger dynamic stable state of PSCs is more likely to exist over time it will become a larger 9 
determinant of population-average expression levels. Consequently, population-level gene 10 
expression level is calculated by averaging multiple SCCs: 11 

!" = 	
!",())5()) ∙ -())

-())5())
 12 

where r is the number of SCCs found under the given condition satisfying the predefined threshold, 13 
and n is the number of unique profiles involved in the SCC.�A small constant value for p (p=1e-5) 14 
was applied where necessary to avoid zero division. 15 

The subpopulation characteristics were quantified based on the SCC-averaged expression 16 
levels of lineage and pluripotency associated genes (Cdx2, EpiTFs, Gata6 and Oct4) in the 17 
associated SCC. Each SCC and steady-state attractor is classified based on the thresholds on the 18 
SCC-averaged expression levels (Cdx2: 0.7, EpiTFs: 0.2, Gata6: 0.5 and Oct4:0.3). High 19 
expression of individual markers in separate SCCs is likely to represent TE (Cdx2), Epiblast 20 
(EpiTFs), PE (Gata6) and PSC (Oct4), while high co-expression of differentiation lineage markers 21 
(Cdx2, EpiTFs, Gata6) in the same SCC would suggest a ME lineage (Morgani, 2013). The 22 
population-averaged subpopulation frequency is calculated by simply applying the same strategy 23 
with the calculation of expression level for each SCC where the size of the SCC (the number of 24 
unique expression profiles) and the sustainability score are taken into consideration:  25 
 26 

