
New mutations, old statistical challenges 
  
Based on targeted sequencing of 208 genes in 11,730 neurodevelopmental disorder cases, 
Stessman et al. report the identification of 91 genes associated (at a False Discovery Rate 
[FDR] of 0.1) with autism spectrum disorders (ASD), intellectual disability (ID), and 
developmental delay (DD)—including what they characterize as 38 novel genes, not previously 
reported as connected with these diseases​1​. 
 
If true, this would represent a substantial step forward. Unfortunately, each of the two discovery 
analyses (1. ​De novo​ mutation analysis and, 2. a comparison of private mutations with public 
control data) contain critical statistical flaws. When one accounts for these problems, fewer than 
half of the genes--and very few, if any, of the novel findings--survive. These errors have 
implications for how future analyses should be conducted, for understanding the genetic basis 
of these disorders, and for genomic medicine. 
 
We discuss the two main analyses in turn and provide more detailed treatment of the issues in a 
supplementary technical note. 
  
1. Two-stage analysis of ​de novo ​ mutations.​ The authors selected 208 genes, consisting of 
130 with one or more ​de novo​ truncating mutations in prior published studies, along with 78 
others belonging to related pathways or having related Mendelian disease association. Of these 
genes, 19 have an already documented ‘genome-wide significant’ excess of ​de novo ​mutations 
from 5-6,000 neurodevelopmental disorder patients used as the “discovery sample” by the 
authors. Moreover, a more recently published exome dataset​2​ has convincingly elevated the 
number of formally genome-wide significant genes to 93.  
 
The authors resequenced this collection of 208 genes in 11,730 neurodevelopmental disorder 
cases (“replication sample”) and looked for ​an excess of ​de novo​ mutations. They report that 
analysis of ​de novo​ truncating mutations identifies 68 disease-associated genes, while analysis 
of ​de novo​ damaging missense mutations adds an additional 10 genes (with 32 of these 78 
genes described as novel). These claims, however, are made based on a flawed statistical 
analysis, and we estimate fewer than half this number of genes achieve an FDR of 0.1, nearly 
all of which are known. 
 
The study belongs to the traditional ‘two-stage’ design, which was first popularised 10-25 years 
ago, in early days of genome-wide association and, before that, linkage studies. There are two 
valid ways to analyze such a design: (1) count events only in the replication sample, in which 
case a significance threshold based on the number of genes tested in the replication sample 
(here, 208) is applied or (2) count events in both the initial and replication sample, in which case 
a significance threshold based on the number of genes in the genome (~20,000) must be 
applied. 
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The authors, however, used an invalid approach: they counted events in both the initial and 
replication sample, but they applied the weaker significance threshold appropriate for testing 
only 208 genes. This approach inflates the significance of genes: because the 208 genes were 
chosen due to a higher-than-expected number of events in the initial sample, the number of 
events in the combined initial and replication sample will be artificially high; it will not follow the 
null distribution even if there are no associated genes. While seemingly subtle, this pernicious 
pitfall applies to any genomewide scanning technique: examining the first half of the data and 
then completing the study for only the most promising sites is still performing a full genome scan 
when both halves of the data are analyzed together. 
 
The problem is underscored by some simple observations regarding the ​de novo​ likely gene 
disruptive (LGD) analysis: 
 
(1) The rate of ​de novo​ truncating mutations in the 208 genes is dramatically lower in the 
replication sample than in the initial sample (0.7% vs. 5.4%)  
 
(2) For 28 of the 68 genes claimed to be significant based on the presence of truncating ​de 
novo​ mutations, ​no events at all​ were observed in the replication sample. Despite the fact that 
the replication study (twice the size of the discovery sample) therefore provided evidence 
against​ these genes, the analysis declared the genes significant due only to the use of an 
inappropriately liberal significance level. These 28 genes include 11 of the ‘novel’ genes. 
 
When one applies a correct significance threshold to the data for truncating ​de novo​ mutations, 
the number associated at FDR=0.1 falls from 68 genes to 30 genes - of which 23 reach the 
much stricter genome-wide significance threshold (Technical Note 1). As a general note we 
would encourage somewhat more emphasis on this stricter threshold than in many recent 
papers, with proper accounting for multiple variant categories tested, as the investment in 
clinical decision-making and functional studies should be informed by which genes have robust 
evidence and which may have a likely/probable but far from certain status.  
 
