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Abstract1

Over the last ten years, isogenic tagging (IT) has revolutionised the study of bacterial2

infection dynamics in laboratory animal models. However, quantitative analysis of IT3

data has been hindered by the piecemeal development of relevant statistical models. The4

most promising approach relies on stochastic Markovian models of bacterial population5

dynamics within and among organs. Here we present an efficient numerical method to fit6

such stochastic dynamic models to in vivo experimental IT data. A common approach to7

statistical inference with stochastic dynamic models relies on producing large numbers of8

simulations, but this remains a slow and inefficient method for all but simple problems.9

Instead, we derive and solve the systems of ordinary differential equations for the two10

lower-order moments of the stochastic variables (mean, variance and covariance). For11

any given model structure, and assuming linear dynamic rates, we demonstrate how the12

model parameters can be efficiently and accurately estimated by divergence minimisa-13

tion. We then apply our method to an experimental dataset and compare the estimates14

and goodness-of-fit to those obtained by maximum likelihood estimation. This flexible15

framework can easily be applied to a range of experimental systems. Its computational16

efficiency paves the way for model comparison and optimal experimental design.17
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List of symbols:18

• A: number of animals19

• T : number of tagged strains20

• n: number of organs21

• Ni: number of bacteria in organ i22

• mij : migration rate from organ i to organ j23

• ki: killing rate in organ i24

• ri: replication rate in organ i25

• τi: observation time i26

• A,B,C: matrices27

• λ: vector of transition rates28

• B: Number of bootstrap samples29

• θ∗: MDE parameter estimate30

Abbreviations:31

• ABC: approximate Bayesian computation32

• IT: isogenic tagging33

• LV: live vaccine34

• MARE: mean absolute relative error35

• MDE: minimum divergence estimate36

• MLE: maximum likelihood estimate37

• qPCR: quantitative polymerase chain reaction38

• WITS: wildtype isogenic tagged strain39
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1 Introduction40

The elucidation of basic kinetic rates governing bacterial growth during infection (such41

as division and death rates) has been recognised as an important challenge for over 6042

years [1]. Thanks to recent technological developments in microbiology, and pushed by43

growing concern over antimicrobial resistance, the last decade has witnessed rapid progress44

in the quantification of in vivo dynamics of bacterial infection in animal models. Two45

experimental approaches in particular have shown great promise across multiple pathogen46

species: isogenic tagging, the focus of this report, and fluorescence dilution, aterm encom-47

passing several techniques from which bacterial repication can be inferred [2]. Isogenic48

tagging (IT) consists in generating an arbitrary number of sub-clones of a given bacte-49

rial strain, each defined by a unique genetic tag (a predetermined nucleotide sequence)50

inserted in a non-coding region of the chromosome. When grown together in vitro or in51

vivo, every tagged strain behaves identically to the original strain. Their relative frequen-52

cies within a bacterial culture can be measured by quantitative qPCR or sequencing of53

the tagged region. Taken together with the absolute number of bacteria (e.g., by plating54

colonies), changes in the frequencies of the tags within the bacterial population can reveal55

underlying variations in the rates at which bacteria divide, die and disperse. For example,56

a constant number of bacteria accompanied by a loss of some of the tags in a closed popu-57

lation would indicate that a certain proportion of bacteria have died and been replaced by58

replication. Likewise, when monitoring tag frequencies in two or more anatomical com-59

partments within animals, a gradual homogenisation among organs can reveal the transfer60

of bacteria. While some studies have stopped at qualitative interpretations of such em-61

pirical patterns [3, 4, 5, 6], it is possible to quantify underlying processes with the help of62

mathematical models. Two different types have been used: stochastic population dynamic63

models to estimate bacterial division, death and migration rates [7, 8, 9, 10, 11, 12], and64

population genetic models to estimate bottleneck sizes [13, 14]. Our aim is to develop65

efficient inference methods to deal with the former type of models.66

Stochastic birth–death–migration models (a canonical class of Markovian processes [15])67

are a common choice to analyse IT experiments, and naturally lead to likelihood–based68

inference, using either maximum likelihood [9, 11] or Bayesian estimation [12]. In a given69

3

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 13, 2017. ; https://doi.org/10.1101/116319doi: bioRxiv preprint 

https://doi.org/10.1101/116319
http://creativecommons.org/licenses/by/4.0/


experiment, assuming that all of the A animals sampled at a given time and in given condi-70

tions are identical, and that all of the T tagged strains infecting each animal act indepen-71

dently of each other and are governed by identical rates, we can treat the A×T observed72

strain abundances as independent realisations of a stochastic birth–death–migration pro-73

cess, and calculate the likelihood of any model of interest accordingly. In most published74

IT studies, bacteria can grow at different rates in different locations within an animal,75

and migrate from one location to another, generating a network of subpopulations (or76

metapopulation). This increases the dimensions of both the state variable space (as the77

model must keep track of the multivariate distribution of bacterial abundance) and the pa-78

rameter space. Calculating the likelihood of such a model given an experimental dataset79

requires solving a complex stochastic model, which will rarely be possible analytically.80

