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Abstract

RNA-sequencing (RNA-Seq) has become a preferred option to quantify gene expression, because it

is more accurate and reliable than microarrays. In RNA-Seq experiments, the expression level of a gene

is measured by the count of short reads that are mapped to the gene region. Although some normal-

based statistical methods may also be applied to log-transformed read counts, they are not ideal for

directly modeling RNA-Seq data. Two discrete distributions, Poisson distribution and negative binomial

distribution, have been commonly used in the literature to model RNA-Seq data, where the latter is

a natural extension of the former with allowance of overdispersion. Due to the technical difficulty in

modeling correlated counts, most existing classifiers based on discrete distributions assume that genes are

independent of each other. However, as we show in this paper, the independence assumption may cause

non-ignorable bias in estimating the discriminant score, making the classification inaccurate. To this

end, we drop the independence assumption and explicitly model the dependence between genes using

Gaussian copula. We apply a Bayesian approach to estimate covariance matrix and the overdispersion

parameter in negative binomial distribution. Both synthetic data and real data are used to demonstrate

the advantages of our model.

Keywords: RNA-Seq, Negative binomial distribution, Gaussian copula, Sample classification, Correlated

counts
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1 Introduction

RNA-sequencing (RNA-Seq) is a revolutionary tool for the study of transcriptomes (Mardis [2008];

Wang et al. [2009]). Compared to hybridization-based microarrays, RNA-Seq eliminates the need for

species-specific sequence information and provides more reliable measurements for gene expression (Mar-

ioni et al. [2008]). The huge number of reads produced by RNA-Seq experiment enables researchers to

better detect novel transcripts and quantify the gene expression in ultra-high resolution. Essentially, RNA-

Seq consists of three distinct phases: (1) RNA is isolated from tissue and segmented to an average length

of 200 base pairs; (2) RNA segments are reverse transcribed to cDNAs; (3) The cDNAs are mapped to ref-

erence transcriptome or genome. An RNA-Seq experiment usually produces tens of millions of short reads

between 25 and 300 base pairs in length. The number of reads mapped to each transcript provides a digital

measure of transcript abundance.

Poisson distribution and negative binomial distribution are commonly used distributions to model RNA-

Seq data. Based on these two distributions, numerous methods have been proposed to detect the differen-

tially expressed genes, including but not limited to edgeR (Robinson & Smyth [2008]), DESeq2 (Love et al.

[2014]), baySeq (Hardcastle & Kelly [2014]), BBSeq (Zhou et al. [2011]), and SAMseq (Li & Tibshirani

[2013]). Despite the significant advances in differential expression analysis, the progress on classification of

RNA-Seq data is relatively recent. Witten (Witten [2011]) developed a Poisson linear discriminant analysis

(PLDA) by assuming that the data follow a Poisson distribution. However, in the presence of overdisper-

sion, the Poisson assumption might not be appropriate. Dong et al. (Dong et al. [2016]) further extended the

Poisson classifier to a negative binomial classifier (NBLDA), and explored how the dispersion affects the

classifications. Other classifiers developed for RNA-Seq data include logistic regression model and partial

least square method (Tan et al. [2014]). Due to the difficulty of modeling correlated counts, most existing

classifiers assume that all genes are independent of each other. However, as pointed out by Dong et al.

(Dong et al. [2016]), this assumption is very restrictive and may not be realistic in practice. The objective

of the paper is to numerically assess the effect of independence assumption on classification of RNA-Seq

data, and to develop a new classifier incorporating the dependence between genes using continuous latent

variables and Gaussian copula. A Metropolis-Hasting algorithm in combination with Gibbs sampler (Lee
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[2014], Liu & Daniels [2006]) is adopted to estimate the covariance matrix and overdispersion parameters

in our model. Our new classifier explicitly models two important aspects of RNA-Seq data: overdispersion

of read counts and correlation between genes, therefore provides accurate parameter estimate and sample

classification.

