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Abstract Scientists have observed theta rhythms (3-12 Hz) in the hippocampus for decades, but10

we do not have a clear understanding of how they are generated. This is largely due to the complex,11

multi-scale and nonlinear nature of the brain. To obtain insight into mechanisms underlying the12

generation of theta rhythms, we develop cellular-based network models of the hippocampus based13

on a whole hippocampus in vitro preparation that spontaneously generates theta rhythms. Building14

on theoretical and computational analyses, we find that spike frequency adaptation and15

post-inhibitory rebound constitute a basis for theta generation in large, minimally connected CA116

pyramidal (PYR) cell network models with fast-firing parvalbumin-positive (PV+) inhibitory cells. The17

particular theta frequency is more controlled by PYR to PV+ cell interactions rather than PV+ to PYR18

cell ones. We identify two scenarios by which theta rhythms can emerge and they can be19

differentiated by the ratio of excitatory to inhibitory currents to PV+ cells, but not to PYR cells. Only20

one of the scenarios is consistent with data from the whole hippocampus preparation, which leads21

to the prediction that the connection probability from PV+ to PYR cells needs to be larger than from22

PYR to PV+ cells. Our models can serve as a platform on which to build and develop an23

understanding of in vivo theta generation, and of microcircuit dynamics in the hippocampus.24

Significance Brain rhythms have been linked to cognition and are disrupted in disease. This makes25

it essential to understand mechanisms underlying their generation. Theory and mathematical26

models help provide an understanding and generate hypotheses. Together with experiment they27

contribute a framework to dissect the cellular contributions to network activity. However, models28

are inherently biological approximations, and thus the specific experimental and theoretical29

context upon which they are built will shape their output. If the approximations and contexts are30

not taken into account, particularly when using previously constructed models, misinterpretations31

can arise. Here, we use both theory and microcircuit models derived from a specific experimental32

context to provide insight into cellular-based mechanisms involved in theta rhythm generation in33

the hippocampus.34

35

Introduction36

The goals of mathematical modeling in Neuroscience are many and varied. However, for any partic-37

ular study, modeling goals must be clear as they guide our decisions during model development.38

Developed models can be used to generate new hypotheses and to investigate interactions across39
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different scales. As we work to achieve an understanding of the brain, it is helpful to consider what40

is meant by an explanation in Neuroscience. In this regard, Aristotle’s doctrine of the four causes41

(Falcon, 2015) – the material cause, the formal cause, the efficient cause and the final cause, as42

described in Brette (2013) is useful. The efficient cause is what triggers the phenomenon to be43

explained, the material cause refers to the physical substrate of the phenomenon, the formal cause44

is the specific pattern responsible for the phenomenon (as would be represented by a mathemati-45

cal model), and the final cause is the function of the phenomenon. Typically, as stated by Brette,46

theoretical approaches to Neuroscience tend to focus on formal and final causes, and experimental47

approaches to Neuroscience tend to focus on material and efficient causes. While all four causes48

may be needed to obtain a complete understanding, considering these four causes can serve to49

clarify modeling goals and how and why various mathematical models are developed and used. In50

turn, this can serve to enhance collaborative efforts in Neuroscience.51

Electrical oscillations are hallmarks of the brain that are linked to normal and pathological52

functioning (Buzsaki, 2006). Thus, it is essential to understand the mechanisms underlying their53

generation. A large part of the challenge in obtaining mechanisms underlying oscillation generation54

is due to the multi-scale nature of our brains with its biological complexity and cellular specifics55

(Cohen and Gulbinaite, 2014). Various ’building blocks’ such as post-inhibitory rebound have long56

been known, as identified from individual neurons and small circuits (Gjorgjieva et al., 2016).57

However, it is unclear what the building blocks for oscillation generation in the mammalian brain58

might be. A dominant oscillation in the hippocampus is the theta (3-12 Hz) rhythm (Buzsaki, 2002;59

Colgin, 2013, 2016). These rhythms are associated with memory processing and spatial navigation,60

present when the animal is actively exploring or during REM sleep. In the human hippocampus,61

theta rhythms are linked to similar behaviours (Lega et al., 2012). It may also be the case that62

theta rhythms in humans are associated with a wider behavioural repertoire relative to rodents, as63

they are present without sensory input (Qasim and Jacobs, 2016). Although Jung and Kornmuller64

discovered theta rhythms almost eighty years ago in the rabbit (Colgin, 2013), how theta rhythms65

are generated is not yet clear.66

To understand theta generation it is important to distinguish between specific brain structures67

and excitatory and inhibitory cell interactions within these structures. As discussed by Colgin (2013),68

it is traditionally thought that the medial septum (MS) is critical for the generation of theta since69

theta rhythms are disrupted when the MS is lesioned or inactivated. However, the hippocampus70

can exhibit theta rhythms without the MS (Goutagny et al., 2009). In addition, distinct inhibitory71

cell populations, such as parvalbumin-positive interneurons, fire at unique phases of the theta72

rhythm, and likely play an important role in their generation (Varga et al., 2014; Amilhon et al.,73

2015). To understand the varied functional roles of these dominant rhythms and how they are74

modulated and controlled, we need to clearly decipher the cellular mechanisms underlying their75

generation. There is always some balance of interacting constitutive elements. From amathematical76

modeling perspective, this reduces to deciding what ’parameters, parameters, parameters’ (Skinner,77

2012) and values to use and whether and how to represent the biological system given that any78

mathematical model is an approximation of the biology.79

In this paper, our goal is to develop microcircuit models that we can use to understand how theta80

rhythms are generated. We take advantage of theoretical insights, an in vitro whole hippocampus81

preparation that spontaneously expresses theta rhythms, and the ability to readily do thousands82

of network simulations with our developed mathematical models. We present an explanation83

for theta generation that has elements of efficient, material and formal causes, and suggest that84

essential building blocks are spike frequency adaptation and post-inhibitory rebound.85

Materials and Methods86

Here we summarize our overall strategy and describe the experimental context of the whole87

hippocampus preparation and our developed mathematical models and analyses. We also describe88

previous and motivating modeling work that the results are built upon.89
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Overall strategy90

Our goal is to develop experimentally motivated microcircuit models of a hippocampal CA1 network91

to provide insight into the mechanisms underlying theta rhythm generation. Our approach is shown92

in the schematic of Figure 1 where orange and black arrows refer to links in the present or previous93

work respectively.94

We previously developed cellular, mathematical models of excitatory and inhibitory cells based95

on whole cell patch clamp recordings from the whole hippocampus preparation (Ferguson et al.,96

2015b, 2013). We used these cellular models to generate either excitatory (Ferguson et al., 2015a)97

or inhibitory (Ferguson et al., 2013) network models with sizes and connectivities as appropriate for98

the experimental context, and took advantage of a mean field theory (MFT) approach to determine99

parameter regimes in the excitatory networks (Ferguson et al., 2015a).100

In the present work, we combine these excitatory and inhibitory networks and perform a101

detailed computational analysis of this network. We investigate the dynamic interplay between102

these two cell populations and their roles in theta generation. Further theoretical analyses are103

required to fully understand the network dynamics.104

Figure 1. Overall Strategy.
The three schematic parts (left, right, lower) of Theory, Simulation
and Experiment/Mathematical Model Development are bidirectionally
linked by arrows. Theory refers to mean field theory that was used
to constrain the parameter sets to examine in simulations, using

cellular models derived from experiment. Simulation refers to the
computation of thousands of network simulations done.

Experiment/Mathematical Model Development refers to the cellular,
Izhikevich-type models that were developed in the experimental

context of the whole hippocampus preparation. In the middle, a

schematic of the whole hippocampus preparation with a an added

blue square to illustrate the piece of tissue from the CA1 region of

the hippocampus that is being modelled. The hippocampus

schematic is adapted from Fig.1 of Huh et al. (2016). Orange
arrows are for links in the present work and black arrows for

previous work. Dashed orange arrow from Theory to Experiment is
because it is indirect as Theory previously contributed to Simulation.