Even a linear birth–death process with a non–Poisson immigration process (representing81

the transfer of a finite inoculum dose) is sufficient to prevent a fully analytical treat-82

ment, and results in a computationally intensive estimation process [12]. Alternatively,83

approximate–likelihood (e.g., iterative filtering [16]) or likelihood–free (e.g., approximate84

Bayesian computation or ABC [17]) methods involve the generation of a large number85

of stochastic simulations of the model of interest, which can be equally time–consuming,86

even when taking advantage of parallel computation. Although this may not be a problem87

when fitting a single model to a single dataset, it limits our ability to compare multiple88

models across complex datasets (typically involving multiple experimental treatments)89

and, beyond that, use these inference tools for the purpose of optimising experimental90

design [18]. Hence, there is a need for alternative inference methods using suitable ap-91

proximations to achieve greater gains in computational efficiency.92

The dynamics of multivariate Markovian processes can be approximated using moment–93

closure methods [19]. Mathematically, a system of differential equations for the mo-94

ments of the state variables can be derived analytically from the governing equation of95

any stochastic model [20]. By effectively ignoring the higher moments, a closed, small-96

dimension system can be derived, allowing fast numerical solution of the lower moments at97

any time point. Parameter estimation can then be achieved by fitting the first and second98

order moments of the model to the mean, variance and covariance of the corresponding99
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variables in the data. Apart from a few proof–of–principle studies using simulated chem-100

ical reaction data [21, 22, 23] that show great promise, application to statistical inference101

from biological data remain scarce. As a rare example, Buchholz et al. [24] implemented102

a moment–based method to solve a multiple T–cell differentiation pathway problem, fit-103

ting the moments of a large number of alternative stochastic models to experimental104

data using a χ2 statistic. This suggests that efficient moment–based inference methods105

should be made more readily available to unleash the full potential of stochastic models106

in experimental biology.107

Our objective is to provide a functional and flexible computational framework to esti-108

mate the parameters of stochastic metapopulation models for the within–host dynamics109

of infection, and demonstrate its application and value to analyse IT studies. The model110

tracks the probability distribution of the number of copies of a tagged strain of bacteria111

across a network of anatomical compartments within an animal. The goal is to estimate112

the bacterial division and death rates within each organ, and migration rates between113

each pair of compartments. First, we present an algorithm that evaluates the first two114

moments of the state variables for arbitrary network structures, and assess its accuracy115

and speed against a gold standard for stochastic models: the exact Gillespie algorithm.116

We then compare the accuracy of several inference options against simulated data, and fi-117

nally apply the most promising method to a recent dataset on the dynamics of Salmonella118

enterica serovar Typhimurium in the blood, liver and spleen of vaccinated mice [11]. The119

massive gain in speed compared to likelihood-based inference allows us to use parametric120

bootstrap to quantify parameter uncertainty and goodness-of-fit. We also demonstrate121

how empirically derived noise terms (e.g., caused by imprecise data collection) can be122

taken into account.123

2 Methodology124

2.1 Biological context125

We consider the general case of a bacterial pathogen inoculated into an animal host126

where it can potentially reach n anatomical compartments—which can be distinct organs,127
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tissues, lumens, or predefined sections thereof. All our examples are motivated by IT128

experiments in which a set of identical animals receive the same initial inoculum dose in129

one compartment (e.g., mouth, nose, blood, peritoneum, etc) at time t = 0. The inoculum130

is composed of an even mix of T tagged strains. At given times τ1, τ2 etc, a subset of A1,131

A2, etc animals are chosen at random and euthanised. The abundance of each tagged132

strain in each of the n anatomical compartments of interest is measured. Thus, at a given133

time τi, the data consist of a matrix Di with n rows by AiT columns, filled with observed134

bacterial numbers. From this matrix, we can calculate the observed moments, namely135

the mean and variance of strain abundance within each compartment, and the covariance136

between each pair of compartments.137

Depending on the experimental procedures, these observations are usually subject to138

some degree of uncertainty, due to observational error. In general we assume that this139

error is random with a mean of zero, so that there is no systematic bias; this should be140

assessed by the researchers who conducted the experiments. As a result, we assume that141

the observed means are unbiased, but the observed (co)variances may be incorrect. In142