67 = 	
87 ∙ 9:97
8;<<;<< ∙ 9:9;<<

 27 

 28 
where the number of unique profiles in the SCC A and sustainability of A are indicated as nA and 29 
susA, respectively. 30 
 31 
GRN inference 32 
 33 
We collected mESC expression data on 1,295 genes using the Affymetrix Mouse 430 2.0 Array 34 
from the Gene Expression Omnibus (GEO) database at the US National Center for Biotechnology 35 
Information (NCBI) and ArrayExpress at the European Bioinformatics Institute (EBI) (See 36 
Appendix of the Supplementary Note). Graphical Gaussian Modeling (GGM) was employed to 37 
infer direct regulatory networks between gene pairs based on partial correlations. All data 38 
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including 45,101 probe sets were quantile normalized with the R/Bioconductor limma package. 1 
The probe sets were then converted into 13,879 unique genes by taking mean values of probes 2 
annotated as same gene. Twenty thousand iterations were performed where 1,000 genes were 3 
randomly sampled for one partial correlation analysis with the GeneNet package in R. The lowest 4 
partial correlation for a certain gene pair among whole iterations satisfying constraints (Pearson’s 5 
correlations > |0.3|, p < 0.05) was considered as a GGM score. The gene-to-gene links with 6 
positive/negative-high GGM scores (> 0.03) were taken into consideration as regulatory edges in 7 
the model. 8 
 9 
Model selection 10 
 11 
The candidate models were evaluated by comparing the Euclidean distance between predicted 12 
population-average expression levels and observed frequency of gene-expressing single cells in 13 
single-cell data sets1,36. Both the simulation and the experiment were performed in the control LS 14 
condition. The mRNA expression of single cells were binarized by applying k-means clustering 15 
on the expression data across all samples with k=2, and then the frequency of gene-expressing 16 
single-cells in the population were calculated. For the k-means clustering, we used the cluster.vq 17 
function in the Python scipy package. As there are two series of single-cell transcriptomic 18 
reference profiles, the average values of the frequencies from the two experiments’ datasets were 19 
used.  20 
 21 
Code availability 22 
 23 
Python codes used for the simulation and SCC analysis of population properties are available upon 24 
request. 25 
 26 
Cell Culture 27 
 28 
R1 mouse embryonic stem cells (mESCs) were cultured in serum-containing and feeder-free 29 
conditions as described previously74. Validation of predicted responses to exogenous signaling 30 
was performed in serum-containing medium supplemented with combinations of the following 31 
cytokines/small molecules: LIF (Millipore ESG1107 – 10ng/ml), JAK inhibitor (EMD Millipore 32 
420097 – 2.0µM), BMP4 (R&D Systems 314-BP-010 – 10ng/ml), LDN193189 (Reagents Direct 33 
36-F52 – 0.1µM), CHIR99021 (Reagents Direct 27-H76 – 3µM), Dkk1 (R&D Systems 1765-DK-34 
010 – 275ng/ml), bFGF (Peprotech 100-18B –20ng/ml), PD0325901 (Reagents Direct 39-C68 – 35 
1µM), Activin A (R&D Systems 338-AC-050 – 20ng/ml), and ALK5 inhibitor II (Enzo Life 36 
Sciences ALX-270-445 – 10µM and Cedarlane ALX-270-445 for RNA-seq). Trophoblast stem 37 
cells (TSCs) were cultured as described previously75. Mesoderm progenitor cells were generated 38 
from embryoid bodies (EBs) in differentiation medium containing Iscove’s modified Dulbecco’s 39 
medium (IMDM; Thermo Fisher Scientific) and Ham’s F-12 nutrient mix (Thermo Fisher 40 
Scientific) supplemented with 1X B-27 supplement (Thermo Fisher Scientific), 1X N-2 41 
supplement (Thermo Fisher Scientific), 2 mM Glutamax (Thermo Fisher Scientific), 100 U/mL 42 
penicillin-streptomycin (Thermo Fisher Scientific), 0.05% bovine serum albumin (BSA; Wisent), 43 
150µM monothioglycerol (MTG; Sigma), and 0.5 mM ascorbic acid (Sigma). On day 2, EBs were 44 
harvested, dissociated into single cells, and re-aggregated in 100 mm Petri dishes (BD Biosciences) 45 
with differentiation medium further supplemented with BMP4 (1 ng/mL), Activin A (2 ng/mL), 46 
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and Wnt3a (3 ng/mL). Mesoderm progenitors were isolated either before or 24 hrs after addition 1 
of IWP-2 (Reagents Direct 57-G89 – 2µM) to each Petri dish on day 3. 2 
 3 
mRNA Quantification with qRT-PCR 4 
 5 
Primer sequences were obtained from PrimerBank76 and are listed in Supplementary Table S2. 6 
qRT-PCR was carried out as described previously15. Briefly, cells were lysed and RNA was 7 
isolated using the PureLink® RNA Mini Kit (Life Technologies). RNA was converted to cDNA 8 
using SuperScript III Reverse Transcriptase (Life Technologies) and amplified in FastStart SYBR 9 
Green Master Mix (Roche) using the 7900HT Fast Real-Time PCR System (Thermo Fisher) with 10 
an annealing temperature of 60ºC. Each data set was normalized to ß-actin in each condition and 11 
then normalized to the control. 12 
 13 
In vitro Immunostaining and Quantification 14 
 15 
Cells were fixed and stained as described previously15. The following antibodies were used at a 16 
1:200 dilution: Oct4 (BD biosciences 611203), Oct4 rbIgG1 (Cell Signaling 2840S), Sox2 (R&D 17 
Systems MAB2018), Nanog (eBiosciences 14-5761-80), Cdx2 (BioGenex MU392-UC), Gata4 18 
(Santa Cruz Biotechnology sc-1237), and Brachyrury (R&D Systems AF2085). Stained cells were 19 
quantified on the Cellomics™ (ThermoFisher) high content screening platform. 20 

Flow Cytometry 21 
 22 
Cells (mESCs and TSCs) were first stained for surface markers CDCP1 (R&D Systems AF4515) 23 
and CD40 (BD Biosciences 562846) using antibodies at 1:100 dilutions and assayed using flow 24 
cytometry (BD LSRFortessa). Cells were also stained with a live/dead stain (LIVE/DEAD® 25 
Fixable Far Red Dead Cell Stain Kit for fixed cells, 7-AAD for live cells – Life Technologies) and 26 
gated for live cells. Final graphs were generated using FlowJo software. 27 