Overall, our strategy combines105

experiment, model development,106

simulation and theory. Our models107

bring together network size, con-108

nectivity and cellular characteristics109

in a closed fashion given the exper-110

imental context.111

Experimental context112

In 2009, Goutagny and colleagues113

(Goutagny et al., 2009) developed114

an in vitro whole hippocampus115

rodent preparation that sponta-116

neously generates theta (3-12 Hz)117

rhythms in the CA1 region. By118

blocking transmission across the119

septo-temporal axis, they identi-120

fied multiple theta oscillators in the121

hippocampus (see Supplementary122

Fig.11 in Goutagny et al. (2009)).123

Further, the presence of these124

theta oscillations was not depen-125

dent on the CA3 region (see Supple-126

mentary Fig.10 in Goutagny et al.127

(2009)), and required GABAA and128

AMPA receptors (see Supplemen-129

tary Table 1 in Goutagny et al.130

(2009)). Given this, we estimate that131

the minimum circuitry required for132

CA1 theta rhythms is contained in133

approximately 1 mm3. Using known134

cell densities and approximate vol-135

umes of axonal innervation (Aika et al., 1994; Sik et al., 1995; Jinno and Kosaka, 2006;West et al.,136

1991; Hosseini-Sharifabad and Nyengaard, 2007), we approximate that 30,000 excitatory, pyrami-137

dal (PYR) cells and 500 parvalbumin-positive (PV+) cells are involved in the spontaneous generation138

of theta rhythms in the CA1 region of the hippocampus. This size estimate is thoroughly described139
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in our previous modeling work (Ferguson et al., 2013, 2015a).140

Subsequent work by Amilhon et al. (2015) indicates that networks of PV+ and PYR cells could141

encompass the basic (minimal) units required for theta rhythm generation in the whole hippocam-142

pus preparation. This is because optogenetically silencing PV+ cells eliminates the theta rhythm,143

whereas silencing somatostatin-positive inhibitory cells do not. Further, it is the case that PV+ cells144

receive large excitatory postsynaptic currents (EPSCs) relative to PYR cells during ongoing theta145

rhythms. Also, simultaneous recordings from PV+ or PYR cells with the extracellular field recording146

of the theta rhythm indicates that the majority of PV+ cells are phasically firing with the rhythm,147

whereas PYR cells fire sparsely (Huh et al., 2016). We estimate that 20% or less of the PYR cells are148

firing based on (Huh et al., 2016)). Given that PV+ cells receive large EPSCs and that PYR cells fire149

sparsely, ongoing theta rhythms must necessarily be dependent on a large network effect.150

During the ongoing theta rhythm, EPSCs in PYR cells are very small and variable (estimated to151

be less than 20 pA), whereas the inhibitory postsynaptic currents (IPSCs) to the PYR cells are larger152

(estimated to be approximately 200 pA). Conversely, the PV+ interneurons receive very large EPSCs153

(estimated to be up to 1000 pA), and smaller IPSC (approximately 200 pA). These estimates are154

based on whole cell current recordings from Huh et al. (2016). Given these estimates, EPSC/IPSC155

ratios for PYR cells are less than 1, and EPSC/IPSC ratios for PV+ cells are greater than 1.156

Overall, we aim to determine the conditions under which our network models can produce157

population bursts at theta (3-12 Hz) frequency, given that there is sparse firing of excitatory PYR158

cells and non-sparse firing of inhibitory PV+ cells, and to capture the excitatory/inhibitory balance159

that is seen experimentally (Huh et al., 2016).160

Mathematical models161

Cell Model162

Our previously developed cellular models are based on experimental data from the in vitro whole163

hippocampus preparation (Ferguson et al., 2013, 2015b). They are based on the mathematical164

model structure developed by Izhikevich (Izhikevich, 2010, 2006), in which the subthreshold be-165

haviour and the upstroke of the action potential is captured, and a reset mechanism to represent166

the spike’s fast downstroke is used. Despite being relatively simple, parameter choices can be made167

such that they have a well-defined (albeit limited) relationship to the electrophysiological recordings.168

It has a fast variable representing the membrane potential, V (mV ), and a variable for the slow169

“recovery” current, u (pA). We used a slight modification to be able to reproduce the spike width.170

The model is given by:171

CmV̇ = k(V − vr)(V − vt) − u + Isℎif t + Iotℎer − Isyn (1)

u̇ = a[b(V − vr) − u]

if V ≥ vpeak, then V ← c, u← u + d

where k = klow if V ≤ vt, k = kℎigℎ if V > vt

where Cm (pF ) is the membrane capacitance, vr (mV ) is the resting membrane potential, vt (mV ) is172

the instantaneous threshold potential, vpeak (mV ) is the spike cut-off value, Isℎif t (pA) is a current173

that shifts the f-I curve laterally to allow the model to easily capture the rheobase current (for the174

strongly/weakly adapting models, rheobase current is 0/5 pA respectively), Isyn (pA) represents the175

synaptic input from the presynaptic cell population (further details below), Iotℎer (pA) is an (excitatory)176

current drive to the network that is not directly modeled through Isyn (further details below), a (ms−1)177

is the recovery time constant of the adaptation current, b (nS) describes the sensitivity of the178

adaptation current to subthreshold fluctuations - greater values couple V and u more strongly179

resulting in possible subthreshold oscillations and low-threshold spiking dynamics, c (mV ) is the180
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voltage reset value, d (pA) is the total amount of outwardminus inward currents activated during the181

spike and affecting the after-spike behaviour, and k (nS∕mV ) represents a scaling factor. Parameter182

values for the cell models - strongly and weakly adapting PYR, and PV+ cell models are given in183

Table 1.184

Table 1. Cell Model Parameters.

Parameter PYR PV+
weakly adapting strongly adapting

vr (mV ) -61.8 -61.8 -60.6

vt (mV ) -57.0 -57.0 -43.1

vpeak (mV ) 22.6 22.6 -2.5

a (ms−1) 0.00008 0.0012 0.1

b (nS) 3 3 -0.1

c (mV ) -65.8 -65.8 -67

d (pA) 5 10 0.1

klow (nS∕mV ) 0.5 0.1 1.7

kℎigℎ (nS∕mV ) 3.3 3.3 14

Cm (pF ) 300 115 90

Isℎif t (pA) -45 0 0

Synaptic Model185

Synaptic input is modelled through a chemical synapse represented by:186

Isyn = g ⋅ s(V − Erev) (2)

where g (nS) is the maximal synaptic conductance of the synapse from a presynaptic neuron to the187

postsynaptic neuron, Erev (mV ) is the reversal potential of the synapse, and V (mV ) is the membrane188

potential of the postsynaptic cell. The gating variable, s, represents the fraction of open synaptic189

channels, and is given by first order kinetics (Destexhe et al. (1994), and see p.159 in Ermentrout190

and Terman (2010)):191

ṡ = �[T ](1 − s) − �s (3)

The parameters � (in mM−1ms−1) and � (in ms−1) in Equation 3 are related to the inverse of the rise192

and decay time constants (�R, �D in ms). [T ] represents the concentration of transmitter released by193

a presynaptic spike. Suppose that the time of a spike is t = t0 and [T ] is given by a square pulse of194

height 1 mM lasting for 1 ms (until t1). Then, we can represent195

s(t − t0) = s∞ + (s(t0) − s∞)e
− t−t0

�s , t0 < t < t1

where196

s∞ = �
�+�

and �s =
1
�+�

(4)

After the pulse of transmitter has gone, s(t) decays as197

s(t) = s(t1)e−�(t−t1) (5)

Network Models198

Excitatory, inhibitory and excitatory-inhibitory network models are illustrated in Figure 2 for PYR199

cell networks (top), PV+ cell networks (middle) and PYR-PV+ cell networks (bottom). Networks have200

either deterministic or noisy ’other input’. If deterministic, then Iotℎer is a constant, tonic input to201

individual cells in the network where Iotℎer is chosen from a normal distribution with mean Iapp(pA)202

and standard deviation �app(pA). If noisy, then Iotℎer = −ge(t)(V − Erev). ge(t) is a stochastic process203
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Figure 2. Network Schematics.
(left) Excitatory, pyramidal cell networks. The large circle with PYR represents a population of individual
pyramidal (PYR) cells and the black triangles represent excitatory connections. (middle) Inhibitory, fast-firing cell
networks. The large circle with PV+ represents a population of individual inhibitory, parvalbumin-positive (PV+)

fast-firing cells, and the black circles represent inhibitory connections. The connections are schematized so that

there is clearly not all-to-all coupling. ’Other input’ is either deterministic or noisy, excitatory synaptic input.