Copula is an important tool in modeling the dependence between random variables of any type. It is

especially useful for modeling multiple discrete variables whose joint distribution can be extremely compli-

cated. To begin with, we provide a short review of copula function and Gaussian copula. Consider a vector

of random variables (X1,X2, ...,Xp), the copula function of (X1,X2, ...,Xp), C : [0,1]p→ [0,1], is defined as

the cumulative distribution function (cdf) of (F(X1),F(X2), ...,F(Xp)):

C(u1,u2, ...,up) = P(F(X1)≤ u1,F(X2)≤ u2, ...,F(Xp)≤ up).

By definition, a copula function is a multivariate distribution function where the marginal of each random

variable is uniform. Sklar’s Theorem guarantees that any multivariate distribution can be expressed with uni-

variate marginals and a copula function which links the marginals. In practice, we can completely separate

the choice of marginals and the choice of copula. Popular copulas include, but not limited to Gaussian cop-

ula, Student’s t copula, Clayton’s copula and Frank’s copula (Nelson [1999]). Clayton’s copula and Frank’s

copula both belong to the bivariate Archimedean copula family. For more than two dimensions, Gaussian

copula is convenient to model the complex correlation structure (both positive and negative correlations).

The Gaussian copula is based on multivariate normal distribution:

C(u1, ...,up|Ω) = Φp(Φ
−1(u1), ...,Φ

−1(up)|Ω),

where Φ represents the cdf of standard normal distribution, Φp(...|Ω) represents the cdf of p-dimension nor-

mal distribution with correlation matrix Ω. To connect discrete marginals and continuous copula function,

we introduce a latent variable and treat the observed count as the discretized value of the continuous latent

variable (in spirit, it is same as multivariate Probit model).

The remainder of this paper is structured as follows. In Section 2, we formally describe the statistical

framework for classification of RNA-Seq data and introduce a Bayesian approach to estimate unknown
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parameters. Numerical studies are conducted to compare different models and classifiers in Section 3. In

Section 4, we apply the proposed method to two real data sets including the cervical cancer data and HapMap

data. We discuss and conclude this paper in Sections 5 and 6.

2 Methods

In this section, we propose a new classifier for RNA-Seq data based on copula function. We assume

that the data follow a complex multivariate distribution with negative binomial marginals. The correla-

tion between genes can be described by a Gaussian copula. A general Bayesian framework for estimating

parameters in each class is discussed.

2.1 Negative binomial distributions for marginal model

First, we consider only one class. Let xxx = (xxx1, ...,xxxn)
T be the n× p data matrix, where xi j denotes the

observed number of reads mapped to gene i in sample j, i = 1,2, ..., p and j = 1,2, ...,n. We consider the

following negative binomial distribution Fi j, i = 1,2, ..., p, j = 1, ...,n for marginals (Dong et al. [2016]):

Xi j ∼ NB(µi j,δi), µi j = s jλi, (1)

where µi j = E(Xi j), s j is the size factor to scale read counts for the jth sample due to different sequencing

depth, λi is the total number of reads for gene i, and δi is the overdispersion parameter for gene i, i.e.,

V (Xi j) = µi j +µ2
i jδi. The estimates of λi and s j in (1) are straightforward:

λ̂i =
n

∑
j=1

xi j,

ŝ j =
∑

p
i=1 xi j

∑
n
j=1 ∑

p
i=1 xi j

.

For overdispersion parameter δi, the moment estimate and shrinkage estimate (Yu et al. [2013]) are com-

monly used estimates. However, both methods suffer from instability, e.g., the moment method sometimes
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gives a negative value. In this paper, we treat δi as unknown parameter, which is to be estimated jointly with

other parameters in a Bayesian framework.

