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Abstract 

Rapid, accurate, and inexpensive genome sequencing promises to transform medical care. 

However, a critical hurdle to enabling personalized genomic medicine is predicting the functional 

impact of novel genomic variation. Various methods of missense variants pathogenicity prediction have 

been developed by now. Here we present a new strategy for developing a pathogenicity predictor of 

improved accuracy by applying and training a supervised machine learning model in a gene-specific 

manner. Our meta-predictor combines outputs of various existing predictors, supplements them with an 

extended set of stability and structural features of the protein, as well as its physicochemical properties, 

and adds information about allele frequency from various datasets. We used such a supervised gene-

specific meta-predictor approach to train the model on the CFTR gene, and to predict pathogenicity of 

about 1,000 variants of unknown significance that we collected from various publicly available and 

internal resources. Our CFTR-specific meta-predictor based on the Random Forest model performs 

better than other machine learning algorithms that we tested, and also outperforms other available tools, 

such as CADD, MutPred, SIFT, and PolyPhen-2. Our predicted pathogenicity probability correlates well 

with clinical measures of Cystic Fibrosis patients and experimental functional measures of mutated 

CFTR proteins. Training the model on one gene, in contrast to taking a genome wide approach, allows 

taking into account structural features specific for a particular protein, thus increasing the overall 

accuracy of the predictor. Collecting data from several separate resources, on the other hand, allows to 

accumulate allele frequency information, estimated as the most important feature by our approach, for a 

larger set of variants. Finally, our predictor will be hosted on the ClinGen Consortium database to make 

it available to CF researchers and to serve as a feasibility pilot study for other Mendelian diseases. 
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Introduction 
 The advent of next-generation sequencing that is quick, accurate, and affordable has promised to 

usher in a new era of genomic medicine. However, a critical issue facing the development of 

sequencing-based tests is the interpretation of novel genetic variants in terms of their probability of 

causing disease. This is a particularly pressing problem with so-called “clinically relevant genes”, 

including the cystic fibrosis transmembrane conductance regulator (CFTR) gene, for which DNA 

changes are known to impact phenotype, but for which the map of how each genotype affects the 

clinical phenotype is incomplete. Differentiating “benign” from “pathogenic” genetic variants is 

challenging, and often physicians are left with the unsatisfying and inconclusive result that their patient 

carries a “Variant of Unknown Significance” (VUS). 

 Despite recent advances in applying machine learning techniques to problems in biomedicine, 

existing computational approaches to variant classification all suffer from low overall accuracy rates. 

For example, SIFT1 and PolyPhen-22 are among the most widely used algorithms, but each has an 

accuracy of less than 70%3. Their poor performance limits the clinical utility of these tools in 

determining whether a novel genetic variant is actually related to the disease of interest. We aimed to 

improve the performance of computational interpretation tools by developing a gene-specific meta-

predictor, focusing on the CFTR gene, which combines information from the most promising available 

tools supplemented with protein structure and stability features, physicochemical properties of mutated 

residues, and allele frequency information. 

 To develop this computational model, we focused our analyses on variants in the coding region 

of the CFTR gene. Despite recent progress in both sequencing and analysis techniques, interpreting the 

functional effect of variants in non-coding regions remains problematic due to insufficient training data. 

Therefore, to maximize the prediction capability of our model, we are initially focusing solely on the 

variants that are most likely to be relevant in terms of disease association, due to their relatively clearer 

relationship to protein structure. 

 Many bioinformatics methods have been developed for predicting the effect of missense 

mutations, which vary by the number of features included and the type of machine learning algorithm 

employed. The most advanced tools typically rely on amino acid sequence, protein structure, and 

evolutionary conservation for their prediction. For example, while SIFT relies solely on conservation, 

measured via multiple sequence alignment, PolyPhen-2 includes both sequence and structure-based 

features for prediction. The structure-based features in this context are used to describe the physical 
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environment of the mutation, and include predictors such as solvent-accessible surface area, 

hydrophobic propensity, and the “mobility” of the atom. Another missense pathogenicity predictor, 

MutPred4, uses a much larger set of structural parameters, including secondary structure, stability and 

intrinsic disorder, transmembrane and coiled-coil structure. In addition, MutPred utilizes functional 

properties of the protein, such as sites of post-translational modification, catalytic and DNA-binding 

residues. MutPred outperforms SIFT by 7% in the area under the ROC curve (AUC), and, more 

importantly, in addition to pathogenicity score can provide information about the molecular basis of the 

disease. 

 While SIFT, PolyPhen-2 and MutPred are trained using data from across the genome, gene-

specific pathogenicity prediction methods have also been developed. For example, Masica et al.5 created 

a CFTR-specific prediction algorithm called Phenotype-Optimized Sequence Ensemble (POSE). In 

contrast to methods utilizing multiple sequence alignment, POSE tries to iteratively construct an 

optimized sequence ensemble based on the performance of the scoring function, which uniquely 

integrates evolutionary conservation with physicochemical properties of the amino acids (such as 

charge, presence of aromatic or aliphatic group, hydrogen bond donor or acceptor, and signals for 

glycine and proline residues). POSE achieves a performance of 84%, as measured by AUC on a training 

set of 103 CFTR variants, and importantly, the method displayed improved specificity when compared 

to tools trained genome-wide, implying a higher accuracy potential for methods trained on single genes. 

 Combining existing methods into a single predictor has proven to yield increased accuracy6,7. 

Successful examples of such meta-predictors, therefore, suggest that the separate methods used for 

prediction of variant-disease associations are orthogonal, and represent different biologically relevant 

relationships. The advantage of the machine learning classifier is its ability to integrate these orthogonal 

measures to identify predictive signatures of pathogenicity. Thus we are employing such a combination 

strategy in developing our CFTR-specific meta-predictor. 