(right) Excitatory-Inhibitory cell networks. PYR and PV+ cell populations combined to create networks of 10,500
cells. They are a combination of above schematics. However, now the excitatory input to PV+ cells comes

directly from the PYR cell network.

similar to the Ornstein-Uhlenbeck process as used by Destexhe and colleagues (Destexhe et al.,204

2001)205

dge(t)
dt

= − 1
�e
(ge(t) − ge,mean) +

√

2�2
e

�e
�e(t) (6)

where �e(t) is an independent Gaussian white noise processes of unit standard deviation and zero206

mean, ge,mean (nS) is the average conductance, �e (nS) is the noise standard deviation value, and �e207

is the time constant for excitatory synapses. �e is fixed based on values as used in Destexhe et al.208

(2001) (�e = 2.73 ms).209

Network Model Parameters, Rationale210

Random connectivity was used throughout and the probability of connection is given in Table 2211

where it is fixed for PYR or PV+ cell networks, as estimated in previous work. Network sizes and212

synaptic time constants are given in Table 2. Excitatory and inhibitory reversal potentials Eexc , Einℎ213

as derived from the experimental context are -15 and -85 mV respectively (Huh et al., 2016).214

PYR cell networks215

gpyr (nS) is the maximal excitatory (AMPA), synaptic conductance between PYR cells. Parameter216

explorations for deterministic networks included: Iapp (pA) = [0, 5, 10, ..., 75, 80], �app (pA) = [0, 5, 10,217

15, 20]. Parameter explorations for noisy networks included: ge,mean (nS) = [0,1,2] (mainly), but values218

up to 10 explored, �e (nS) = [0,0.2,0.4,0.6]. gpyr (nS) = [0.014, 0.024, 0.034, ..., 0.084, 0.094] was used219

in both deterministic and noisy networks.220

PYR-PV+ cell networks221

A full exploration was done for connectivity between PV+ and PYR cell networks (see Table 2). We222

use cPV ,PY R and cPY R,PV to refer to the probability of connection from PV+ to PYR cells or from PYR223

to PV+ cells respectively. gpv is the maximal inhibitory, synaptic conductance between PV+ cells, and224

a parameter value of 3nS was used based on our previous PV+ cell network modeling (Ferguson225

et al., 2013).226

Deterministic networks: Full connectivity explorations were done for chosen parameter sets:227

[gpyr, Iapp, �app] = [0.014, 0, 0], [0.014, 0, 10], [0.024, 30, 0], [0.054, 5, 5], [0.054, 20, 20], [0.074, 75, 15].228

gpv−pyr(nS) is the maximal, inhibitory, synaptic conductance on PYR cells from PV+ cells. It was fixed229

at 8.7 nS, as approximated from IPSCs in Bartos et al. (2002), for most of the simulations. gpyr−pv(nS)230

is the maximal, excitatory, synaptic conductance on PV+ cells from PYR cells. A value of 1 nS was231

used for most of the simulations, as estimated from Papp (2013).232

Noisy networks: Full connectivity explorations were done for: (i) ge,mean (nS) = [0, 1, 2], �e (nS) = [0,233

0.2, 0.4, 0.6], with gpyr = 0.014 nS, and (ii) All gpyr values given above, �e = [0, 0.2, 0.4, 0.6] with ge,mean =234
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0 nS. gpv−pyr=8.7 nS was used but additional simulations using values of [6, 6.5, 7 ...., 11.5, 12] were235

done for two chosen parameter sets with ge,mean = 0 nS; [�e, gpyr, cPY R,PV , cPV ,PY R] = [0.2, 0.084, 0.4, 0.5]236

and [0.6, 0.014, 0.02, 0.3]. Similarly, gpyr−pv=3 nS was used and scaled for network size (see below).237

Additional simulations were done for values of [0.5, 1, 1.5, 2, ..., 5.5, 6] for the chosen parameter238

sets. Overall, close to 6,000 simulations were performed.239

Table 2. Network Model Parameters.
Connectivity between PV+ and PYR cells was not fixed, but ranged in values as indicated. A resolution of 0.01 was used
from 0 to 0.1, and 0.1 upward.

Number Probability Synaptic time constants
of cells of connection Rise time (ms) Decay time (ms)

PV+ 500

PV-PV 0.12 0.27 1.7

PV-PYR 0.01-1 0.3 3.5

PYR 10,0000

PYR-PV 0.01-1 0.37 2.1

PYR-PYR 0.01 0.5 3

Analyses240

For each network simulation, we define the population activity as the average membrane potential241

of all model cells. Then, using the fast Fourier transform (fft), the network frequency (fpeak inHz) is242

defined as the frequency at which there is a spectral peak in the overall population activity. In this243

analysis, we disregard the initial transient activity (500 ms).244

We defined a population burst based on the distribution of spikes of the PYR cell network.245

To do so, the total number of spikes within a small bin width were summed, where the bin246

width was dependent on the average peak frequency: bin width = int[p1 ∗ round[(p2 ∗ exp(−p3 ∗247

fpeak + p4) + p5)∕p1]], where p1 = 2, p2 = 2.0264, p3 = 0.2656, p4 = 2.9288, p5 = 5.7907 such that for248

peak frequencies ranging from fpeak = 3 − 12 Hz, the bin width ranges from ≈ 23 − 7 ms. In this249

way, the bin would be smaller for higher frequencies. Then, the total number of spikes per bin250

width was normalized to its maximum (excluding transient activity within the first 500 ms) so that251

networks with significantly different levels of activity could be compared. A moving threshold252

capturing approximately five cycles was set to be the mean plus 0.35 standard deviations of the253

local normalized distribution. Then, the burst was determined to be the midway point between the254

increase past threshold and the previous decrease past the threshold (with the requirement that255

these points are at least 1∕(fpeak ∗ 2.5) ms apart). If the difference between the peak to trough of the256

burst is less than 0.2, it is no longer considered to be a burst. A population burst is considered to257

be more robust if the power of the fft is larger or the normalized size of the PYR spike distribution258

is larger. We note that if the population burst is reasonably robust, then the burst frequency as259

determined from the fft is essentially the same as the inverse of the burst width.260

We automated the categorization of our network output for the different parameter sets261

explored. Specifically, non-firing cases were considered when there were < 300 spikes per burst bin.262

If network burst frequencies were within theta frequency ranges, they were further examined to263

determine their stability. Bursts were considered to be stable if there were at least two occurrences264

of two consecutive amplitudes decreasing by more than 79%. For each burst, we determined the265

burst width, the number of cells that fired in the burst, and the total number of spikes in the burst.266

In this way, we can track these properties not only for the network as a whole, but determine how267

they change over time. This analysis was based on custom code written in MATLAB.268

For each simulation we recorded EPSCs and IPSCs from PYR and PV+ cells and chose a subset to269

analyze. Specifically, we used peakfinder in MATLAB, and ignored any peaks that were below a value270

thresholded at an order magnitude less than the main peaks. The first second was not included271
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in the calculations. We computed averages and standard deviations of 3 PV+ and 5 PYR cells and272

rounded them out to give the reported values.273

Simulations were run using the Brian simulator (Goodman and Brette, 2009) on the GPC super-274

computer at the SciNet High Performance Computing Consortium (Loken et al., 2010) The initial275

conditions of our membrane potentials (V ) were chosen to be uniform random values from −55276

to −65 mV . We used the forward Euler method for integration with a time step of 0.02 ms. PYR cell277

networks were simulated for 10 sec whereas PYR-PV networks were simulated for 4 sec. For noisy278

simulations, simulations were done with second order explicit Runge Kutta numerical integration,279

with a time step of 0.04ms. A subset of these simulations were also run with the forward Euler280

method and compared.281

Motivating modeling studies282

Excitatory (PYR Cell) Networks, Deterministic283

In previous work, we considered whether CA1 PYR cell networks on their own could generate284

theta rhythms (Ferguson et al., 2015a). Or more specifically, given CA1 PYR cell intrinsic properties,285

connectivity, and cell numbers, can one obtain theta frequency (3-12 Hz) population bursting as286

observed in the experimental context? This was directly addressed in (Ferguson et al., 2015a). Indi-287

vidual PYR models were based on whole cell recordings from the whole hippocampus preparation288

(Ferguson et al., 2015b). Cells exhibited either weak or strong adaptation (determined by how289

much their frequency changed over the course of a one second-long input), and post-inhibitory290

rebound (spiking after being released from a hyperpolarizing current), and our models captured291

these properties. We connected these PYR cell models in a network (see left schematic of Figure 2292

and model details above) and took advantage of mean field theory (MFT) to find parameter regimes293

in which the network exhibited theta frequency population bursts (Ferguson et al., 2015a). Due to294

a scaling relationship between cell number, connection probability and gpyr from the MFT, we were295

able to use 10,000, rather than 30,000 PYR cells in our network simulations.296

Table 3. PYR Cell Networks: Numbers of Active, Firing Cells in Population Bursts.