RNAseq. 28 

RNA was extracted using the PureLink RNA Mini Kit (Ambion, Life Technologies, Cat no. 29 
12183018A and 12183025) according to the manufacturer’s instructions. Cells were homogenized 30 
using a QIAshredder (Qiagen, Cat no. 79654). Cell pellets were frozen at the treatment-specific 31 
time points and RNA was extracted from all pellets at the same time for each analysis. Quality 32 
control of total RNA was done on an Agilent Bioanalyzer 2100 RNA Nano chip following Agilent 33 
Technologies’ recommendation. RNA libraries were then sequenced on an Illumina HiSeq 2500 34 
platform using a High Throughput Run Mode flowcell and the V4 sequencing chemistry following 35 
Illumina’s recommended protocol to generate paired-end reads of 126-bases in length. Reads were 36 
trimmed for adapters and a phred33 quality cutoff of 20 using TrimeGalore with cutadapt, and 37 
mapped to the Ensembl NCBIM37 mouse genome using STAR 2.4.2a. To adjust batch effects 38 
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between experiments of two distinct days, COMBAT, an R package for Empirical Bayes method 1 
(http://statistics.byu.edu/johnson/ComBat/) was utilized. 2 

Chimera Generation and Analysis 3 

E14 Ju09 HV H2B-Tomato ESCs55 were a gift from Joshua Brickmann and CAG H2B-eGFP ESCs 4 
were derived from mice77. ESCs were maintained in ESC medium containing 2i/LIF/serum. Cells 5 
were passaged twice with 2iL on mouse embryoic fibrobalasts and inactivated with no growth 6 
factor medium. Cells were then treated for 48 hours with 2i/LIF/serum or 2i/Jaki/serum on mouse 7 
embryonic fibroblasts. Chimeric embryos were generated by morula aggregation. Clusters of 5 to 8 
10 ESCs were aggregated with wild-type CD1 morulae and cultured in Potassium (K) Simplex 9 
optimized media (KSOM; Chemicon) under paraffin oil at 37°C and 5% CO2 until the late 10 
blastocyst stage (embryonic day 4.5). Blastocyst embryos were subjected to immunofluorescent 11 
staining using anti-Cdx2 (1:600, Abcam ab76541), anti-Gata4 (1:100, Santa Cruz Biotech sc-12 
9053), anti-Sox2 (1:100, R&D Systems AF2018), anti-GFP (1:400, Abcam ab13970) and anti-13 
RFP (1:100, Abcam ab65856) antibodies. Imaging was performed using a Quorum WaveFX 14 
spinning disk confocal system and Volocity acquisition software (Perkin Elmer). The frequency 15 
of cells localizing to extra-embryonic - trophectoderm (TE) positions in the blastocyst was 16 
counted. The investigators were not blinded to allocation during outcome assessment, and the 17 
experiments were not randomized. 18 

Data and Statistical Analysis 19 

We assume that each well of a culture dish behaves as a biological replicate. No statistical methods 20 
were used to predetermine sample sizes. Images including immuno-staining experiments shown 21 
are representative of at least three independent experiments. Simulation data were derived from 22 
five individual runs for the indicated inputs. For the calculation of p-value, Wilcoxon exact rank 23 
test (R: coin package) was used for comparison of data groups unless otherwise stated. All tests of 24 
statistical significance were two-sided (* p <.05, ** p<.01). 25 

Data Availability 26 
 27 
RNA-seq data have been deposited in the Gene Expression Omnibus (GEO) under the accession 28 
number of [TBD]. 29 
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FIGURES and FIGURE LEGENDS 1 

Figure 1 | Strategy for modeling and simulation of stabilized PSCs. (a) Experimental 2 
conditions can be set as simulation inputs by defining the model variables (signal components with 3 
black-filled symbols and genes A, B and C) as either continuously ON, OFF, or variable. (b) 4 
Random ABS generates a directed transition graph where binary gene expression profiles are graph 5 
nodes and possible transitions from individual profiles are edges with a certain probability. PSC 6 
populations are assumed to be stabilized as a group of heterogeneous profiles, which is defined as 7 
an SCC. (c) Weighted, subpopulation-average gene expression and signaling activity of a 8 
particular SCC are calculated based on transition probabilities and the binary state of each model 9 
component in each heterogeneous profile. 10 