 In addition to combining outputs from several existing prediction tools, we are also adding other 

useful features into out meta-predictor. Importantly, we integrate protein stability measures into our 

pathogenicity predictor. Protein stability is a fundamental property that affects function, activity, and 

regulation of biomolecules. Conformational changes are required for many proteins’ function, implying 

that conformational flexibility and rigidity must be finely balanced. Incorrect folding and decreased 

stability are two of the major consequences of missense mutations, which can lead to disease. Protein 

stability is measured by the folding free energy change upon mutation, which is calculated as the 
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difference in free energy between the folded and unfolded protein states8. Therefore, the estimated 

folding free energy change for each variant should give valuable information about the functional 

consequence of missense mutations. 

 By restricting our method to one particular gene, we are trying to take advantage of the protein 

structure information and extract from it features uniquely relevant for the CFTR protein. Unfortunately, 

the full protein structure for CFTR has not yet been solved with X-ray crystallography. However, a few 

homology models have been built based on the available crystal structure of the nucleotide-binding 

domain and the homologous ABC transporter, Sav18669,10. Structural parameters that have been tightly 

fitted to the CFTR protein, as well as inferred changes in physicochemical properties induced by amino 

acid substitution, are valuable features that help to increase the overall method performance. 

 
Materials and Methods 

Variants data collection 

We utilized various data sources, both publically available and internal, to collect known protein 

coding variants in the CFTR gene (Table 1). Public data sources include The Clinical and Functional 

TRanslation of CFTR (CFTR2)11, the database of Genotypes and Phenotypes (dbGaP)12, and the Exome 

Aggregation Consortium (ExAC)13. Internal resources include datasets obtained from the Stanford 

Cystic Fibrosis Center14, and the Stanford Molecular Pathology Laboratory15,16. In addition we also 

included variants used for training and testing the previously described POSE method, which was 

trained directly on CFTR5. Overall, 1,899 protein coding CFTR variants have been collected, of which 

the majority (>60%) are missense variants (Fig. 1A). Clinical significance (pathogenic, benign, variant 

of unknown significance (VUS)) was merged from different sources, and conflicting entries (reported as 

pathogenic by one source and benign by other) were considered as VUSs. Since the ExAC database does 

not report variants’ pathogenicity, all the CFTR variants from ExAC were considered as VUSs. As 

expected, only a small portion of collected variants had pathogenicity evidence (14% pathogenic, 7% 

benign) (Fig. 1B), with the majority (~80%) having unknown significance. 

The full dataset of 1,899 CFTR variants with clinical significance from corresponding sources 

can be found on GitHub (https://github.com/rychkova/CFTR-MetaPred). 
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Variants annotation 

Our meta-predictor is built by combining outputs from a number of the available prediction tools 

and supplementing them with information extracted from protein structure and allele frequency (Table 

2). From the variety of pathogenicity prediction tools available we considered those based on 

evolutionary conservation only (PROVEAN17, SIFT1, PANTHER18), and those based on some 

additional structural information as well (PolyPhen-22, MutPred4, CADD19, POSE5). Information 

regarding individual allele counts and overall sample sizes of the different studies was combined and 

converted to allele frequencies of variants. We used density function in R with the default Gaussian 

smoothing kernel to estimate the probability density function from the allele frequencies. Given the 

importance of protein stability for proper cellular function, we also incorporated predictors of folding 

free energy change into our model (Eris20, PoPMuSiC21, FoldX22). We used two available homology 

models of CFTR protein9,10 for each of the stability predictor, which gave rise to six total stability 

features. 

We further created several structural parameters based on the information in UniProt23 and 3D 

CFTR protein structure, such as protein domains (extracellular loops, nucleotide binding domain 1 or 2 

(NBD1 or NBD2), transmembrane domain 1 or 2 (TMD1 or TMD2), R domain), nucleotide binding 

residues, topology (cytoplasmic, transmembrane, or extracellular protein parts), regions of post-

translational modification (phosphorylation, glycosylation, palmitoylation, or ubiquitination sites), and 

involvement in protein-protein interaction (PPI_score). Our PPI_score for each residue is based on the 

number of times each residue is present in the motifs known to be important for protein-protein 

interaction and CFTR regulation. Information about protein-protein interaction motifs known for CFTR 

is based on the literature, and summarized in Table S1. On top of these we added information about 

membrane contacting residues by building a simplified membrane model around the protein (using 

Coarse Grained model building tool in Molaris24), and selecting neighboring to membrane atoms 

residues in PyMol25. Similarly, we created a feature with channel contacting residues, by inserting a 

straight helix into the channel and selecting neighboring residues in PyMol. 

We used DSSP tool26 to calculate change in solvent accessible area and hydrogen bond energy of 

the full protein as well as single residue upon mutation. Structural models of all the 1,210 mutant 

proteins (missense variants plus initiator codon variants) were obtained with Eris program20 using the 

default fixed-backbone method. Change in several physicochemical properties of residue due to 
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mutation was estimated based on the information in the AAindex dataset27 (charge, polarity, volume, 

partition energy, hydrophobicity, proline signal (mutation to/from proline)). 

The full dataset with 35 annotation features collected for all the CFTR missense variants can be 

found on GitHub (https://github.com/rychkova/CFTR-MetaPred). 

 

Machine learning model training 

To build the machine learning model, we utilized the statistical software program R with the 

library package caret28. To find the best performing algorithm, we tested several available methods: 

regularized logistic regression (GLM), regularized discriminant analysis (RDA), support vector machine 

(SVM), stochastic gradient boosting (tree boosting method) (GBM), and random forest (RF). The 

description of all the methods can be found in ref29. Of the 1,210 missense and initiator codon variants 

we annotated with 35 features, 295 unique variants had known clinical significance (161 pathogenic, 

134 benign). We performed data preprocessing step by converting all the categorical features into 

numeric values, converting all the values into Z-scores, and imputing data with KNN method. It should 

be noted that a considerable amount of missing allele frequency data did not allow for a KNN 

imputation of this category, thus we used a dummy value of -1 for all the missing allele frequencies. We 

divided our dataset into training and testing sets with a ratio of 70/30. Five different models were built 

on the training set using five-fold cross validation for resampling, and the performance was measured on 

the test set. We have also estimated the performance of all the separate 35 features on the training set 

and compared it with the machine learning models. 