Parameters Deterministic Networks
gpyr(nS), Iapp(pA), �app(pA) Average Number of Active Cells (/10,000) Burst Frequency (Hz)

per Population Burst (estimated from fft)
[0.064, 65, 0] 9703 6.8

[0.024, 10, 5] 5541 1.4

[0.054, 10, 10] 4929 2.0

[0.014, 10, 15] 5075 1.2

[0.014, 10, 20] 5085 1.1

Noisy Networks
gpyr(nS), Iapp(pA), �app(pA) Average Number of Active Cells (/10,000) Burst Frequency (Hz)

per Population Burst (estimated from fft)
[0.014, 1, 0.6] 5992 5.2

[0.024, 1, 0.6] 6173 5.2

[0.034, 2, 0.6] 6115 9.4

[0.054, 2, 0.4] 6757 9.4

[0.074, 2, 0] 6848 9.1

Stable theta frequency population bursts emerged from these PYR cell network models without297

a phasic drive. Similar to what was predicted from the MFT simulations, larger mean excitatory298

drive, Iapp, was required to obtain theta frequency bursts as the standard deviation of the drive, �app,299

increased (Ferguson et al., 2015a). Burst frequencies were determined by three factors: the mean300

excitatory drive, Iapp (which increases the burst frequency as it increases), the recurrent synaptic301

8 of 26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2017. ; https://doi.org/10.1101/115949doi: bioRxiv preprint 

https://doi.org/10.1101/115949
http://creativecommons.org/licenses/by-nc/4.0/


Manuscript for bioarxiv submission

strength, gpyr (which decreases burst frequency as it increases), and the standard deviation of the302

excitatory drive across the cells, �app (which increased frequencies as it increased) (Ferguson et al.,303

2015a; Ferguson, 2015).304

Figure 3. Deterministic Excitatory PYR Cell Networks.
Three examples of raster plots and normalized spike

distributions, one of which shows a theta frequency

population burst. The spike distributions are used to

determine the burst bins, and the red symbols

represent the separation of the bins. Iapp and ’Other
Input’ Parameter values: Iapp = 5 pA, gpyr = 0.054 nS,
�app = 5 pA (top - unstable bursts); Iapp = 0 pA,
gpyr = 0.014 nS, �app = 10 pA (middle - no bursts);
Iapp = 30 pA, gpyr = 0.024 nS, �app = 0 pA (bottom - 3.1 Hz
rhythm).

From the parameter sets explored, net-305

work output was automatically categorized306

(see specifics in above sections) such that307

non-firing, stable theta frequency bursts, un-308

stable bursts, or other groupings were ap-309

parent. In Figure 3 we show three example310

outputs, one of which exhibits theta rhythms311

(bottom), another exhibiting unstable bursts312

(top) and the other asynchronous behaviour313

(middle). In the theta bursting parameter314

regimes, we analyzed our networks to deter-315

mine how many PYR cells were firing (i.e., ac-316

tive) during the population bursts. We found317

that > 90% of PYR cells are active when theta318

rhythms are present. In Table 3, we show319

the minimal number of active PYR cells for320

each �app value. Except for �app = 0, these321

minimal cases all have frequencies that are322

below theta, but still have about 50% of their323

10,000 PYR cells being active. Also, the num-324

ber of active PYR cells during bursts increased325

with increasing Iapp and also with increasing326

gpyr. These observations are from simulations327

that were performed using strongly adapting328

PYR cell models. Weakly adapting PYR cell329

models were also used, but specifics are not330

shown - we already know from our previous331

MFT study thatmore input is required to drive332

them to achieve theta frequency population333

bursts with the reduced cellular adaptation334

(Ferguson et al., 2015a).335

Thus, our models suggested that an ap-336

propriate balance between spike frequency337

adaptation and excitatory connectivity in CA1338

PYR cell networks could provide an essential339

mechanism for theta population bursts. How-340

ever, the majority of PYR cells in the models341

were active during the population bursts, which is not consistent with experiment. This led us to342

consider how inhibitory cells may contribute to burst dynamics.343

Excitatory-Inhibitory (PYR-PV+ Cell) Networks, Deterministic344

To build networks with both excitatory and inhibitory cells, we first take advantage of previous work345

in which we developed cellular models for PV+ fast-spiking cells based on experimental recordings346

from the whole hippocampus preparation (Ferguson et al., 2013). Given this work, estimates of347

EPSCs of approximately 1000 pA, and that we want our PV+ cells to be able to fire coherent bursts,348

we set gpv = 3 nS (Ferguson et al. (2013) and see also Skinner and Ferguson (2013)).349

Now, rather than setting the excitatory drive to PV+ cell network as deterministic ’other input’ as350

done previously in Ferguson et al. (2013) (see middle schematic of Figure 2), we create networks in351
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Figure 4. Deterministic Excitatory-inhibitory PYR-PV+ Cell Networks.
Examples of population burst stabilization, sparse excitatory firing and network frequency increase are shown.

PYR cell networks are shown on the left (same examples from Figure 3). PYR-PV+ cell networks are shown on the
right with connectivity parameters cPY R,PV , cPV ,PY R of (0.05,0.2) and (0.01, 0.2) for top and bottom respectively.
Inset show that PYR cells firing is less than 20%. The population burst frequency increases from 3.1 to 6.7 Hz

(bottom).

which the excitatory drive comes directly from the 10,000 PYR cell network. This is shown in the352

right schematic of Figure 2. Since our model is designed to explore oscillatory activity intrinsic to353

the CA1 region of the hippocampus, input from other regions are not specifically included. We354

chose example PYR cell networks which exhibited distinct firing patterns (non-firing, stable bursts,355

etc.) and explored how the connectivity between PYR cells and PV+ cells affected network activity356

(Ferguson, 2015). This limited set of excitatory-inhibitory network simulations provided a motivating357

basis for the expanded set of simulations presented in the Results.358

In PYR cell networks that exhibit stable bursts, introducing PV+ cells does not ensure the bursts359

are maintained, but instead requires that the connection probability from PV+ to PYR cells (cPV ,PY R)360

surpasses a critical value. This critical connectivity value depended on the PYR-PV+ connection361

probability (cPY R,PV ), as it could not be drastically lower than this value. Interestingly, if stable362

bursts are maintained, the frequency of the population bursts is always higher in the PYR-PV+ cell363

networks relative to the PYR cell networks alone. We note that for each set of simulations, we did364

not alter the excitatory drive to the PYR cells, and thus the cells did not increase their firing due to365

an external change in the amount of excitation. Rather, this increased burst frequency is due to the366

post-inhibitory rebound spiking of the PYR cells as a response to the inhibitory input from the PV+367

cells.368

Alternatively, if the original PYR cell networks were unstable or non-firing, stable population369

bursts in the theta frequency range could emerge with the inclusion of the PV+ cell population.370

In all cases, and in contrast with our PYR cell networks, it was possible to simultaneously obtain371

theta frequency population bursts and sparse firing of the PYR cells. These observations are372

illustrated in Figure 4. Thus, even when oscillations did not exist or were not stable in the PYR cell373

networks, the influence of PV+ cells could lead to stable network rhythm generation and sparse374

firing. However, this depended upon an appropriate balance of connection probabilities between375

the two populations.376

Overall, we found that PYR cell networks could exhibit coherent firing at various frequencies377

(≈ 0.5 − 6Hz) but when theta frequencies were produced, essentially all PYR cells were recruited to378

fire in every cycle - a behaviour that is not consistent with what is seen in our experimental setting,379
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where PYR cells sparsely fire. However, the inclusion of PV+ cells allowed sparse firing to emerge380

while maintaining theta bursts but of increased frequency, or generating theta bursts. Since we did381

not change excitation in any other way, a key contributor to this is post-inhibitory rebound firing.382