Figure 2 | Simulation recapitulates distinct PSC states. (a) A schematic of the defined PSC 11 
gene/signal regulatory network model. The full representation of the model is shown in 12 
Supplementary Table S1 and Supplementary Notes Table M2. (b) Simulation inputs for 13 
LIF+Serum (LS: orange), 2i+LIF(2iL: red) , and bFGF+Activin (bF+A: green) conditions. (c) 14 
Pinwheel diagram of relative population-averaged expression levels in predicted states (shaded 15 
area) under different input conditions (Red – mESC conditions, Green – EpiSC conditions) 16 
recapitulates experimental gene expression data (solid lines) from microarray and RNAseq studies. 17 
(d) In silico single gene GOF/LOF analysis of mESCs and EpiSCs was performed by fixing each 18 
gene in the GRN as ON or OFF, in either mESC (LS - orange) or EpiSC (bF+A - green) conditions. 19 
The calculated gene expression levels following each manipulation were mapped onto principle 20 
components. The individual gene perturbations that resulted in the changing of overall gene 21 
expression of EpiSCs to a more mESC-like one (green dots in orange shaded space) were predicted 22 
candidates for driving reversion from EpiSCs to mESCs. 23 
 24 

Figure 3 | Dual inhibition (2i) supports the pluripotency core network (OSN) while LIF 25 
stabilizes PSCs. (a) Representative bright-field microscope images of mESC colonies in LIF and 26 
2iL conditions with serum. (b) i. Pluripotency level (OSN expression) of each PSC-associated 27 
SCC.  ii. Sustainability scores for each PSC-associated SCC. iii. Susceptibility of gene expression 28 
profiles against minimal perturbation to GRN topology was assessed in silico by measuring the 29 
change of variance in all genes.  (c) Schematic illustration of the PSC metrics. The frequency of 30 
OSN-high cells reflects the population-level pluripotentiality. Sustainability reflects the intrinsic 31 
network stability in maintenance of the PSC state in the absence of extrinsic stimuli. Susceptibility 32 
measures the change of expression profiles to perturbations such as gene manipulations and 33 
signaling inputs and predicts the chance of PSC fate change. (d) Predicted population-averaged 34 
gene expression levels of OSN in SCCs from all possible combinations of signal inputs (White– 35 
without LIF, Orange – with LIF, Red – with 2iL and Blue – with 2i-L). (e) Four signaling pathways 36 
are manipulated in 16 conditions that are divided into four groups based on LIF- and Wnt-signal 37 
manipulations: +L+W (red, 2iL), −L+W (blue, 2iJ), +L−W (orange), and −L−W (white). Note that 38 
2i+JAKi (2iJ) is the in vitro counterpart to the in silico 2i-L. (f) High content screening results of 39 
gene-expressing cell frequency (x-axis) and predicted population-average expression levels (y-40 
axis) of OSN. Each condition is tested under activated and repressed Activin A/Nodal- and BMP-41 
signals by addition of cytokines or inhibitors (±A±B). The symbol + indicates the addition of 42 
cytokines or small molecules that results in activation of the signaling pathway and the symbol − 43 
indicates the addition of inhibitors to pathway activity. Circles are 16 combinatorial signal 44 
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conditions and triangles are the three control PSC conditions and are colorized using the same 1 
scheme outlined in (e). Experimental data is represented as mean and s.d. of three experiments, 2 
each performed in two replicates, and simulation data represents five independent simulations.  3 

 4 

Figure 4 | A culture-induced TE-like subpopulation. (a) Predicted population-level gene 5 
expression levels (left panel) and qRT-PCR-measured relative expressions (right panel; shown in 6 
fold-change from the levels of 2iL) of OSN and lineage markers. Data represents the mean and 7 
s.e.m. of three or four biological replicates; the differences between 2iJ and 2iJ+B were examined 8 
using a 2-tailed unpaired Student’s t test and asterisks indicate *p < 0.1 and ** p <0.05. (b) In 9 
silico subpopulation analysis via threshold-based characterization for individual SCCs under the 10 
input condition of 2i-L+B-A. Stable grouped profiles enriched as either PSC, TE, ME, PE or 11 
Epiblast-like subpopulations were traced in color-coded circles. The circles with solid line indicate 12 
SCCs with no outgoing edges (sustainability score =1.0), and those with dashed line indicate SCCs 13 
with lower sustainability. (c) Confocal images of immuno-staining of mESCs for 14 
Oct4/Cdx2/Gata4 (top) or Oct4/Cdx2/Brachyury (T) (bottom panels) cultured in the given 15 
conditions for 2 days. (d) Quantification of frequency of subpopulations that exhibit features of 16 
differentiation lineages. Data are means of three replicates and the results were confirmed in two 17 
independent studies. (e) qRT-PCR for pluripotency and extended TE-lineage maker genes. TSCs 18 
and mESCs after culture in each condition were compared. Data represents the mean of three 19 
replicates. (f) Flow cytometry histograms showing fluorescence intensity of CDCP1 and CD40 in 20 
individual samples of mESC in LS, TS, and mESCs cultured in 2iJ+B-A for 2 days. Percentage 21 
listed is that of positive cells in the 2iJ+B-A condition. (g) PCA plot of RNA-seq data for the top 22 
40% of genes that show highest variance across all samples. Distinct cell types and conditions are 23 
indicated with different colors. Circles include day2 and day5 samples for 2i-L and 2iJ conditions, 24 
and two day 2 samples, day 5 and 11 for 2iJ+B-A condition. Diamonds indicate stable cell type no 25 
culture time defined. Meso indicates mesoderm progenitors. (h) Comparison of predicted gene 26 
expression levels and RNAseq-measured gene counts in 2iJ+B-A relative to 2iJ (Equivalent to 2i-27 
L in simulation) for 29 genes involved in the model. The experimental mean relative gene 28 
expressions of day2 samples for the two conditions and the mean relative predicted levels are 29 
shown. Black dots indicate genes significantly up- or down-regulated (p < 0.05) in three 2iJ+B-A-30 
treated samples  compared with two 2iJ-treated samples. Genes in blue are up-regulated in TSC, 31 
and those in red are down-regulated in TSC compared with 2iJ-treated samples. (i) Left panel: In 32 
vivo lineage contribution frequency and chimera efficiency of H2B-GFP ESCs treated with either 33 
2iL or 2iJ in the presence of serum. Lineage contribution efficiencies were calculated as number 34 
of chimeras with cells in Epiblast (EPI) or TE positions/total number of chimeras. Note that cells 35 
scored as “TE-position” did not express TE marker Cdx2. Chimera forming efficiency was 36 
calculated as number of chimeras/number of total aggregates made. Right panel: Representative 37 
images of aggregation chimeras at E4.5. We observed a number of cells in TE positions in 38 
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chimeras. These cells ranged from live-looking to apoptotic, however none expressed Cdx2 and 1 
thus were not considered as viable, integrated contributions to the TE lineage.  2 

 3 

Supplementary Figures: 4 

Supplementary Figure S1 | General strategy of the simulation. (a) The property of synchronous 5 
(A) and asynchronous (B) Boolean simulation.  Importantly in ABS, a single starting profile can 6 
give rise to multiple different resultant profiles and therefore all transitional profiles are 7 
represented with probabilities. Note that we used random ABS where the genes updated in each 8 
transition are set randomly to reduce the calculation cost. (b) The background of our simulation 9 
framework: heterogeneity derived from single cell fluctuations and stabilization of PSC 10 
populations showing robust gene expression pattern under a certain signaling input condition 11 
(depicted with black geometric shapes).  12 