 

Results 

Performance of all the five machine learning models we built and the 35 separate features can be 

found in Tables 3 and 4, respectively. Of the five models tested, RF showed the highest accuracy (77%). 

Based on the AUC values, RF model outperformed all the other machine learning models (AUCRF = 

85%) (Fig. 2A), and it also improved over other popular tools, such as CADD (AUCCADD.RawScore = 

70%), SIFT (AUCSIFT = 63%), and PolyPhen-2 (AUCPolyPhen2 = 60%) (see Fig. 2B and Table 4). Out of 

the 35 separate features, AF showed the best performance (AUCAF = 73%) (Fig. 2B). AF, Density, 

MutPred, POSE, and SIFT were selected as the most important features by the RF model (see Fig. 3 and 

Table S2). Interestingly, when looking at the features by their class (as defined in Table 2), features 

based on allele count (AF and Density) seem to be the most significant ones (Table S2), followed by 
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sequence & structure-based predictors (MutPred and POSE). SIFT was selected as the most significant 

one out of three sequence-based predictors we used (SIFT, PROVEAN, PANTHER). With regards to 

features derived from protein structure, protein topology (transmembrane helix, cytoplasmic or 

extracellular domain) and information about number of protein-protein interactions the residue 

participates in (PPI_score) showed higher importance, than other features calculated by DSSP for 

mutated protein models (HB_resi_change, HB_total_change, SAA_resi_change, SAA_total_change). 

From six physicochemical property features we derived from AAindex database (volume_change, 

polarity_change, partition_energy_change, hydrophobicity_change, charge_change, pro_signal), change 

in residue volume upon mutation seems to be the most important one. 

To confirm our predictor’s validity, we have also examined how predicted pathogenicity 

probability correlates with existing clinical and functional data. We used previously measured mean 

chloride conductance values30 (Fig. 4A and Table S3) and sweat chloride data collected on patients at 

The Stanford CF Center (Fig. 4B and Table S4). The sweat chloride correlation analysis was restricted 

to patients heterozygous for p.F508del to reduce the variability due to different allele combinations. 

Both characteristics correlate well with the pathogenicity scores obtained using our RF classifier, with 

chloride conductance, which is a more direct measure of channel function, displaying the higher 

correlation coefficient (R2=0.44). Mean chloride conductance values, as well as mean sweat chloride 

concentration values are listed in Tables S3 and S4, respectively. 

Random forest pathogenicity probabilities along with predicted clinical significance categories 

for all the 1,210 missense CFTR variants can be found at GitHub (https://github.com/rychkova/CFTR-

MetaPred). 

 
Discussion 

 It has recently been recognized widely31–34 that computational predictors alone will not be able to 

reach satisfactory accuracy for direct use in the clinic, and both in vitro and in vivo functional studies are 

important to supplement the in silico predictions. Recognizing the importance of continuous-valued 

experimental quantitative measurements, rather than binary traits, Masica et al.31 extended their 

previously developed POSE method by including endophenotypic data from six clinical and functional 

assays. Their ePOSE (endoPhenotype-Optimized Sequence Ensemble) approach allows prediction of 

quantitative phenotypes associated with cystic fibrosis disease severity for missense variants in CFTR 

NBDs. Another study by Starita et al.32 explored the use of massively parallel experimental assays to 
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measure the effect of nearly 2,000 missense substitutions in the RING domain of BRCA1 on its E3 

ubiquitin ligase activity and its binding to the BARD1 RING domain. Model generated on the resulted 

scores was able to predict the capacities of full-length BRCA1 variants, and outperformed widely used 

biological-effect prediction algorithms. 

 It should be noted that meta-predictor described here could easily be supplemented with 

functional data collected in high-throughput. In vitro functional measurements or even in vivo clinical 

phenotypes could be added as extra features during the model building step. With respect to CFTR 

protein, functional features like ion conductance, protein translation to the cell surface, and mRNA 

stability might be measured experimentally and added to the predictor for its overall performance 

improvement. Clinical phenotypes (like sweat chloride concentration, pancreatic sufficiency status, 

growth parameters, rate of first acquisition of Pseudomonas aeruginosa in the first year of life, and 

persistent colonization with P. aeruginosa) that are used in the clinic to help inform disease liability and 

penetrance of uncategorized mutations35,36, can be utilized as additional features in the prediction model 

as well. While our newly developed meta-predictor is not intended to uncover the molecular 

mechanisms of pathogenicity, it can help in prioritizing novel and rare genomic variations, identified 

through sequencing, for future functional studies. In addition, additional functional data may help to 

suggest potential cellular mechanism of the disease and allow for more accurate selection of specific 

therapies, as well as identify patients suitable for particular clinical trials. 