Thus, population bursts at theta frequency in the PYR-PV+ cell networks with sparse firing depend383

on a number of factors, including the amount of input that the cells are receiving at any given point384

in time. As such, the precise connection probabilities in the models is not the essence, but rather385

the relative balance between excitation and inhibition. More complete exploration and analyses are386

needed to untangle this.387

Results388

We use networkmodels that areminimal but at the same time are constrained by experiment. In this389

way, we reduce the uncertainty in choices for parameters and parameter values. Detailed reasoning390

and rationale for our choices are provided in the Methods. We examine whether it is possible to391

capture the experimental observations, and if so, what are the underlying mechanisms that allow392

this? To start to address this, we presented previous work and motivating modeling simulations393

using deterministic networks in the Methods. Although limited, these simulations showed that there394

is an intricate tangling of cellular properties and excitatory and inhibitory balances that underlie the395

generation of theta population bursts with sparse pyramidal (PYR) cell firing. That is, there are many396

interconnected factors. We now perform an expanded set of simulations using more biologically397

realistic input to obtain insight into possible underlying mechanisms.398

Noisy networks399

Excitatory PYR Cell Networks400

We perform simulations with noisy, excitatory input. That is, ’other Input’ in Figure 2 is given by a401

stochastic rather than a deterministic process (see Methods). Since we know that PYR cells do not402

receive large EPSCs (Huh et al., 2016), we can focus on small mean excitatory conductances That is,403

an EPSC of 20 pA into a PYR cell would give an excitatory conductance estimate of less than 1 nS,404

given excitatory reversal potential and resting voltage values. However, since some of the resultant405

EPSC would be due to recurrent connections, values greater than 1 nS should be considered, but406

do not need to be that much larger since PYR cell connectivity is minimal. As such, we consider407

ge,mean values of 0-2 nS to be a wide enough consideration (with �e values < 1) to fully encompass the408

biological situation present in the whole hippocampus preparation.409

We first note that, unlike the deterministic PYR cell network simulations, the patterns are410

more variable as would be expected. However, similar to the deterministic simulations, burst411

frequency increased with increasing excitatory drive, ge,mean, and decreased with increasing recurrent412

synaptic strength gpyr. There were no theta frequency bursts for ge,mean = 0, but for all ge,mean = 1 or413

2, there were theta frequency population bursts except for the largest gpyr = 0.094 nS value when414

ge,mean = 1, �e = 0.6 which was outside of the theta frequency range. Example output is shown in415

Figure 5 when there are (bottom) or are not (top) population bursts. Also shown in Figure 5 is416

the PYR cell spike distribution which was used to determine whether bursts were present (see417

Methods). Looking at the number of active PYR cells, it always exceeded 50% and Table 3 shows418

specific numbers for the five lowest number of active PYR cells from the full set of simulations.419

For weakly adapting cells, no theta rhythms were obtained for ge,mean = 0 or 1 but could emerge for420

larger input values. Since this would be beyond EPSCs values observed in experiment, we did not421

do further detailed explorations using weakly adapting cells. Thus, similar to the deterministic PYR422

cell network simulations, theta population bursts are present but never with sparse firing of PYR423

cells in more realistic, noisy PYR cell networks.424

Excitatory-Inhibitory PYR-PV+ Cell Networks425

A full exploration of connectivities (cPV ,PY R and cPY R,PV ) with gpyr = 0.014 and ge,mean = 0, 1 and 2 nS426

was done. We first note that, similar to the deterministic simulations, theta bursts could be present427
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Figure 5. Noisy Excitatory PYR Cell Networks.
Two examples in which theta rhythms (population bursts) are either present (bottom) or not (top). On the left is
shown the raster plot, and on the right is shown the normalized spike distribution. Red stars delineate the
automatic detection of separate bursts. Parameter values: ge,mean = 0, gpyr = 0.074, �e = 0.2 (top row - no theta
rhythm); ge,mean = 1, gpyr = 0.074, �e = 0.2 (bottom row - 4.4 Hz rhythm).
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Figure 6. Noisy PYR to PYR-PV+ Cell Network Transition.
From one of the PYR cell network examples in Figure 5 where there are no theta bursts, two examples with
different connectivities of PYR-PV+ cell networks are shown in which theta population burst rhythms emerge.

Connectivity parameters cPY R,PV , cPV ,PY R of (0.2, 0.5) and (0.02, 0.5) for top and bottom, respectively on the right.
Other parameter values: gpyr(nS), ge,mean(nS), �e(nS), gpyr−pv(nS), gpv−pyr(nS) = [0.074, 0, 0.2, 3, 8.7].

in PYR-PV+ cell networks even if PYR cell networks did not have any population bursts. An example428

of this is shown in Figure 6. A summary of the burst frequencies are shown in the top part of Figure429

7 for ge,mean = 0 and 1 nS. Theta frequency bursts encompass colors that range from light blue to430

orange. Given this, it is clear that PYR-PV+ cell networks with ge,mean = 1 nS had burst frequencies that431

exceeded theta, except for when �e = 0 nS, meaning noiseless networks. For ge,mean = 2 nS, the burst432

frequencies far exceeded theta frequencies (not shown). Also, since larger gpyr values result in an433

increased burst frequency (see Figure 8, right), it did not make sense to do additional simulations434

with ge,mean = 1 or 2 nS. This thus led to a focus on simulations with ge,mean = 0 nS. The full range of435

gpyr values were simulated along with explorations of PYR to PV+ and PV+ to PYR cell conductance436

values (see Methods).437

From a computational analysis that consisted of several thousands of simulations, we were able438

to obtain a ’lay of the land’ in terms of required parameter balances for theta rhythms to occur, as439

well as their characteristics. This is schematized in the bottom of Figure 7. The connectivity ranges440

that refer to the summarized plots above are indicated. As can be seen, they are summarized only441

for smaller cPY R,PV values. However, as cPY R,PV increases, the burst frequency increases further (not442

shown). As noticed in the motivating deterministic simulations, and similarly here for the noisy runs,443

if cPV ,PY R is too small, theta bursts are not present. That is, there needs to be enough connectivity444

from PV+ to PYR cells to have post-inhibitory rebound firing of an appropriate amount in PYR cells445

for theta bursts to occur. An example of how theta bursts are lost (when cPY R,PV is also small, is446

shown in Figure 8, left.447

An essence of theta rhythm generation and experimental data ’matching’448

From our noisy and motivating deterministic simulations, we are able to distinguish two Scenarios,449

A and B, by which theta rhythms occur. It is due to the wide swaths of simulations and analyses of450

them that we are able to identify these different scenarios as shown in Figure 7. As schematized, the451

transition between scenarios is not meant to be literal, but illustrative to consider the several other452

parameters that would affect the exact transitions. The difference between these two scenarios453
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Figure 7. Parameter Balances for the Existence of Theta Rhythms in PYR-PV+ Cell Networks.
(Top) Burst frequency summarized for a range of parameter values. Color plots shows how burst frequency changes for a range of input to the PYR
cell population and for a range of connectivities between PYR and PV+ cell populations. Note that cPY R,PV is shown for a much smaller range than
cPV ,PY R. Moving horizontally, one sees that increasing �e typically leads to an increase in burst frequency. It is also clear that beyond ge,mean = 0,
theta frequency rhythms are not present if �e is non-zero. Other parameter values: gpyr(nS), gpyr−pv(nS), gpv−pyr(nS) =[0.014, 3, 8.7].
(Bottom) Theta rhythm generation overview. This schematic summarizes the balances in the generation of theta rhythms and their characteristics
in the network models. Two scenarios, A and B, can be identified based on connectivity balances (cPV ,PY R and cPY R,PV ) and are approximately
delineated by the squiggly grey dashed lines. Note that these separations are illustrative, as the exact connectivity boundary value will depend on

the other parameters in the models. However, it is clear from the many simulations done and analyzed that one is able to differentiate these

regions. Network models characteristics (frequency, and PV+ and PYR cell firings) are given in boxes with orange arrows. Scenario A and B are

differentiated by their EPSC/IPSC ratios to PV+ cells, as given in magenta text.
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Figure 8. PYR-PV+ Cell Networks - Parameter Variations.
(Left) Example raster plots for decreasing cPV ,PY R. Two examples are shown, with the cPV ,PY R value shown in
red along with the network frequency as appropriate. The average number of cells firing per burst are 548 (PYR

cells) and 22 (PV+ cells) for cPV ,PY R = 0.3. Other parameter values: gpyr, ge,mean, �e, gpyr−pv, gpv−pyr, cPY R,PV = [0.014,
0, 0.6, 3, 8.7, 0.02]. (Right) Example raster plots for changing gpyr. Two examples are shown, with the gpyr value
shown in red along with the network frequency. The first, top example is the same as the one on its left. The

average number of cells firing per burst are 514 (PYR cells) and 34 (PV+ cells) for gpyr = 0.094 nS. Other parameter
values: ge,mean, �e, gpyr−pv, gpv−pyr, cPY R,PV , cPV ,PY R = [0, 0.6, 3, 8.7, 0.02, 0.3].
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lies in how active the PYR and PV+ cell populations are, which in turn affects the EPSCs and IPSCs454

received by them.455

So how do theta frequency bursts emerge in PYR-PV+ cell networks? We first point out that456

ge,mean = 0 nS with non-zero �e is the appropriate ’other input’ to use to have theta frequency457

population bursts. This is due to results from PYR cell networks and knowledge of EPSC values to458