Only ​one​ of the 30 genes, ​SETBP1 ​, has not previously been reported in the exome literature 
(summarized in recent meta-analyses​2-6​) as associated with ASD, ID and/or DD, but this gene is 
a well-established cause of severe autosomal dominant intellectual disability, as published by 
some of the same authors in 2014 ​7​. Of the 29 others, 28 were documented in exome studies in 
2015 or earlier and the 29th (​TCF4​) was noted in the most recent 2017 DDD paper but has 
been widely known as a cause of ID due to Pitt-Hopkins syndrome since 2007 ​8-10​.  
 
2. Comparison of ‘private mutations’ in cases vs. public control data. ​The second type of 
analysis performed by the authors involves looking for an excess of “private mutations” (that is, 
singletons) in cases vs. controls. To assess significance, they use a permutation test in which 
they permute the labels of the cases and controls. Based on this analysis, the authors report 13 
additional disease-associated genes (on top of the earlier 78). 
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This study design is statistically valid—​provided​ that the cases and controls are chosen from the 
sample population and have been sequenced in the same manner. However, the results are ​not 
valid if the controls (i) did not come from the same populations (population history affects the 
entire allelic spectrum, including the frequency of singletons) and (ii) were not sequenced and 
analysed in identical ways (differences in the average sequence depth or the coverage of 
specific exons affects singleton detection). The use of a permutation test to assess significance 
does nothing to eliminate these problems: the systematic differences present in the case vs. 
control comparison are absent in the permutations which distribute the technical differences 
randomly. 
  
In this case, however, the authors compared their case samples to a public control sample from 
the Exome Aggregation Consortium (ExAC)​11​ in a fashion that violated all three of the critical 
criteria above. The ExAC database is chosen from a different mix of populations and, being 
drawn from heterogeneous exome capture experiments, has differences in local and average 
coverage and is not at all matched to the targeted MIP study the authors use. For example, 
UNC80​ is highlighted as having an excess of private mutations in cases. However, examination 
of ExAC shows it is particularly poorly covered in most exome sequencing studies (in 58 of 64 
UNC80​ exons fewer than half of ExAC samples achieve 20x depth)--which will dramatically 
decrease the observed rate of singleton mutations. 
 
To compare private mutations in cases vs. controls, it is essential that the samples be taken 
from the same populations, that the technical aspects of sequencing are matched across cases 
and controls, and that the authors are particularly careful to remove sites that are singleton in 
one study and are absent from the other study because the region was not sequenced or the 
variant was present at higher frequency and/or removed because of quality control filtering.  Of 
note, the ExAC resource does provide summaries broken down by major continental ancestries 
and also provides coverage-depth information such that the data could be used much more 
accurately, albeit still imperfectly, in this context.  Additionally, comparing the distributions of 
synonymous and other largely neutral variant categories should be useful for assessing the 
alignment of data sets sequenced and analyzed separately. 
 
As presented in Stessman et al., the results from this analysis are not readily salvageable – 
even though many true positives may rise to the top of such an analysis, it is almost certain that 
false positives will also be present owing to the considerations outlined here. While the targeted 
nature of this study limits the number of such false positives, were the same strategy to be 
employed for comparison of whole-exome or genome data, the technical challenges would be 
quite considerable. In the companion technical note, both the theory and an empirical example 
are provided in support of these points. This analysis is conceptually sound and the field should 
be motivated to create shared genomic resources for which technical and population matching 
can be performed in a way to make these results reliable. 
 
Conclusion​. Re-analysis suggests far fewer significant genes, and little or no truly novel genes 
relative to the existing literature, including the recent mega-analyses in ASD and DD/ID as well 
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as well-established Mendelian genes. As the assignment of disease association to each gene is 
a foundational step on which years of molecular and clinical research will be built, it is absolutely 
imperative that studies of rare and ​de novo​ variation take heed of the hard-earned lessons and 
strict principles of the past decades of statistical genetics. 
 
We urge the authors to update the analyses in this manuscript and generate corrected tables 
and figures reflecting an appropriate FDR correction in order to provide a more accurate view of 
per-gene association probabilities.  
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