 The predictor described here could only be used to estimate a pathogenicity probability of 

missense variants, and its extension to other types of variants is somewhat less straightforward. The 

issue arises from the limited applicability of the predictors and structural features that we have utilized 

to build the model to classes of variants outside the missense category. In particular, only the methods 

PROVEAN and CADD can be applied to insertions and deletions, while nonsense, splicing, and 

synonymous mutations can be assessed by CADD only. To extract structural features, the structure of 

the mutated protein must be available, which is problematic for insertions and deletions that can cause 

large changes in structure. Moreover, the small set of TPs and TNs available for non-missense variant 

types limits our ability to train a similar meta-predictor, though allele frequency could in principle be 

used for any variant type. This again highlights the importance of additional functional measurements, 

which can be used alone or in combination with a few available computational features to establish the 

pathogenic status of all other types of variants. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 10, 2017. ; https://doi.org/10.1101/115956doi: bioRxiv preprint 

https://doi.org/10.1101/115956
http://creativecommons.org/licenses/by/4.0/


 

 9 

 By combining multiple levels of knowledge about CFTR structure and function, and training the 

machine learning model on the set of known pathogenic and benign variants, we created a CFTR-

specific pathogenicity predictor tool of higher accuracy, which we hope may aid in interpreting and 

prioritizing CFTR variants, and be further evaluated by functional studies. This model’s predictions will 

be hosted on the ClinGen Consortium database, to make it easily available to other CF researchers and 

to demonstrate the feasibility of such an approach for a variety of Mendelian diseases. Overall, this 

report can be used as a description and model of the general strategy for developing a pathogenicity 

predictor of improved accuracy, so that feasibility of similar approaches may be evaluated for other 

genes. 

 

Description of Supplemental Data 

Supplemental Data include notes on data collection from Stanford internal resources (CF Center 

and MPL) and four tables. 
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Web Resources 

Complete list of 1,899 protein-coding CFTR variants with clinical significance, allele frequency 

and corresponding source dataset name, as well as 35 annotation features for 1,210 missense variants 

together with RF predictions, are available on the GitHub: https://github.com/rychkova/CFTR-

MetaPred. 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 10, 2017. ; https://doi.org/10.1101/115956doi: bioRxiv preprint 

https://doi.org/10.1101/115956
http://creativecommons.org/licenses/by/4.0/


 

 10 

References 

1. Ng, P.C. (2003). SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 
31, 3812–3814. 
2. Adzhubei, I. a, Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, 
A.S., and Sunyaev, S.R. (2010). A method and server for predicting damaging missense mutations. Nat. 
Methods 7, 248–249. 
3. Thusberg, J., Olatubosun, A., and Vihinen, M. (2011). Performance of mutation pathogenicity 
prediction methods on missense variants. Hum. Mutat. 32, 358–368. 
4. Li, B., Krishnan, V.G., Mort, M.E., Xin, F., Kamati, K.K., Cooper, D.N., Mooney, S.D., and 
Radivojac, P. (2009). Automated inference of molecular mechanisms of disease from amino acid 
substitutions. Bioinformatics 25, 2744–2750. 
5. Masica, D.L., Sosnay, P.R., Cutting, G.R., and Karchin, R. (2012). Phenotype-Optimized Sequence 
Ensembles Substantially Improve Prediction of Disease-Causing Mutation in Cystic Fibrosis. Hum. 
Mutat. 
6. Capriotti, E., Altman, R.B., and Bromberg, Y. (2013). Collective judgment predicts disease-
associated single nucleotide variants. BMC Genomics 14 Suppl 3, S2. 
7. Olatubosun, A., Väliaho, J., Härkönen, J., Thusberg, J., and Vihinen, M. (2012). PON-P: integrated 
predictor for pathogenicity of missense variants. Hum. Mutat. 33, 1166–1174. 
8. Zhang, Z., Witham, S., Petukh, M., Moroy, G., Miteva, M., Ikeguchi, Y., and Alexov, E. (2013). A 
rational free energy-based approach to understanding and targeting disease-causing missense mutations. 
J. Am. Med. Inform. Assoc. 20, 643–651. 
9. Serohijos, A.W.R., Aleksandrov, A.A., He, L., Cui, L., Dokholyan, N. V, and Riordan, J.R. (2008). 
Phenylalanine-508 mediates a cytoplasmic – membrane domain contact in the CFTR 3D structure 
crucial to assembly and channel function. Proc. Natl. Acad. Sci. 105, 3256–3261. 
10. Dalton, J., Kalid, O., Schushan, M., Ben-Tal, N., and Villà-Freixa, J. (2012). New Model of Cystic 
Fibrosis Transmembrane Conductance Regulator Proposes Active Channel-like Conformation. J. Chem. 
Inf. Model. 52, 1842–1853. 
11. Clinical and Functional Translation of CFTR (CFTR2). http://www.cftr2.org/ 
12. Database of Genotypes and Phenotypes (dbGaP). http://www.ncbi.nlm.nih.gov/gap 
13. Exome Aggregation Consortium (ExAC). http://exac.broadinstitute.org 
14. The Cystic Fibrosis Center at Stanford. http://med.stanford.edu/cfcenter.html 
15. The Stanford Molecular Pathology Laboratory. http://moleculargenetics.stanford.edu/ 
16. Lefterova, M.I., Shen, P., Odegaard, J.I., Fung, E., Chiang, T., Peng, G., Davis, R.W., Wang, W., 
Kharrazi, M., Schrijver, I., et al. (2016). Next-Generation Molecular Testing of Newborn Dried Blood 
Spots for Cystic Fibrosis. J. Mol. Diagnostics 18, 267–282. 
17. Choi, Y., Sims, G.E., Murphy, S., Miller, J.R., and Chan, A.P. (2012). Predicting the Functional 
Effect of Amino Acid Substitutions and Indels. PLoS One 7,. 
18. Thomas, P.D., Campbell, M.J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer, K., 
Muruganujan, A., and Narechania, A. (2003). PANTHER: a library of protein families and subfamilies 
indexed by function. Genome Res. 13, 2129–2141. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 10, 2017. ; https://doi.org/10.1101/115956doi: bioRxiv preprint 

https://doi.org/10.1101/115956
http://creativecommons.org/licenses/by/4.0/


 