2.2 Gaussian copula for dependence between genes

In general, the analysis of correlated counts might be difficult because of the lack of suitable discrete

multivariate distribution that can model complex correlation structures. To surmount this difficulty, we

model the correlation via Gaussian copula, so that the correlation between read counts can be created through

the correlation of the continuous latent variables. Let ZZZ j = (Z1 j, ...,Zp j)
T be the Gaussian latent variables

(with unit variance) of XXX j, and ZZZ j ∼ Np(000,Ω), where Ω represents the covariance or correlation matrix. The

observed counts xxx j are the discretized values of zzz j by quantile matching. The relation between Xi j and Zi j

can be interpreted as follows:

Xi j = xi j ⇐⇒ Fi j(xi j−1|δi)< Φ(Zi j)≤ Fi j(xi j|δi), (2)

where Fi j() represents the cumulative distribution function of variable Xi j, xi j takes nonnegative integer

values 0,1,2, ... and Fi j(−1|δi) = 0 by definition of cdf.

The Gaussian copula of latent variables has the following simple form:

C(Φ(z1 j), ...,Φ(zp j)|Ω) = Φp(z1 j, ...,zp j|Ω). (3)

Based on (2) and (3), the likelihood function can be obtained immediately:

f (xxx j|δ,Ω) =
∫

Rp j

· · ·
∫

R1 j

φp(zzz j|Ω)dzzz j, (4)

where δ = (δ1, ...,δp), φp denotes the multivariate normal density of dimension p, with mean vector 000 and

unit marginal variance. The endpoints defining integration region Ri j = (Li j,Ui j] are specified as a function

of the parameter δi,

Li j = Φ
−1(Fi j(xi j−1|δi)),
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Ui j = Φ
−1(Fi j(xi j|δi)).

2.3 Bayesian estimation of parameters

Finding the maximizer of (4) is impractical due to the complexity and non-convexity of the likelihood

function. Here, we consider the Bayesian approach proposed by Lee (Lee [2014]; Liu & Daniels [2006])

for parameter estimate. The posterior distribution of the parameters and latent variables can be written as

follow:

f (δ,Ω|xxx) ∝ f (Ω)
p

∏
i=1

f (δi)
n

∏
j=1

∫
f (xxx j,zzz j|δ,Ω)dzzz j,

where the priors are specified as f (δi) = IG(α0,β0), and f (Ω) = IWp(Ψ0,v0). We use IG(α0,β0) to denote

the inverse-gamma distribution with shape parameter α0 and rate parameter β0, and use IW (Ψ0,v0) to denote

the inverse-Wishart distribution with scale matrix Ψ0 and degree of freedom v0. The Gibbs sampling can be

implemented based on the following conditional distributions:

f (zi j|z−i, j,δi,Ω),

f (δi|z−i,·,δ−i,Ω),

f (Ω|zzz,δ),

where z−i, j = (z1 j, ...,z(i−1) j,z(i+1) j, ...,zp j), z−i,· = {z−i, j, j = 1, ...,n}, δ−i = (δ1, ...,δi−1,δi+1, ...,δp), zzz =

(zzz1, ...,zzzn)
T . Conditioning on {z−i, j,δi,Ω}, latent variable zi j follows a truncated normal distribution, where

the mean and variance depend on {z−i, j,Ω}, and the endpoints depend on {xi j,δi}. We use a routine

Metropolis-Hasting algorithm to sample δi and use a parameter-expanded reparameterization and Metropolis-

Hasting algorithm (PXMH, Lee [2014]; Liu & Daniels [2006]) to sample Ω. Details about these algorithms

are provided in the Appendix.
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2.4 Classification

We consider the classification problem when the RNA-Seq were conducted over multiple classes, i.e.,

K ≥ 2. Let y j ∈ {1,2, ...,K} denotes the class label of sample j, i.e., y j = k ⇐⇒ j ∈ Ck. The marginal

distribution of Xi j in class k can be formulated in a similar way to (1):

Xi j|y j = k ∼ NB(µi jdik,δik), µi j = s jλi, (5)

where dik and δik are gene- and class-specific parameters among the K classes. The overdispersion parameter

δik can be estimated in the PXMH algorithm and dik can be estimated by

d̂ik =
∑ j∈Ck

xi j

∑ j∈Ck
ŝ jλ̂i

.