PYR cells in experiment. Also, as noted above, if cPV ,PY R is not large enough, there will be no theta459

rhythms (Figure 8, left). This immediately indicates the importance of post-inhibitory rebound in460

PYR cells to generate theta bursts. However, while cPV ,PY R cannot be zero (since this would mean461

that PV+ cells are not coupled to PYR cells and one would have PYR cell network output, which we462

know has no theta bursts), the exact non-zero value needed for theta bursts to emerge also depends463

on cPY R,PV . The example shown in Figure 8 (left) is for a small value of cPY R,PV and the PV+ cells are464

not able to fire much or coherently. If cPV ,PY R is decreased, but using a larger value of cPY R,PV , the465

PV+ cells are firing more, but the PYR-PV+ cell networks are not able to generate theta frequency466

bursts when cPV ,PY R is too small, presumably because now there is not enough post-inhibitory467

rebound to allow the PYR cells to exploit their spike frequency adaptation intrinsic properties468

and move it to a robust bursting in the theta frequency range. The importance of post-inhibitory469

rebound firing in the generation of theta rhythms was already suggested by Goutagny et al. (2009)470

from their experimental work, and so it is reassuring that the model results are consistent with this.471

Once one is within parameter balance regimes with robust theta frequency bursts, the frequency472

increases with increasing cPY R,PV and less so for increasing cPV ,PY R, as determined from an overall473

examination of the simulations. This observation is particularly apparent in the upper summary plot474

of Figure 7 (ge,mean=0 and �e=0.6). This is illustrated by the slanted box (’burst frequency increases’)475

in the schematic of Figure 7. The changing burst frequency can be seen if gpyr−pv rather than cPY R,PV476

is modified, as shown in Figure 9.477

The particular parameter balances that allow the generation of theta population bursts affect478

not only the specific frequency of the population burst but also how robust it is, that is, how easily479

discernible it is (see Methods). This interdependence of cellular and synaptic properties affect how480

much the PYR and PV+ cell populations fire. It is clear that the addition of the PV+ cell population is481

what allows the PYR cell population to fire sparsely. However, how sparse the firing of PYR and PV+482

cells are depends on where the parameter balance lies. From our simulations, we observe that as483

cPY R,PV decreases, the firing of PV+ cells becomes more sparse and PYR cells become less sparse484

within a theta population burst. This is illustrated by the box as described in the Figure 7 bottom485

schematic. It makes sense that PV+ cells would fire less as they are receiving less excitatory drive486

with a reduced cPY R,PV . However, that PYR cells would fire less sparsely when the PV+ cells are firing487

less, indicates that how much the PYR cells fire is not only dependent on post-inhibitory rebound488

firing. There are clearly different balances going on. It is these different balances as brought forth489

from our thousands of simulations and analyses of them that allowed us realize that one could490

distinguish two scenarios by which theta rhythms emerge. Specifically, in Scenario A the PV+ cells491

fire less sparsely and the PYR cells fire more sparsely than in Scenario B. In Figure 10, we show an492

example of a Scenario A and a Scenario B theta frequency bursts. The different relative sparseness493

of PYR and PV+ cells is apparent.494

In Table 4, we present analyses regarding the average number of cells firing per burst as well as495

the average number of spikes per cell per burst for several parameter sets. From this table the two496

different scenarios can be appreciated from the relative firing of PYR and PV+ cells. Although it is497

clear that a PV+ cell spikes more than a PYR cell, that is, the relative comparisons are appropriate498

as observed in experiment, how active PYR and PV+ cells are is not completely in line with what499

exists in experiment, in terms of PV+ cells firing on each theta cycle. Scenarios A and B can be500

differentiated by how much of a role post-inhibitory rebound plays in the subsequent theta rhythm.501

In Scenario B, the PYR cells are less sparse and are less tightly bound to fire phase-locked to PV+502

cells due to the post-inhibitory rebound, and the PV+ cell firing is more sparse. By contrast, in503

Scenario A, the PV+ cells fire more and post-inhibitory rebound plays a stronger role to more tightly504
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Figure 9. Changing Excitatory Conductance gpyr−pv from PYR to PV+ Cells.
Three example raster plots are shown, with the gpyr−pv value shown in red with the network frequency as
appropriate. The average number of cells per population burst is 290 (PYR) and 343 (PV+) for gpyr−pv = 0.5 nS; 81
(PYR) and 288 (PV+) for gpyr−pv = 2 nS. 32 (PYR) and 238 (PV+) for gpyr−pv = 5 nS. Other parameter values:
ge,mean, �e, gpyr, gpv−pyr, cPY R,PV , cPV ,PY R = [0, 0.2, 0.084, 6, 0.4, 0.5].

Figure 10. Theta Rhythm Generation by the two Different Scenarios.
(Left) Scenario B: Same example as in Figure 8 top. (Right) Scenario A: The average number of cells per
population burst is 86 (PYR) and 185 (PV+). Parameter values: gpyr, ge,mean, �e, gpyr−pv, gpv−pyr, cPV ,PY R, cPY R,PV =
[0.084, 0, 0.2, 3, 8.7, 0.5, 0.2].
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control PYR cell phase-locking (so more tightly lined up with PV+ cells). These differences can be505

seen by comparing the cases shown in Figure 10.506

Table 4. PYR-PV+ Cell Network Scenarios.

Parameters Burst Average Average Average Average

gpyr(nS), �e(nS) Freq Number Number Number Number

gpyr−pv(nS), gpv−pyr(nS) (Hz) of Active of Active of Spikes of Spikes

cPY R,PV , cPV ,PY R (from fft) PYR cells PV+ cells (/PYR cell) (/PV+ cell)

ge,mean = 0nS (/10,000) (/500) per 100 per 100

per burst per burst bursts bursts

=[0.084, 0.2, 3, 8.7, 0.4, 0.5] 10 53 273 1 55

=[0.084, 0.2, 3, 8.7, 0.2, 0.5] 9.7 86 185 1 37

=[0.084, 0.2, 3, 8.7, 0.04, 0.5] 8.9 300 79 3 16

=[0.084, 0.2, 3, 8.7, 0.02, 0.5] 8.3 522 54 5 11

=[0.084, 0.2, 3, 8.7, 0.4, 0.3] 10 53 249 1 50

=[0.084, 0.2, 3, 8.7, 0.4, 0.7] 10 54 280 1 56

=[0.014, 0.6, 3, 8.7, 0.02, 0.3] 11.7 548 22 2 8

=[0.094, 0.6, 3, 8.7, 0.02, 0.3] 12 514 34 5 7

=[0.084, 0.2, 0.5, 6, 0.4, 0.5] 9.1 290 343 3 69

=[0.084, 0.2, 2, 6, 0.4, 0.5] 9.7 81 288 1 58

=[0.084, 0.2, 5, 6, 0.4, 0.5] 10.3 32 238 < .5 48

Excitatory and inhibitory currents for the chosen parameter sets in Table 4 are shown in Table 5.507

Specifically, EPSCs and IPSCs to PYR and PV+ model cells are measured, and these values along with508

their ratios are given in Table 5. We note that there can be large EPSCs to PV+ cells and small EPSCs509

to PYR cells as observed experimentally. However, there is not always an appropriate match - IPSCs510

to PYR cells are too large and IPSCs to PV+ cells are too large in some cases. If current ratios rather511

than currents are compared, then it is always the case that EPSC/IPSC ratios are appropriate for PYR512

cells relative to experiment, but only in some cases are the EPSC/IPSC ratios for PV+ cells somewhat513

appropriate, that is, close to or greater than one. As such, we find that the EPSC/IPSC ratio to PV+514

cells, but not the EPSC/IPSC ratio to PYR cells, allows a distinguishing between Scenarios A and B.515

We then conclude that Scenario B, but not Scenario A, is consistent with the experimental data, and516

so is the situation that is appropriate for the biological system. That is, one in which post-inhibitory517

rebound, although required to be present, plays less of a role in theta rhythm generation.518

Discussion519

Summary, theta essense, explanation and predictions520

We have developed microcircuit models and obtained an explanation for how theta rhythms can be521

generated in the hippocampus. We used a strategy, as schematized in Figure 1, in which we took522

advantage of a clear experimental context with developed mathematical models and theory for the523

context along with extensive parameter variation analyses. This computational analysis allowed us524

to differentiate between two scenarios of how theta rhythms could be generated, and only one of525

them is consistent with the experimental data. We suggest that spike frequency adaptation and526

post-inhibitory rebound in CA1 pyramidal cells are sufficient conditions (’building blocks’) for the527

generation of theta rhythms with sparse excitatory cell firing. Moreover, if it is the case that spike528

frequency adaptation is required, then it is necessary to have post-inhibitory rebound. Further,529

our network simulations predict that theta rhythms are present when the input to the PYR cells530

has a non-zero fluctuating input conductance of 0.6 nS or less, and a zero mean conductance. Our531

network models are minimal but were able to capture an essence of the experimental data. As532

such, we consider our models as a foundation on which to build.533

18 of 26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2017. ; https://doi.org/10.1101/115949doi: bioRxiv preprint 

https://doi.org/10.1101/115949
http://creativecommons.org/licenses/by-nc/4.0/


Manuscript for bioarxiv submission

Table 5. PYR-PV+ Cell Network Scenarios - Currents.

Parameters EPSC IPSC E/I EPSC IPSC E/I Scenario
gpyr(nS), �e(nS) to to Ratio to to Ratio

gpyr−pv(nS), gpv−pyr(nS) PYR PYR (PYR PV+ PV+ (PV+

cPY R,PV , cPV ,PY R cell cell cell) cell cell cell)

ge,mean = 0nS (pA) (pA) (pA) (pA)

= [0.084, 0.2, 3, 8.7, 0.4, 0.5] 4 1500 << 1 700 180 < 1 A

= [0.084, 0.2, 3, 8.7, 0.2, 0.5] 4 1600 << 1 550 1300 < 1 A

= [0.084, 0.2, 3, 8.7, 0.04, 0.5] 5 1500 << 1 350 550 ≈ 1 B

= [0.084, 0.2, 3, 8.7, 0.02, 0.5] 7 730 << 1 300 275 ≈ 1 B

= [0.084, 0.2, 3, 8.7, 0.4, 0.3] 4 2500 << 1 650 1950 < 1 A

= [0.084, 0.2, 3, 8.7, 0.4, 0.7] 4 1150 << 1 740 1770 < 1 A

= [0.014, 0.6, 3, 8.7, 0.02, 0.3] 1 410 << 1 340 200 > 1 B

= [0.094, 0.6, 3, 8.7, 0.02, 0.3] 7 430 << 1 220 200 ≈ 1 B

= [0.084, 0.2, 0.5, 6, 0.4, 0.5] 7 2000 << 1 480 2450 < 1 A

= [0.084, 0.2, 2, 6, 0.4, 0.5] 4 2200 << 1 650 2000 < 1 A

= [0.084, 0.2, 5, 6, 0.4, 0.5] 4 2700 << 1 870 1900 < 1 A

This building block understanding leads to the following claims and predictions. We first note534

that if PV+ cells are removed from the network, then there are no theta rhythms. This is known to535

be the case based on optogenetic silencing of PV+ cells by Amilhon et al. (2015). We predict that536

spike frequency adaptation in PYR cells is required for theta rhythms to be present, as balanced by537

a large enough PYR cell network with connectivity that is minimal. The amount of spike frequency538

adaptation controls the existence of theta rhythms and its resulting frequency as built on our539

understanding from the theoretical mechanism. Thus, if cellular adaptation in PYR cells is selectively540

adjusted, say by modulating potassium and calcium-activated potassium channels, then one should541

see an effect on the frequency of theta rhythms, and with enough reduction in cellular adaptation,542

there would be no theta rhythms. Further, by selectively affecting either the amount of connectivity543

or the conductance from PYR to PV+ cells, the theta frequency would be strongly affected. However,544

if the amount of connectivity or the conductance from PV+ to PYR cells is selectively adjusted, then545

the theta frequency would be less affected. However, if this is reduced too much or removed, then546

there would be no theta rhythms as post-inhibitory rebound would not be present. Finally, from the547

large sets of parameter variations done and its correspondence with the data, we predict that theta548

rhythms in the hippocampus are generated via Scenario B (Figure 7). Although post-inhibitory549

rebound is still an important element to have theta rhythms (i.e., cPV ,PY R cannot be zero) in Scenario550

B, it plays less of a role relative to Scenario A. If Scenario B is the mechanism underlying theta551

rhythms in the hippocampus, we predict that the probability of connections and/or conductance552

from PV+ to PYR cells is larger than the probability of connection and/or conductance from PYR to553

PV+ cells (see Figure 7 schematic). It is of interest to note that large EPSCs onto PV+ cells can occur554

even if there is a minimally connected CA1 PYR cell network that sparsely fires. This is necessarily555

due to the large size of the PYR cell network.556

Our explanation here of theta generation in the hippocampus has Aristotelian elements of557

efficient, material and formal causes (Falcon, 2015). That is, we have identified building blocks558

(efficient cause) in our models of PYR and PV+ cell networks connected by inhibitory (GABAA) and559

excitatory (AMPA) synapses (material cause) in a mathematical model that requires parameter560

balances of cellular adaptation in a large PYR cell network with enough connectivity and post-561

inhibitory rebound due to PV+ cells (formal cause). We note that a final cause is not considered562

in this work. A final cause would be considered as efforts to understand the function of theta563

rhythms. There are several ongoing efforts along these lines (see review in Colgin (2013)), but as564
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emphasized by Colgin (2013) it is important to know what the underlying causes of theta generation565

are in the first place. In future work, for example, one might consider how our modeling work could566

be expanded and linked to functional theta modeling studies such as recent efforts by (Chadwick567

et al., 2016) to capture the flexibility of theta sequences by including phase precessing interneurons568

in septo-hippocampal circuitry.569

Related modeling studies570

We have described previous mathematical modeling studies of theta rhythms (Ferguson and571

Skinner, 2015). Earlier models put forth theta generation mechanism ideas based on coherence572

between theta frequency firing in oriens-lacunosum/moleculare (O-LM) interneurons, in which a573

hyperpolarization-activated inward current (h-current) is critical for the coherence (Rotstein et al.,574

2005; Wulff et al., 2009). However, this has subsequently been shown to be unlikely since O-LM575

cells do not operate as theta pacemakers (Kispersky et al., 2012), an assumption in these earlier576

models.577

In another hippocampal modeling study, it was shown that theta rhythms could be generated in578

a network of basket, O-LM and pyramidal cells (Neymotin et al., 2011). Although the focus of that579

study was not on theta generation per se, O-LM cells were strongly implicated in contributing to580

theta rhythms.581

Based on recordings from the hippocampus of behaving rats, models were developed to support582

the observations that h-currents in pyramidal cells were needed to allow theta frequency spike583

resonance to occur (Stark et al., 2013). The mathematical models were focused on considering584

the contribution of h-currents in pyramidal cells, and did not specifically consider connectivity585

between pyramidal and parvalbumin-positive interneurons or the numbers of cells. This study586

emphasized the importance of post-inhibitory rebound in theta rhythms. Interestingly, this same587

study found that adaptation processes were not important contributing factors. In our modeling588

study, both cellular adaptation and post-inhibitory rebound are needed to bring about theta589

rhythms in the hippocampus. However, unlike Stark et al (2013) which had an experimental in590

vivo context, our models are based on a whole hippocampus preparation in vitro, thus removing591

contributions from other brain structures. In this way, we were able to focus on whether and how592

excitatory-inhibitory networks could produce theta rhythms considering network size, connectivity,593

and cellular characteristics. Given the complexity of theta rhythms, their modulation and induction594

by either fearful or social stimuli (Tendler and Wagner, 2015), one would expect there to be different595

balances of building blocks (cellular adaptation and post-inhibitory rebound) as well as additional596

ones underlying theta rhythms in vivo. However, it is considerably more challenging to dissect out597

an understanding of theta rhythm generation in vivo. Using our network models and mechanistic598

understandings derived from them, this challenge could be reduced.599

A full-scale CA1 hippocampal model that includes many inhibitory cell types and gathered600

biological details (Bezaire and Soltesz, 2013) has recently been developed (Bezaire et al., 2016). It601

is loosely based on the whole hippocampus preparation and exhibits theta rhythms phase-locked602

with gamma oscillations as well as being able to show distinct phase relationships for different cell603

types. From model perturbations, it was determined that parvalbumin-expressing interneurons604

and neurogliaform cells and interneuronal diversity itself, are important factors in theta generation.605