 11 

19. Kircher, M., Witten, D.M., Jain, P., O’Roak, B.J., Cooper, G.M., and Shendure, J. (2014). A general 
framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 1–8. 
20. Yin, S., Ding, F., and Dokholyan, N. V (2007). Eris : an automated estimator of protein. Nat. 
Methods 4, 466–467. 
21. Dehouck, Y., Kwasigroch, J.M., Gilis, D., and Rooman, M. (2011). PoPMuSiC 2.1: a web server for 
the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics 
12, 151. 
22. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., and Serrano, L. (2005). The FoldX 
web server: An online force field. Nucleic Acids Res. 33, 382–388. 
23. Consortium, T.U. (2014). UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–
D212. 
24. Warshel, A. (2013). Molaris-XG: Theoretical Background and Practical Examples. 
25. Schrodinger  LLC (2015). The PyMOL Molecular Graphics System, Version 1.8. 
26. Touw, W.G., Baakman, C., Black, J., te Beek, T. a. H., Krieger, E., Joosten, R.P., and Vriend, G. 
(2014). A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 43, D364–D368. 
27. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., and Kanehisa, M. 
(2008). AAindex : amino acid index database , progress report 2008. Nucleic Acids Res. 36, 202–205. 
28. Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. J. Stat. Softw. 28,. 
29. Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction (Springer). 
30. Sosnay, P.R., Siklosi, K.R., Van Goor, F., Kaniecki, K., Yu, H., Sharma, N., Ramalho, A.S., Amaral, 
M.D., Dorfman, R., Zielenski, J., et al. (2013). Defining the disease liability of variants in the cystic 
fibrosis transmembrane conductance regulator gene. Nat. Genet. 45, 1160–1167. 
31. Masica, D.L., Sosnay, P.R., Raraigh, K.S., Cutting, G.R., and Karchin, R. (2014). Missense variants 
in CFTR nucleotide-binding domains predict quantitative phenotypes associated with cystic fibrosis 
disease severity. Hum. Mol. Genet. 24, 1–10. 
32. Starita, L.M., Young, D.L., Islam, M., Kitzman, J.O., Gullingsrud, J., Hause, R.J., Fowler, D.M., 
Parvin, J.D., Shendure, J., and Fields, S. (2015). Massively Parallel Functional Analysis of BRCA1 
RING Domain Variants. Genetics 200, 413–422. 
33. Ramalho, A.S., Clarke, L. a., Sousa, M., Felicio, V., Barreto, C., Lopes, C., and Amaral, M.D. 
(2015). Comparative ex vivo, in vitro and in silico analyses of a CFTR splicing mutation: Importance of 
functional studies to establish disease liability of mutations. J. Cyst. Fibros. 
34. Masica, D.L., and Karchin, R. (2016). Towards Increasing the Clinical Relevance of In Silico 
Methods to Predict Pathogenic Missense Variants. PLOS Comput. Biol. 12, e1004725. 
35. Raraigh, S., Keens, T.G., and Kharrazi, M. (2016). Benign and Deleterious Cystic Fibrosis 
Transmembrane Conductance Regulator Mutations Identified by Sequencing in Positive Cystic Fibrosis 
Newborn Screen Children from California. PLoS One 1–14. 
36. Salinas, D.B., Sosnay, P.R., Azen, C., Young, S., Raraigh, K.S., Keens, T.G., and Kharrazi, M. 
(2015). Benign Outcome among Positive Cystic Fibrosis Newborn Screen Children with Non CF-
causing Variants. J Cyst Fibros 14, 714–719. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 10, 2017. ; https://doi.org/10.1101/115956doi: bioRxiv preprint 

https://doi.org/10.1101/115956
http://creativecommons.org/licenses/by/4.0/


 

 12 

37. Guggino, W.B., and Stanton, B. a (2006). New insights into cystic fibrosis: molecular switches that 
regulate CFTR. Nat. Rev. Mol. Cell Biol. 7, 426–436. 
38. Hallows, K.R., Raghuram, V., Kemp, B.E., Witters, L. a, and Foskett, J.K. (2000). Inhibition of 
cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor 
AMP-activated protein kinase. J. Clin. Invest. 105, 1711–1721. 
39. Cheng, J., Moyer, B.D., Milewski, M., Loffing, J., Ikeda, M., Mickle, J.E., Cutting, G.R., Li, M., 
Stanton, B. a., and Guggino, W.B. (2002). A golgi-associated PDZ domain protein modulates cystic 
fibrosis transmembrane regulator plasma membrane expression. J. Biol. Chem. 277, 3520–3529. 
40. Jurkuvenaite, A., Varga, K., Nowotarski, K., Kirk, K.L., Sorscher, E.J., Li, Y., Clancy, J.P., Bebok, 
Z., and Collawn, J.F. (2006). Mutations in the amino terminus of the cystic fibrosis transmembrane 
conductance regulator enhance endocytosis. J. Biol. Chem. 281, 3329–3334. 
 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 10, 2017. ; https://doi.org/10.1101/115956doi: bioRxiv preprint 

https://doi.org/10.1101/115956
http://creativecommons.org/licenses/by/4.0/


 

 13 

Figures 
 
Figure 1. Distribution of 1,899 collected protein coding CFTR variants by mutation type and clinical 
significance. (A) Missense variants represent the largest class of protein-coding variants in CFTR. (B) 
Majority of variants are classified as VUSs. 
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Figure 2. Performance comparison for ML algorithms tested and separate predictors used. (A) ROC 
curves for the five ML algorithms tested and their corresponding AUC values. Tree-based methods 
(GBM and RF) showed the highest performance, with the best AUCRF=0.85. (B) ROC curves for the 
separate predictors used for training. Only five best predictors out of 35 shown for clarity. AF predictor 
showed the highest AUCAF=0.73 in compare to other tools. AUC values for all 35 features are in Table 
4. 
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Figure 3. Features importance based on the RF model. Only top 20 features are shown. Values are 
scored from 0 to 100. Data for all 35 features are in Table S2. 
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Figure 4. Correlation of pathogenicity prediction with experimental data. (A) Mean Cl- conductance 
values were taken from Sosnay et al.30. (B) Mean sweat Cl- conductance based on the data from The 
Stanford CF Center. Values for patients heterozygous for F508del mutation only were used. 
Pathogenicity probability is based on the predictions from RF model. 
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Tables 
 
Table 1. CFTR variants data collection 
 

 
 

 
 
 
 
 
 
 
 
 
 

Variants data have been collected from six data sources, including external publicly available data and 
internal data from Stanford-affiliated laboratories. Total number of unique variants collected is 1,899. 
*The Stanford MPL database that we used include variants identified during clinical CF testing at the 
lab, and laboratory-curated CFTR variants from various public datasources, including the CF Mutation 
Database, the CFTR2 database, National Center for Biotechnology Information’s dbSNP, and Ensembl. 
 