Section 2.7, we describe how known sources of error can be accounted for as part of the143

data processing procedure. In addition, there usually is some uncertainty about the actual144

inoculum dose received by each animal. Variations in the abundance of each strain should145

be assessed experimentally by testing several inoculum doses: this provides estimates for146

the initial mean and variance of the number of bacteria present in the target compartment147

at t = 0.148

We emphasise a few key assumptions and caveats of the present study, which we149

review in further detail in the Discussion. First, the variable of interest from a modelling150

perspective is the abundance of a single tagged strain, rather than the total bacterial151

load per animal (as the latter can be deduced from the former). Indeed, our model152

framework assumes that, over the time period considered and for a given set of initial153

conditions, the rates of bacterial division, death and migration per capita are independent154

of the total bacterial load. Second, we assume that all the bacterial cells are governed155

by identical probabilities of division, death and migration. While this excludes the case156

of so–called persister cells (i.e., a subset of bacteria with a much lower division rate than157
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the rest) or similar discrete partition, it is worth noting that the stochastic model we158

describe below does generate continuous variations in the times of events, consistent with159

empirical distributions of bacterial replication in vivo [25].160

2.2 Stochastic model framework161

As a function of time t since inoculation, the vector of positive integer state variables162

N(t) = {N1(t), ..., Nn(t)} represents the simultaneous abundance of bacteria in com-163

partments 1 to n. In the context of IT studies, this represents a single tagged strain.164

Three types of stochastic events drive the bacterial dynamics: division (which adds one165

bacterium to a given compartment), death (which removes one bacterium from a given166

compartment) and migration (which moves one bacterium from one compartment to an-167

other). Assuming linear transition rates, we have a total of n division rates riNi and168

death rates kiNi within organ i, and n(n− 1) migration rates mi,jNi from compartment169

i to j. Note that specific models may assume that some of the parameters are equal to170

zero, for example if there is no physical connection between given pairs of compartments.171

In particular, we consider two geometries, illustrated in Figure 1, corresponding to two172

typical anatomical topologies of relevance to bacterial infection: a radial network with a173

central compartment (e.g., bloodstream supplying every organ), and a linear network174

(e.g., digestive track).175
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N2 N3

N1

· · · · · · Nn

±1 ±1 ±1

±1

(a) Radial network.

N1 N2 · · · · · · Nn

±1 ±1 ±1

(b) Linear network.

Figure 1: Diagram illustrating the two types of network structure we consider.

2.3 Computation of the first two moments176

The method we propose for parameter inference relies on the first two moments of the177

stochastic system. That is, we use only the expected number of bacteria within each178

compartment, the variance of the number of bacteria within each compartment, and179

the pair-wise covariances. A simple approach to generating these moments for a par-180

ticular stochastic system in terms of the model parameters, is given by [26]. Letting181

λ = {r1N1, ..., rnNn, k1N1, ..., knNn,m1,2N1, ...} be the vector of transition rates, we can182

write the hth non-central moment of the state of the ith compartment as:183

∂

∂t
E
[
Nh
i (t)

]
= E

∑
j

λj(t)
[
φj(Ni(t))

h −Ni(t)
h
] , (1)

where φj is a function describing the change of the state for the jth transition. In Supple-184

mentary Materials (S1.7), we show that this leads to a closed, linear system of differential185

equations for the first moments. Letting M1(t) = {E [Ni(t)] , 1 ≤ i ≤ n} be the vector of186

first moments as a function of time, we can express these differential equations in matrix187
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form as:188

∂

∂t
M1(t) = A×M1(t), (2)

which leads to the solution,189

M1(t) = exp(At)×M1(0), (3)

where M1(0) are the initial conditions of the system, A is a time-independent matrix190

containing the model parameters, and exp is the matrix exponential function.191

Next, let M2(t) = {E [Ni(t)Nj(t)] , 1 ≤ i ≤ n, 1 ≤ j ≤ n} be the vector of second192

moments. By applying Duhamel’s formula to the differential equations obtained from193

equation (1), we obtain the following expression for the second-order moments:194

M2(t) = exp(Ct)×M2(0) + exp(Ct)×
[∫ t

0
exp(−Cs)×B× exp(As)ds

]
M1(0), (4)

where B and C are time-independent matrices containing model parameters, and M1(0)195

and M2(0) are vectors containing the initial moments. Using the numerical method for196

matrix exponential in [27], we can evaluate the first two moments at any time point.197

Remarkably, no moment-closure approach is required as the expressions for the second-198

order moments are independent of higher-order moments. See Supplementary Information199

for a full derivation.200

2.4 Parameter Inference by Divergence Minimisation201

Given a dataset consisting of one or more matrices D of bacterial counts (as per section202

2.1), and a stochastic model (as per section 2.2), we now describe methods to estimate203

the parameter values of the model that minimise the divergence between the predicted204

and observed distributions of bacterial abundance, using only the lower moments of those205

distributions. Specifically, we evaluate the means, variances and covariances of the Ni206

variables at a given time t. From the corresponding matrix D, we calculate the vector207

of observed means µ(D) and the matrix of observed variance-covariance V(D); and from208

the model’s solution given a set of parameters θ, we compute the vector of predicted209

means µ(θ) and the matrix of predicted variances-covariances V(θ) which can be derived210

from M2(t). We compared four common divergence measures: a Chi-Squared metric, the211

Mahalanobis distance, the Hellinger distance, and the Kullback-Leibler divergence.212
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Note that none of the measures below is designed to deal with the particular situation213

when any of the organs is reported void of bacteria (i.e., