Abstract
In the past six years worldwide capacity for human genome sequencing has grown by more than five orders of magnitude, with costs falling by nearly two orders of magnitude over the same period [1], [2]. The rapid expansion in the production of next-generation sequence data and the use of these data in a wide range of new applications has created a need for improved computational tools for data processing. The Sentieon Genomics tools provide an optimized reimplementation of the most accurate pipelines for calling variants from next-generation sequence data, resulting in more than a 10-fold increase in processing speed while providing identical results to best practices pipelines. Here we demonstrate the consistency and improved performance of Sentieon’s tools relative to BWA, GATK, MuTect, and MuTect2 through analysis of publicly available human exome, low-coverage genome, and high-depth genome sequence data.