 13 

Supplementary Figure S2 | Comparison of predicted and experimentally observed data on 14 
gene expression patterns in distinct PSCs; related to Figure 2. (a) Predicted population-average 15 
expression level (mean of five independent simulations) for each pluripotency-associated gene in 16 
the control LS condition is comparable with the frequency of gene-expressing cells from the 17 
reported single cell measurements using RNAseq (triangle)36 and fludigm-qPCR10(circle)1. The 18 
gene expression levels were binarized into ON or OFF for each single cell to calculate frequencies. 19 
(b) Comparison of predicted co-expressions of epiblast-specific genes (EpiTFs – Eomes, Otx2, 20 
and Fgf5) with O/S/N and those measured by qPCR-based single cell mRNA data. Oct4 and Nanog 21 
are likely to be co-expressed with EpiTFs whereas Sox2 is not, as it shows a negative correlation 22 
with EpiTFs  (i.e. EpiTF expression in Sox2- cells is higher) in both our simulation and in 23 
published, single cell expression data1,37. p-value was calculated by Fisher's exact test. (c) 24 
Simulation of distinct PSCs recapitulates population-level gene expression measurements. All 25 
expression data is scaled relative to respective gene expression in control LS conditions. The 26 
hierarchical clustering with AU (Approximately Unbiased) p-value and BP (Bootstrap Probability) 27 
value based on multiscale bootstrap resampling was carried out with the pvclust package in R. The 28 
results are displayed in the pinwheel view in Fig 2c, where upper and lower limits are set to +5 29 
and -10, respectively, in the simulation to avoid singularities caused by null expression. The 30 
experimental data was taken from indicated GEO entries and RNAseq data for EpiSCs was kindly 31 
provided by Dr. Ronald Mckay. Cell lines used are 129 (GSE15603 and  GSE62155), J1 32 
(GSE58735), ESF175/1,ESF58/2, ESF122 (GSE7902) cell lines, or mESCs were derived from 33 
C57BL/6J strain blastocysts (GSE53275). (d) In silico GOF/LOF study in EpiSC (bF+A) or mESC 34 
(LS) conditions. All SCCs above ten profiles and sustainability > 0.7 are shown, and the gene 35 
expression levels of each component in each SCC are color-coded between blue (0.0) to yellow 36 
(1.0). The population-average expression levels based on the GOF/LOF results were shown in the 37 
PCA-metrics in Fig.2c. (e) Predictions (left) and measurements (right) of population-averaged 38 
expression levels of OSN in EpiSC-conditions (bF+A) increased in response to extrinsic 39 
manipulation of BMP4. BMP4 was set as continuous-ON (EpiSC+BMP4) and random (EpiSC). 40 
The frequencies reported for Oct4, Sox2 and Nanog-positive cells, assessed by Cellomics high 41 
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content screening, represent the mean and s.d. of four replicates. Asterisk indicates the significant 1 
difference (p < 0.05 unpaired, two-sided t test for total OSN). 2 

 3 

Supplementary Figure S3 | LIF stabilizes the pluripotent population while 2i up-regulates 4 
OSN; related to Figure 3. (a) Summation of frequencies (0-1) of O/S/N-positive cells assessed 5 
by high content screening at 2 days after medium replacement (n=6). Asterisk indicates the 6 
significant difference for total OSN. (b) Upper panel: A measure of Pearson’s  correlation for  OSN 7 
in 2i-supplemented conditions, quantified using high content screening (n=6). Lower panel: A 8 
measure of Pearson’s correlation for OSN in the results of a minimal perturbation-sensitivity 9 
analysis described in c. (c) The results of minimal perturbation-sensitivity analysis of the model 10 
where the model network was perturbed by removing single regulatory edges. Purple indicates 11 
down-regulation of the genes by removing the regulatory edge, which means the regulation had a 12 
positive role on the expression level of O/S/N, while green indicates the reverse. Note that the 13 
results shown are the effects of regulatory edge-removal: the removal of inhibitory regulation from 14 
Cdx2 to Oct4 increases Oct4, which means that the regulation edge acts as a negative effector for 15 
Oct4 level. (d) The difference in PSC population stability between 2iL and 2i-L conditions was 16 
assessed via published single gene-LOF and double genes-LOF in vitro19 and in silico. The upper 17 
panel depicts the experimental results for the relative count of alkaline phosphatase (AP) positive 18 
cells to untreated colonies upon gene manipulations. The simulation data (lower panel) shows 19 
population-average expression level of Oct4 relative to controls (2iL and 2i-L) where the 20 
manipulated gene was set as continuously OFF. Blue nodes indicate the response in 2i-L while red 21 
nodes indicate those in 2iL (n=5 for simulation and n=3-5 for experimental). (e) The experimental 22 
inputs (additives of the conditions) corresponding to the simulation inputs shown in Fig 3e. 23 
Abbreviations used are as follows: Jaki for Janus kinase (JAK) inhibitor, Dkk1 for Dickkopf1 and 24 
Alki for chemical inhibitor selective for activin receptor-like kinase (ALK) 4/5/7. (f) Predicted 25 
levels (left) and measured gene-expressing cell frequencies (right) of O/S/N for each condition 26 
group (L=LIF; W=WNT). The average value of four distinct signal conditions 27 
(±BMP±Activin/Nodal) in each group for each gene was calculated and summed up into an OSN 28 
score (n=6). Asterisk indicates the significant difference for total OSN. (g) Susceptibility of O/S/N 29 
expression levels of PSCs to Activin and BMP signal perturbations was predicted (upper panel) 30 
and measured (lower panel). Standard deviation per mean of predicted expression levels or gene-31 
expressing frequencies from immuno-staining was calculated as a coefficient of variation for each 32 
group (±LIF±WNT) including four distinct signal conditions (±BMP±Activin/Nodal). (h) 33 
Frequencies of O/S/N-expressing cells in the 19 combinatorial signal conditions with and without 34 
serum assessed by immuno-staining (n=2). Most conditions were equivalent except for –L–W–35 
B+A and +L–W–B–A. The notable down-regulation of OSN in –L+W+B–A (=2iJ+B–A) was seen 36 
in both with- and without-serum conditions. 37 

 38 

Supplementary Figure S4 | In silico subpopulation analysis reveals mESCs exit pluripotency 39 
towards TE-like lineage in 2iJ+B-A condition; related to Figure 4. (a) In silico subpopulation 40 
analysis of possible signaling input combinations with 2iL and 2i-L. The threshold values for 41 
predicted expression levels of lineage specifiers in each SCC are set as follows: Oct4=0.3, 42 
EpiTFs=0.2, and Gata6=0.5 and Cdx2=0.7. (b) Frequency of Cdx2+ population including TE-like 43 
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sub-population (Cdx2+/Oct4-) after five days in culture measured by immuno-staining. Data 1 
represents the means of six replicates consisting of two biological replicates with three technical 2 
replicates in each. The representative density plot of immuno-staining of Cdx2 on day 5 is shown 3 
in the left panel. (c) Histograms for expression of TE-enriched cell surface markers, CD40 and 4 
CDCP1. Shown are mESCs treated in 2iJ (1st column), 2i-L (2nd column), or 2iL(3rd column), in 5 
unsupplemented medium (1st row) or BMP4 and ALKi supplemented medium (+B-A) (2nd row). 6 
Control mESCs (kept in control LS) and TSCs are shown at the bottom. (d) In vivo lineage 7 
contribution frequency and chimera efficiency of H2B-Tomato ESCs55 treated with either 2iL or 8 
2iJ in the presence of serum. 9 

10 
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Supplementary Tables: 1 
Gene Gene category Boolean Definition 
Activin A 
/Nodal 

Cytokine (SignalACT or Oct4) and (not Sox2) and (not Lefty1) and (not Gbx2) 

BMP4 Cytokine SignalBMP or Gbx2 or Tbx3 or Myc 
Dnmt3b Enzyme (Mycn or Tcf3 or EpiTFs) and not (Cdx2 or Klf4) 
EpiTFs Lineage TF (SignalBMP or Pitx2 or Dusp6) and (not Cdx2) and not (Klf4 and Sox2) 
Esrrb Pluripotency TF (Klf4 or Klf2 or Nanog or (SignalWNT and (not Tcf3))) and (not 

EpiTFs) 
Fgfr2 Receptor� ((SignalFGF) or Gcnf or Cdx2) and (not Nanog) and (not Oct4) 
Gata6 Lineage TF� (Gata6 or SignalERK) and (not Klf2) and (not Nanog) and (not Fgf4) 
Gbx2 Pluripotency TF� ((SignalWNT and (not Tcf3)) or SignalLIF) and ((Esrrb or Jarid2) and not 

(Tbx3)) 
Gcnf Lineage TF� (Gata6 or Cdx2) and (not EpiTFs) 
Jarid2 Pluripotency TF� Klf4 or Oct4 
Klf4 Pluripotency TF (SignalLIF or ((Klf2 or Klf4) and Nanog and Esrrb and (Oct4 and Sox2))) 

and (not EpiTFs) 
Nanog Pluripotency TF (Nanog or SignalACT or (Oct4 and Sox2) or Tbx3 or Lrh1 or Klf4) and 

not (Tcf3 or Gata6) 
Oct4 Pluripotency TF  (((Oct4 and Sox2) or Nanog or Klf2 or Klf4) and not (Cdx2 and Oct4) 

and (not Dnmt3b or Klf2)) or (((Oct4 and Sox2) or Nanog or Lrh1 or 
Klf2 or Klf4) and (not Gcnf) and (Dnmt3b and (not Klf2))) 