Based on the trained models for all the K classes, the class label for new observation xxx∗ can be predicted.

By Bayes’ rule:

P(y∗ = k|xxx∗) ∝ πk fk(xxx∗),

where fk is the probability density function for class k. The prior probability πk can be estimated by π̂k =
∑

n
j=1 I{y j=k}

n . We assign the new observation xxx∗ to class k that maximizes the following discriminant score

(posterior probability):

P̂(y∗ = k|xxx∗) = π̂k fk(xxx∗)
K
∑

l=1
π̂l fl(xxx∗)

.

3 Simulation study

We conducted two simulation studies with K = 2 to benchmark our new classifier. In Simulation I,

we evaluated the performance of the Bayesian approach in estimating the discriminant score P(y∗ = 1|xxx∗)

under different correlation settings. In Simulation II, we compared the performance of six classifiers under

different settings of dispersion and correlation strength.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2017. ; https://doi.org/10.1101/116046doi: bioRxiv preprint 

https://doi.org/10.1101/116046
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.1 Simulation I

Given the correlation matrices Ωk,k = 1,2, we generated data in two steps:

• Step 1: Simulate latent variables zzz jk ∼ Np(000,Ωk), j = 1, ...,nk,k = 1,2, where Ω is the correlation

matrix or covariance matrix, n1 = n2 = 50 and p = 50

• Step 2: Transform zzz jk to xxx jk, j = 1, ...,n using (2), where µi1 = 20,µi2 = µi1 +∆i,∆i ∼Uni f (−15,15)

and δi1 = δi2 ∼Uni f (1,10) for i = 1, ..., p

We compared the copula-based model with Dong et al.’s independence model under two settings of

autoregressive correlation structure Ω1(i, j) = Ω2(i, j) = exp(−a|i− j|): (1)a = 0.5; (2)a = 1.5. For each

class, we trained the model using half of the samples (25 samples randomly chosen in each class) and then

calculated the discriminant score P(y∗ = 1|xxx∗) for each of the rest samples. For both models, we estimated

µik by µ̂ik =
nk

∑
j=1

xi jk/nk. For independence model, we estimated the overdispersion parameter δik using

R package sSeq, which implements the shrinkage method by Yu et al. The score P(y∗ = 1|xxx∗) was then

estimated under independence assumption. For the copula-based model, we jointly estimated δik and Ωk

using PXMH algorithm with the following priors: δik ∼ IG(0.5,0.5) and Σ∼ IW (5, I50). A chain of 15,000

iterations was generated and the last 10,000 samples were kept for calculating the posterior mean.

Figures 1 shows the estimation bias, i.e., P̂(y∗ = 1|xxx∗)−P(y∗ = 1|xxx∗), by two models under two set-

tings. In both settings, the copula-based method shows its superiority over the independence model, and

the improvement is more significant in the presence of stronger correlation. Since moderate and strong co-

expression between genes were commonly seen in real data, the ignorance of such information may lead to

lower prediction accuracy.

3.2 Simulation II

In the second simulation, we compared our copula-based classifier with the other five classifiers includ-

ing Poisson linear discriminant analysis (PLDA), negative binomial linear discriminant analysis (NBLDA),
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k-nearest neighbors (KNN), partial least square method (PLS) and logistic regression method. We imple-

mented PLDA using R package PoiClaClu and implemented NBLDA using the R source code provided by

the Dong et al. (https://github.com/yangchadam/NBLDA). In NBLDA, the overdispersion parameters were

estimated by R package sSeq. For KNN, we chose parameter K = 1,3,5. To implement PLS, we used the

function ’spls()’ provided in R package spls. For our new classifier, same priors were used as in Simulation