  

datasource # of 
protein-
coding 
variants 

# of unique 
variants for 
this 
datasource 

The Stanford Molecular Pathology Laboratory 1267 726 
The Exome Aggregation Consortium (ExAC) 937 559 
POSE (CFTR-specific pathogenicity prediction algorithm) 240 37 
The Clinical and Functional Translation for CFTR (CFTR2) 171 4 
The Stanford Cystic Fibrosis center 80 5 
The database of Genotypes and Phenotypes (dbGaP) 53 9 
Total: 1899 
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Table 2. Features used for training machine learning algorithms 
 
# feature 

class 
feature name feature description link/comment 

1 sequence-
based 

PROVEAN PROVEAN http://provean.jcvi.org/ 

2 SIFT SIFT http://sift.jcvi.org/ 

3 PANTHER PANTHER http://www.pantherdb.org/tools/csnpScor
eForm.jsp 

4 sequence & 
structure-
based 

PolyPhen2 PolyPhen-2 http://genetics.bwh.harvard.edu/pph2/ 

5 MutPred MutPred http://mutpred.mutdb.org/ 

6 
7 

CADD_RawScore, 
CADD_PHRED 

CADD (RawScore and 
PHRED) 

http://cadd.gs.washington.edu/ 

8 POSE POSE http://karchinlab.org/apps/appPose.html 

9 
10 

stability 
predictors 

PoPMuSiC_BenTal, 
PoPMuSiC_Dokholyan 

PoPMuSiC* http://dezyme.com/ 

11 
12 

Eris_BenTal, 
Eris_Dokholyan 

Eris* http://dokhlab.unc.edu/tools/eris/ 

13 
14 

FoldX_BenTal, 
FoldX_Dokholyan 

FoldX* http://foldx.crg.es/ 

15 additional 
features 
based on 
allele count 

AF allele frequency based on allele count data from CFTR2, 
dbGaP, ExAC, and Stanford CF Center 

16 Density probability density function based on 1d kernel density estimate 

17 
18 

additional 
features 
derived 
from 
protein 
structure 

SAA_BenTal, 
SAA_Dokholyan 

solvent accessible area for 
residue* 

based on DSSP 

19 SAA_resi_change change in solvent accessible 
area for residue 

20 SAA_total_change change in solvent accessible 
area for protein 

21 HB_resi_change change in hydrogen bond 
energy for residue 

22 HB_total_change change in hydrogen bong 
energy for protein 

23 domain protein domain based on UniProt info and 3D protein 
structure 24 nucleotide_binding nucleotide binding pocket 

25 topology topology 
26 modifications posttranslational modification 
27 PPI_score involvement in protein-

protein interaction 
28 mem_cont_resi membrane contacting 

residues 
29 ch_cont_resi ion channel forming residues 
30 physicoche

mical 
properties 

charge_change change in charge based on AAindex 
31 polarity_change change in polarity 
32 volume_change change in volume 
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33 partition_energy_change change in partition energy 
34 hydrophobicity_change change in hydrophobicity 
35 pro_signal proline signal 
*PoPMuSiC, Eris, FoldX, as well as solvent accessible area for residues were calculated for two 
different CFTR structural models9,10, thus making 35 total annotation features.  
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Table 3. Performance measures for the five machine learning algorithms tested 
 
method accuracy sensitivity 

(TPR=TP/P) 
specificity 
(TNR=TN/N) 

AUC 

RF (random forest) 0.77 0.75 0.80 0.85 
GBM (gradient boosting method) 0.73 0.65 0.83 0.83 

GLM (generalized linear model) 0.55 1.00 0.00 0.82 
SVM (support vector machine) 0.68 0.71 0.65 0.79 
RDA (regularized discriminant 
analysis) 

0.68 0.71 0.65 0.77 

TPR – true positive rate, TP – number of true positives, P – total number of positives (true positives + 
false positives), TNR – true negative rate, TN – number of true negatives, N – total number of negatives 
(true negatives + false negatives). Accuracy = (TP+TN)/(P+N). 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 10, 2017. ; https://doi.org/10.1101/115956doi: bioRxiv preprint 

https://doi.org/10.1101/115956
http://creativecommons.org/licenses/by/4.0/


 

 21 

Table 4. Performance measures for separate predictors 
 
feature accuracy sensitivity 

(TPR=TP/P) 
specificity 
(TNR=TN/N) 