Smad6 Signal 
antagonist 

(SignalBMP or Gata6) and (not Oct4) 

Smad7 Signal 
antagonist 

(Oct4 or Nanog or Esrrb or Klf4 or Tbx3) and (not Gbx2) and (not 
Jarid2) 

Sox2 Pluripotency TF Nanog or (Oct4 and Sox2) 
Tcf3 Lineage TF (Nanog or Oct4) and (not SignalWNT) 
Cdx2 Lineage TF (SignalBMP or Cdx2) and not (Cdx2 and Oct4) 
Dusp6 TF SignalERK 
Fgf4 Pluripotency 

TF/ Cytokine 
Esrrb or Nanog or (SignalWNT and (not Tcf3)) 

Klf2 Pluripotency TF ((Sox2 and Klf4) or Mycn) and (not Pitx2) and (not Dusp6) 
Lefty1 TF (SignalACT or (SignalWNT(not Tcf3))) or Mycn or (Oct4 and Sox2)) 

and (not Jarid2) and (not Fgf4) 
Lrh1 Pluripotency TF (Tbx3 or Klf4 or (Oct4 and Sox2)) and (not Tcf3) 
Mycn TF (Oct4 and Sox2) and (not Nanog) 
Pitx2 TF (SignalACT or (SignalWNT(not Tcf3))) and (not Sox2) and (not Jarid2) 
Tbx3 Pluripotency TF (SignalPI3K or Tbx3) and (Esrrb or Nanog or Klf4) and (not 

SignalERK) and (not Tcf3) 
Myc Pluripotency TF ((SignalERK or (SignalWNT and (not Tcf3))) or SignalLIF or Gbx2) and 

(not Nanog) 
Pecam1 Pluripotency 

Marker 
(Klf2 or Nanog) and (not EpiTFs) 

Rex1 Pluripotency 
Marker 

(Nanog or Sox2 or Lrh1 or Klf2 or Esrrb) and (not EpiTFs) 

Supplementary Table S1: Boolean definition for genes in the model.  2 

 3 
 4 
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 1 

Gene Forward Primer Reverse Primer 

Oct4 AGTTGGCGTGGAGACTTTGC CAGGGCTTTCATGTCCTGG 

Nanog TTGCTTACAAGGGTCTGCTACT ACTGGTAGAAGAATCAGGGCT 

Sox2 GCTCGCAGACCTACATGAAC GCCTCGGACTTGACCACAG 

Otx2 TATCTAAAGCAACCGCCTTACG AAGTCCATACCCGAAGTGGTC 

Eomes GGCCCCTATGGCTCAAATTCC CCTGCCCTGTTTGGTGATG 

Gata6 GGCAGTGTGAGTGGAGGTG TGGTACGTTCCGTTCAGCG 

Gata4 CCCTACCCAGCCTACATGG ACATATCGAGATTGGGGTGTCT 

Trop2 GTCTGCCAATGTCGGGCAA GTTGTCCAGTATCGCGTGCT 

Fgf5 TGTGTCTCAGGGGATTGTAGG AGCTGTTTTCTTGGAATCTCTCC 

Bry (T) GCTGGATTACATGGTCCCAAG GGCACTTCAGAAATCGGAGGG 

b-actin GAAATCGTGCGTGACATCAAAG TGTAGTTTCATGGATGCCACAG 

Furin TCGGTGACTATTACCACTTCTGG CTCCTGATACACGTCCCTCTT 

Gata3 AAGCTCAGTATCCGCTGACG GTTTCCGTAGTAGGACGGGAC 

Elf5 GACTCCGTAACCCATAGCACC GCTGAACAGATCGGTCCAAGG 

Tfap2c TACCAGCCGCCTCCTTACTT TCCAGCCCTGAAATATGGGGT 

Hand1 GGCAGCTACGCACATCATCA GCATCGGGACCATAGGCAG 

Supplementary S2: Primer sequences used in the study. 2 

 3 
 4 
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