I. A chain of 15,000 iterations was generated and the last 10,000 samples are retained for estimation.

The data are generated under four different settings (for all settings, µi1 = 20,µi2 = µi1+∆i,∆i∼Uni f (−15,15)):

• Setting 1 (weaker correlation, smaller dispersion): Ωk(i, j) = exp(−1.5|i− j|), δik ∼Uni f (1,5), k =

1,2

• Setting 2 (weaker correlation, larger dispersion): Ωk(i, j) = exp(−1.5|i− j|), δik ∼Uni f (5,20), k =

1,2

• Setting 3 (stronger correlation, smaller dispersion): Ωk(i, j) = exp(−0.5|i− j|), δik ∼ Uni f (1,5),

k = 1,2

• Setting 4 (stronger correlation, larger dispersion): Ωk(i, j) = exp(−0.5|i− j|), δik ∼ Uni f (5,20),

k = 1,2

The comparison results under different sample sizes (n = 10,30,60,100) are shown in Figures 2 and 3.

Due to the independence assumption, other five classifiers including PLDA and NBLDA failed to model the

dependence structure between genes, therefore the estimated probabilities were biased (see Simulation I). It

is observed that the copula-based model performs consistently better than the other classifiers in terms of

classification accuracy, especially in setting 4 with stronger correlation and larger dispersion. When the cor-

relation between genes are very weak, our model has similar performance with Dong et al.’s independence

model.
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4 Real data analysis

In this experiment, we considered two real data sets including the cervical cancer data (Witten et al.

[2010], available in Gene Expression Omnibus (GEO) with access number GSE20592) and the HapMap

data (Montgomery et al. [2010]; Pickrell et al. [2010], available at ftp://ftp.ncbi.nlm.nih.gov/hapmap). The

cervical cancer data contains 58 samples (29 tumor samples and 29 normal controls), and 714 microRNAs

which were differentially expressed in cancer group and normal group. The HapMap data contains 129

samples (60 CEU samples and 69 YRI samples) and a total number of 52,580 genes. For both data sets,

we removed genes with less than 10 reads across all samples. Three different classifiers including Pois-

son classifier, negative binomial classifier and the copula-based classifier were compared in terms of the

misclassification rate. In our classifier, same priors were used as in the simulation studies.

We noted that the real data sets often contain large portion of irrelevant and redundant genes. A gene

screening could greatly reduce the computing time and improve the classification accuracy. We conducted

gene selections using R package edgeR (available in Bioconductor, www.bioconductor.org), as suggested

by Dong et al. The algorithm implemented in edgeR is based on negative binomial model and takes overdis-

persion into account, therefore it is suitable for our problem. This method first estimates the overdispersion

parameter for each gene by maximizing the combination of gene-specific conditional likelihood and the

overall conditional likelihood, and then constructs an exact test using negative binomial distribution.

For Cervical cancer data, 40 samples were randomly assigned to the training set and the rest 18 samples

were assigned to the testing set. A total of 20, 50, 100, 300 genes were selected, respectively. For HapMap

data, the samples were randomly split into training set and testing set, with 70 samples and 59 samples,

respectively. A total of 50, 100, 300, 500 genes were selected, respectively. Three different classifiers were

then trained by the training data and applied to the testing data. The whole procedure were repeated for 100

times and the average misclassification rate were recorded.

The comparison results are shown in Figure 4. For both data sets, the copula-based model is more

accurate than the other two classifiers. Figure 5 displays the distribution of correlation coefficients between

every pair of genes in the cervical cancer data (log-transformed). It can be seen that the vast majority of

the correlations are positive, and half of them are fairly strong (above 0.5), indicating that the independence
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assumption in PLDA and NBLDA is violated.