AUC RF AUC 
improvement
, % 

AF 0.73 0.69 0.78 0.73 11.9 
CADD_PHRED 0.64 0.75 0.50 0.71 14.1 
CADD_RawScore 0.63 0.60 0.65 0.70 15.0 
MutPred 0.60 0.83 0.33 0.69 15.5 
PROVEAN 0.65 0.69 0.60 0.66 19.0 
PoPMuSiC_BenTal 0.63 0.71 0.53 0.63 21.9 
SIFT 0.57 0.92 0.15 0.63 22.1 
SAA_resi_change 0.56 0.88 0.18 0.62 22.9 
PANTHER 0.60 0.73 0.45 0.62 23.0 
PolyPhen2 0.57 0.83 0.25 0.60 25.1 
SAA_Dokholyan 0.61 0.69 0.53 0.59 26.2 
FoldX_BenTal 0.53 0.92 0.08 0.59 26.2 
POSE 0.52 0.67 0.35 0.58 26.8 
charge_change 0.53 0.85 0.15 0.58 27.3 
SAA_total_change 0.53 0.85 0.15 0.57 27.5 
volume_change 0.50 0.75 0.20 0.57 27.6 
ch_contact_resi 0.55 1.00 0.00 0.57 27.6 
domain 0.55 0.85 0.18 0.57 28.1 
topology 0.57 0.75 0.35 0.56 29.4 
PPI_score 0.55 1.00 0.00 0.55 29.9 
FoldX_Dokholyan 0.55 0.96 0.05 0.55 30.1 
hydrophobicity_change 0.53 0.83 0.18 0.55 30.1 
PoPMuSiC_Dokholyan 0.47 0.79 0.08 0.54 30.4 
mem_contact_resi 0.58 0.98 0.10 0.54 30.9 
partition_energy_change 0.50 0.90 0.03 0.54 31.3 
pro_signal 0.55 1.00 0.00 0.53 32.2 
Eris_Dokholyan 0.55 1.00 0.00 0.52 32.7 
Density 0.55 1.00 0.00 0.52 33.1 
nucleotide_binding 0.55 1.00 0.00 0.51 34.1 
modifications 0.55 1.00 0.00 0.51 34.3 
polarity_change 0.55 1.00 0.00 0.49 35.5 
HB_resi_change 0.55 0.98 0.03 0.48 36.6 
HB_total_change 0.55 0.98 0.03 0.48 36.6 
Eris_BenTal 0.52 0.92 0.05 0.48 36.6 
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SAA_BenTal 0.55 1.00 0.00 0.47 37.7 
Solvent accessible area (SAA), PoPMuSiC, Eris, and FoldX were calculated for two different CFTR 
structural models (BenTal10 and Dokholyan9). HB – hydrogen bond energy, PPI_score – number of 
protein-protein interactions this residue is known to participate in (see Table S1 for the PPI motifs 
details). 
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Supplemental Data 
 
On the data collection for the Stanford CF center 
The Stanford CF Center provides state-of-the-art care for a patient population that comes from the San 
Francisco Bay area and beyond. The center currently cares for approximately 450 patients, including 
post-transplant CF patients. Our current standing protocol for clinical care includes detailed phenotypic 
characterization as well as complete CFTR mutation analysis in all the patients under follow up. 
Information of CFTR mutations identified and results of sweat chloride results is kept on a secure 
database managed by the Center. 
 
On the data collection for Stanford MPL 
The Stanford Molecular Pathology Laboratory provides clinical diagnostic testing for CF. The 
laboratory currently offers carrier screening (basic and expanded), diagnostic testing, and molecular 
testing associated with CF newborn screening for the State of California. This testing includes a 40 
mutation screening panel for all newborns in the State of California who have a high initial IRT enzyme 
test result. A subset of these, namely those for whom only one mutation was identified through panel 
testing, receives further screening by direct DNA sequencing. 
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Supplemental Tables 
 
Table S1. Known CFTR motifs responsible for protein-protein interaction. 
 
PPI motif motif description residues in 

the motif 
reference 

SNAREs_binding_motif Mediates membrane fusion and vesicle trafficking by 
assembling into complexes that link vesicle-associated 
SNAREs (v-SNAREs) with SNAREs on target membranes (t-
SNAREs). 

1-79 ref37 

AMPK_binding_motif A molecular switch that links ion transport to cellular 
metabolism. AMPK is activated when the AMP/ATP ratio 
increases. 

1420-1457 ref38 

PP2A_binding_motif A heterotrimeric protein phosphatase that interacts with and 
dephosphorylates CFTR. 

1451-1476 ref37 

PDZ_binding_motif Mediate protein–protein interactions by binding to short 
peptide sequences that are most often in the C termini of the 
target proteins. 

1477-1480 ref39 

endocytic_motif Regulates endocytosis by which extracellular material and 
membrane-resident proteins are taken up by cells. 

1424-1427, 
1430-1431 

ref37,38,40 

possible_endocytic_motif *Possible internalization signal suggested by R31C & R31L 
mutation experiments40. 
**Possible internalization motif based on the structural 
similarity to conventional internalization motifs in NBD2. 

28-31*, 
627-630**, 
633-634** 

ref40 
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Table S2. Importance for all 35 features on the scale 0-100. 
 
feature name feature class importance 

AF derived from datasets 100.0 
Density derived from datasets 70.2 
MutPred sequence & structure-based 54.3 
POSE sequence & structure-based 31.6 
SIFT sequence-based 18.1 
topology derived from protein structure 17.7 
PPI_score derived from protein structure 14.7 
volume_change physicochemical property 13.6 
CADD_RawScore sequence & structure-based 13.3 
Eris_BenTal stability predictor 12.8 
FoldX_BenTal stability predictor 12.4 
HB_resi_change derived from protein structure 12.1 
nucleotide_binding derived from protein structure 11.4 
domain derived from protein structure 11.1 
SAA_BenTal derived from protein structure 10.0 
HB_total_change derived from protein structure 10.0 
PolyPhen2 sequence & structure-based 9.9 
Eris_Dokholyan stability predictor 9.3 
PoPMuSiC_Dokholyan stability predictor 9.2 
CADD_PHRED sequence & structure-based 7.6 
polarity_change physicochemical property 7.6 
modifications derived from protein structure 7.0 
PoPMuSiC_BenTal stability predictor 6.7 
PROVEAN sequence-based 6.6 
ch_contact_resi derived from protein structure 5.2 
SAA_Dokholyan derived from protein structure 5.1 
PANTHER sequence-based 4.4 
SAA_total_change derived from protein structure 4.3 
partition_energy_change physicochemical property 3.6 
hydrophobicity_change physicochemical property 3.0 
mem_contact_resi derived from protein structure 2.6 
SAA_resi_change derived from protein structure 2.1 
charge_change physicochemical property 1.5 
pro_signal physicochemical property 0.5 
FoldX_Dokholyan stability predictor 0.0 
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Table S3. Experimental in vitro mean Cl- conductance measures for various CFTR missense variants. 
 