Further, although not a particular focus, the generation of theta rhythms in these detailed network606

models required excitation levels that were neither too high or too low. Considering Aristotle’s four607

causes (Falcon, 2015), this descriptive understanding of theta generation can be considered as a608

material cause with elements of an efficient cause. However, due to its very detailed nature, it609

would be difficult to acquire a formal cause from it.610

In a very recent study Giovannini et al. (2017) focused on the contribution of a non-specific611

cation (CAN) current in pyramidal cells as critical for the maintenance of theta oscillations in the612

isolated hippocampus preparation. Interestingly, similar to our work here, they showed that when613

pyramidal cells were coupled with inhibitory cells, theta oscillations became more robust. This work614
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could be considered as a particular material cause explanation of theta rhythm generation.615

Spike frequency adaptation and post-inhibitory rebound616

Spike frequency adaptation as a mechanism to generate populations bursts has been used before617

and in our previous work we sought to examine whether the amount of cellular adaptation ex-618

pressed in pyramidal cells was appropriate to generate population bursts in pyramidal cell networks619

(Dur-E-Ahmad et al., 2011; Ferguson et al., 2015a). How best to model adaptation naturally de-620

pends on the questions being considered. For example, adaptation in signal transmission of sensory621

systems was examined as being due to either adaptation currents or dynamic thresholds (Benda622

et al., 2010). In another study, a fractional leaky integrate-and-fire model to capture spike frequency623

adaptation was developed to set a framework to help understand information integration in neo-624

cortex (Teka et al., 2014). For our CA1 pyramidal cell models, we used an Izhikevich type cellular625

model (Izhikevich, 2006) and the adaptation aspect was captured in the d and a parameters when626

fit to experimental frequency-current curves (Ferguson et al., 2015b). Further, for post-inhibitory627

rebound to be present in these models, the b parameter needed to be positive. Although the628

experimental data indicated that both strongly and weakly adapting pyramidal cells exist, this does629

not of course mean that there are simply two types, as the existence and amount of adaptation630

depends on the complement of biophysical ion channels in the cells, and what is uncovered by the631

particular experimental protocol. In the work here, we used both types of pyramidal cell models,632

but networks of weakly adapting cells only were not able to produce theta rhythms given other633

constraints of the experimental context.634

Post-inhibitory rebound inhibition exists in CA1 pyramidal cells as recorded in this experimental635

preparation (Ferguson et al., 2015b; Goutagny et al., 2009). H-currents in pyramidal cells clearly636

play a key role in their ability to express post-inhibitory rebound. However, not only the presence,637

but also the distribution of these currents together with the distribution of other currents need to be638

taken into consideration. Specifically, it was shown that post-inhibitory rebound is rarely observed639

in physiological conditions unless unmasked by the blocking of A-type potassium currents (Ascoli640

et al., 2010). Both h-currents and A-type potassium currents are known to have a non-uniform641

distribution along pyramidal cell dendritic arbors, and putative functional contributions of this to642

temporal synchrony have been made (Vaidya and Johnston, 2013). It is interesting to note that a643

difference in the dorsal to ventral patterning of h-currents has been found (Dougherty et al., 2013),644

bringing to light another possibility of how theta rhythms could be modulated. Further, travelling645

theta waves have been observed in both rodent (Lubenov and Siapas, 2009; Patel et al., 2012)646

and human hippocampus (Zhang and Jacobs, 2015) suggesting a coupled oscillator organizational647

motif in the hippocampus. Although a ’weakly coupled oscillator’ terminology has been invoked in648

describing these waves (Colgin, 2013), this should not be confused with the mathematical theory649

where the assumption of weakly coupled oscillators is used to reduce the system to a phase-coupled650

system that is easier to analyze (Schwemmer and Lewis, 2012).651

Limitations652

Given our highly simplified and minimal network models we did not expect to find a perfect653

matching to the experimental data. However, it is important to note that given our minimal models,654

we were able to examine several thousand parameter sets which in turn enabled us to explore and655

understand what balances might be important in bringing about theta rhythms. This ’balance’ and656

’building block’ understanding can serve as a basis for how theta rhythm frequency and existence657

can be modulated by additional inputs from other brain regions as well as modulation that would658

affect adaptation and post-inhibitory rebound.659

Our networkmodels are minimal, but they were able to produce theta rhythms with sparse firing,660

as represented by population bursts, allowing us to suggest sufficient and necessary conditions661

for their generation. While our models took into consideration network size, connectivity, and662

cellular characteristics in a clear experimental context, architecture was not considered. That663

21 of 26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2017. ; https://doi.org/10.1101/115949doi: bioRxiv preprint 

https://doi.org/10.1101/115949
http://creativecommons.org/licenses/by-nc/4.0/


Manuscript for bioarxiv submission

is, connectivity used in the network models was random. This is clearly overly simple relative664

to experiment, especially considering the recent finding of motifs in pyramidal cells in the CA3665

region of hippocampus (Guzman et al., 2016). However, it is a reasonable first approximation which666

allowed us to explore a wide expanse of connectivities.667

Variability in intrinsic cell properties and a mixing of weakly and strongly adapting pyramidal668

cells could be considered. Introducing variability immediately raises the question of how it should669

be done. For example, work in Harrison et al. (2015) considered the cellular heterogeneity of670

cortical cells, but the goal of that study was focused on determining how to capture a wide range of671

experimental heterogeneity of cortical cells in simple models, and was not focused on particular672

network dynamics or rhythms per se. However, given our large explorations of conductances,673

connectivities and noisy input, variability to a certain extent was present in our simulations.674

Further, only one type of inhibitory cell was included in our networks, that is, the fast-firing675

parvalbumin-positive cell type. It is unlikely that only this one type of inhibitory cell contributes676

to theta rhythms, but we identified this as a good place to start given that Amilhon et al. (2015)677

found that they were an essential requirement. By no means do our models imply that other678

inhibitory cell types are unimportant. On the contrary, since our models clearly do not fully capture679

the experimental data (e.g., model PV+ cells fire too sparsely relative to experiment), aspects are680

clearly missing. Given this limitation, it would be surprising if our models were able to mimic all681

aspects of the experiment. Since PV+ fast-firing cells also include bistratifed and axo-axonic cells, an682

expansion of PV+ cell networks along these lines could be considered, building on our earlier work683

when theta rhythms were imposed based on experimental EPSCs (Ferguson et al., 2015c). Given684

the diversity of inhibitory cell types (e.g., see Chamberland and Topolnik (2012) and the different685

types of PV+ cells (Baude et al., 2007), we did not specifically try to scale the number of PV+ cells as686

we did for the pyramidal cells. However, since we fully explored connectivity ranges between PV+687

and pyramidal cells, this was in effect included. The inclusion of O-LM cells and other inhibitory688

cell types in the network models is important moving forward to be able to understand how they689

modulate theta rhythms (Amilhon et al., 2015; Leao et al., 2012; Sekulic and Skinner, 2017).690

Conclusions and future work691

In summary, although limited, we think that the present network models represent a reasonable692

skeleton since they are able to capture the experimental data in various ways. At the end of the day,693

it is always a balance. Our network models represent closed, self-consistent, accessible models694

that can generate theta rhythms in hippocampus CA1. We intend it as a starting point on which to695

build in understanding theta rhythms in the hippocampus. Specifically, the network model building696

block balances need to be fully analyzed so that a more solid ’formal cause’ of explanation can be697

obtained, beyond what was obtained from the computational, parameter variation analyses done698

here. Further, in combination with full-scale models such as Bezaire et al. (2016) it may be possible699

to obtain an understanding that can fully encompass efficient, material and formal causes in the700

Aristotelian sense, and which could subsequently help in a final cause understanding.701

Overall, our models can serve as a backbone on which other cell types as well as details of702

particular cell types (biophysical channels, dendrites and spatial considerations), modulatory effects,703

input from medial septum can be incorporated. However, in doing this, it is important to note that704

interaction and testing with experiment should be designed accordingly, given the strategy used in705

developing our models (Figure 1).706
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