5 Discussion

In this paper, we have proposed a new classifier for RNA-Seq data. Different from other classifiers,

it incorporates the dependence between genes in the supervised classification problem. To the best of our

knowledge, this is the first work that applies copula model to the classification of count data. Numerical

comparisons show that our new model achieves better estimate of discriminant scores than existing methods,

therefore results in more accurate sample classification. The improvement is more significant in the presence

of stronger correlation between genes. In addition to RNA-Seq data, this classifier can be generally applied

to other digital gene expression data to improve the classification accuracy.

The copula-based classifier introduced in this paper assumes that the reads count of each gene follows a

negative binomial distribution. This assumption has been widely used in practice since the negative binomial

distribution is flexible to model and quantify the overdispersion in RNA-seq data. However, the negative

binomial assumption still might be violated in some real data sets. In the copula-based method, one could

choose alternative marginal models (e.g., Poisson mixture model) which better fits the data, and the Bayesian

estimation introduced in this paper still can be applied to estimate the covariance matrix since the estimation

of copula only depends on the cumulative distribution functions of the marginals. It is also noteworthy

that the current PXMH algorithm for parameter estimation is time-consuming when the number of selected

genes is large. For example, in the analysis of HapMap data, a single run (out of 100 runs in total) with 500

selected genes takes about 2.5-3 minutes with C++ implementation. In the future study, we would like to

explore other optimizations such as EM-type method for computational efficiency. For example, rather than

joint estimating {δ,Ω} in Bayesian framework, we may first estimate δ using stable method based on read

counts, and then estimate Ω by EM update where latent variables ZZZ can be treated as missing values. The

EM-type method may greatly reduce the computing time. To model the correlation between genes, we use

Gaussian copula as it is convenient for multivariate problem. Another possible future work is to compare

different latent variables and copula functions, e.g., Student’s t copula (Nelson [1999]) and Gaussian mixture

copula (Zhang & Shi [2016]), in a model comparison framework (Mai & Zhang [2016], Zhang et al. [2014],
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Matveeva et al. [2016]).

6 Conclusion

RNA-sequencing experiment quantify gene expression by the count of short reads mapped to the gene

region. When biological replicates are available, the negative binomial distribution allowing overdispersion

is better suited for modeling RNA-Seq data than Poisson distribution. Recently, Dong et al. (Dong et al.

[2016]) developed a classifier based on negative binomial distribution, which outperforms previous methods

including the Poisson classifier and K-nearest neighbors classifier. However, due to the difficulty of mod-

eling the dependence in discrete data, most existing classifiers assume that all the genes are independent of

each other. In this paper, we systematically investigate the effect of independence assumption on discrimi-

nant score calculation and classification. In addition, we developed a copula-based classifier for RNA-Seq

data that incorporates the dependence structure between genes, while maintaining the negative binomial

marginals. Our numerical comparisons and real data analysis demonstrate that the new classifier performs

better than existing methods including Dong et al.’s negative binomial classifier.
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Appendix

Sampling zi j conditioning on {z−i, j,δi,Ω}

We sample zi j from univariate normal distribution φ(zi j|µi j,ω
2
i j) truncated between Li j and Ui j:

µi j = Ωi,−iΩ
−1
−i,−iz−i, j,

ω
2
i j = Ωii−Ωi,−iΩ

−1
−i,−iΩ−i,i,

Li j = Φ
−1(Fi j(xi j−1|δi)),

Ui j = Φ
−1(Fi j(xi j|δi)),

where Ωi,−i = {Ωhl,h= i, l 6= i}, Ω−i,i = {Ωhl,h 6= i, l = i}, Ω−i,−i = {Ωhl,h 6= i, l 6= i} and z−i, j =(z1 j, ...,z(i−1) j,

z(i+1) j, ...,zp j).