aachange clin_sign mean_Cl_cond RF.prob RF.pred 
G576A benign 147.0 0.61 pathogenic 
I148T benign 91.1 0.17 benign 
L997F benign 22.4 0.33 benign 
R1162L benign 130.2 0.31 benign 
R31C benign 105.3 0.17 benign 
R668C benign 57.6 0.09 benign 
R75Q benign 65.4 0.16 benign 
S1235R benign 78.7 0.23 benign 
A455E pathogenic 6.8 0.92 pathogenic 
A559T pathogenic 0.0 1.00 pathogenic 
D110H pathogenic 9.1 0.92 pathogenic 
D614G pathogenic 18.0 0.92 pathogenic 
E92K pathogenic 0.2 0.90 pathogenic 
G1244E pathogenic 1.0 0.96 pathogenic 
G178R pathogenic 3.4 0.97 pathogenic 
G551D pathogenic 1.3 0.96 pathogenic 
G85E pathogenic 2.4 0.97 pathogenic 
G970R pathogenic 2.8 0.95 pathogenic 
I1234V pathogenic 39.9 0.84 pathogenic 
I336K pathogenic 0.9 0.91 pathogenic 
L1065P pathogenic 0.0 0.96 pathogenic 
L1077P pathogenic 0.0 0.94 pathogenic 
L206W pathogenic 5.7 0.97 pathogenic 
L227R pathogenic 0.0 0.69 pathogenic 
L467P pathogenic 0.0 0.92 pathogenic 
L927P pathogenic 0.1 0.93 pathogenic 
M1101K pathogenic 0.0 0.81 pathogenic 
M1V pathogenic 0.7 0.93 pathogenic 
N1303K pathogenic 0.5 0.90 pathogenic 
P205S pathogenic 2.5 0.93 pathogenic 
P67L pathogenic 6.0 0.87 pathogenic 
R1066C pathogenic 0.0 0.71 pathogenic 
R1066H pathogenic 1.3 0.82 pathogenic 
R117C pathogenic 3.4 0.84 pathogenic 
R334W pathogenic 1.3 0.92 pathogenic 
R347H pathogenic 5.2 0.97 pathogenic 
R347P pathogenic 0.0 0.94 pathogenic 
R352Q pathogenic 3.1 0.89 pathogenic 
R560K pathogenic 0.0 0.99 pathogenic 
R560T pathogenic 0.1 0.98 pathogenic 
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S1251N pathogenic 5.2 0.93 pathogenic 
S341P pathogenic 0.0 0.88 pathogenic 
S492F pathogenic 0.0 0.93 pathogenic 
S549N pathogenic 1.6 0.90 pathogenic 
S549R pathogenic 0.1 0.96 pathogenic 
S945L pathogenic 6.0 0.96 pathogenic 
T338I pathogenic 1.0 0.66 pathogenic 
V520F pathogenic 0.2 0.97 pathogenic 
Y569D pathogenic 0.0 0.95 pathogenic 
D1152H VUS 77.8 0.43 benign 
D1270N VUS 53.2 0.88 pathogenic 
D579G VUS 13.9 0.88 pathogenic 
F1052V VUS 87.0 0.84 pathogenic 
G1069R VUS 122.8 0.80 pathogenic 
I1027T VUS 111.3 0.69 pathogenic 
R1070W VUS 8.9 0.81 pathogenic 
R117H VUS 35.0 0.67 pathogenic 
R74W VUS 44.0 0.47 benign 
S977F VUS 6.7 0.77 pathogenic 
V754M VUS 140.0 0.57 pathogenic 
Clin_sign – clinical significance of variants, RF.prob and RF.pred – probability of pathogenicity and 
predicted pathogenicity class by RF model. Mean Cl- conductance values and clinical significance are 
from ref30. 
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Table S4. Mean sweat Cl- concentration and RF probabilities for missense variants in CF patients of 
The Stanford CF Center heterozygous for F508del mutation. 
 
aachange clin_sign mean_sweat_Cl RF.prob RF.pred 
S1235R benign 19.0 0.23 benign 
D836Y pathogenic 15.0 0.70 pathogenic 
E217G pathogenic 24.0 0.65 pathogenic 
G194V pathogenic 112.0 0.79 pathogenic 
G27R pathogenic 96.5 0.73 pathogenic 
G551D pathogenic 98.1 0.96 pathogenic 
G85E pathogenic 112.0 0.97 pathogenic 
L1065P pathogenic 130.0 0.96 pathogenic 
N1088D pathogenic 69.0 0.88 pathogenic 
N1303K pathogenic 112.0 0.90 pathogenic 
R117C pathogenic 108.0 0.84 pathogenic 
R334W pathogenic 104.0 0.92 pathogenic 
R347H pathogenic 72.5 0.97 pathogenic 
R352W pathogenic 34.5 0.90 pathogenic 
R560T pathogenic 160.0 0.98 pathogenic 
S492F pathogenic 76.0 0.93 pathogenic 
S945L pathogenic 88.0 0.96 pathogenic 
V456A pathogenic 74.0 0.82 pathogenic 
V520F pathogenic 120.0 0.97 pathogenic 
V520I pathogenic 36.0 0.92 pathogenic 
V562I pathogenic 14.0 0.90 pathogenic 
D1152H VUS 38.0 0.43 benign 
F1052V VUS 41.0 0.84 pathogenic 
I1027T VUS 70.3 0.69 pathogenic 
R1070W VUS 23.0 0.81 pathogenic 
R117H VUS 66.6 0.67 pathogenic 
Clinical significance of variants is based on The Stanford CF Center data. 
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