Sampling δi conditioning on {z−i,·,δ−i,Ω}

We sample δi based on the following density function:

f (δi|xi,·,δ−i,Ω,z−i,·) ∝ f (δi|δ−i)
n

∏
j=1

f (xi j|z−i, j,δi,Ω),

where f (xi j|z−i, j,δi,Ω) =
∫

φ(zi j|Ω,z−i, j) f (xi j|zi j,δi)dzi j = Φ(
Ui j−µi j

ωi j
)−Φ(

Li j−µi j
ωi j

).

Suppose δi is the current value and δ∗i is the generated value from the proposal distribution. The

Metropolis-Hasting probability of moving from δi to δ∗i is:

A(δi→ δ
∗
i |xi,·,z−i,·,Ω) = min

{
1,

f (δ∗i |xi,·,δ
∗
1:(i−1),δ(i+1):p,zi,·,Ω)

f (δi|xi,·,δ
∗
1:(i−1),δ(i+1):p,zi,·,Ω)

fT (δi|δ̂i,v)

fT (δ
∗
i |δ̂i,v)

}
,

where the proposal fT (δi|δ̂i,v) is a t distribution which dominates the normal tails, δ̂i and v represents

location and degree of freedom, respectively.
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Sampling Ω conditioning on {zzz,δ}

Sampling of Ω can be problematic due to the constraint Ωii = 1, i = 1, ..., p. Here we sample Ω us-

ing parameter-expanded reparameterization and Metropolis-Hasting algorithm (PXMH, Lee [2014]; Liu &

Daniels [2006]). The conditional density can be written as follows:

f (Ω|zzz,δ) ∝ f (Ω)
n

∏
j=1

f (xxx j|δ,Ω).

The PXMH algorithm first simulates a covariance matrix Σ and then transforms it to a correlation matrix Ω.

For convenience, define D = diag(
√

Σ11, ...,
√

Σpp), then Ω = D−1ΣD−1. Since Ω has p fewer parameters

than Σ, an additional constraint is imposed:

n

∑
j=1

Σiiz2
i j = n, i = 1,2, ..., p.

The PXMH Algorithm consists of three steps:

• PX step: Sample Σ∼ IWp(v,Ψ), where v = v0 +n and Ψ = [Ψ−1
0 +∑

n
j=1 Dzzz jzzzT

j D]−1

• MH step: Move to the new value Σ∗ with probability:

A(Σ→ Σ
∗|zzz) = min

{
1,

f (Σ∗|v0,Ψ0)

f (Σ|v0,Ψ0)

∏
n
i=1 f (yyy j|δ,Σ∗)

∏
n
i=1 f (yyy j|δ,Σ)

f (Σ|v,Ψ)

f (Σ∗|v,Ψ)

}

• Transform covariance matrix Σ to correlation matrix Ω, Ω∗ = D∗−1Σ∗D∗−1
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Figure 1: Comparison between Dong et al.’s independence model and the copula-based model. The y-axis
represents the estimation bias in the discriminant score, i.e., the estimated score minus the true score.
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Figure 2: Comparison of six different classifiers under setting 1 (weaker correlation and smaller dispersion)
and setting 2 (weaker correlation and larger dispersion). The y-axis is mean misclassification rate based on
100 independent simulation runs. The x-axis is sample size, n = 10,30,60,100.
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Figure 3: Comparison of six different classifiers under setting 3 (stronger correlation and smaller dispersion)
and setting 4 (stronger correlation and larger dispersion). The y-axis is mean misclassification rate based on
100 independent simulation runs. The x-axis is sample size, n = 10,30,60,100.
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Figure 4: Comparison of three classifiers on two real data sets: cervical cancer data and HapMap data.
The y-axis is mean misclassification rate based on 100 runs. The x-axis is number of selected genes, p =
50,100,300,500
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Figure 5: Distribution of correlations between every pair of genes in the cervical cancer data. The Pearson’s
correlation coefficients are based on the log-transformed data. About 93.49% of the gene pairs show positive
correlation and only 6.51% of gene pairs show negative correlation.
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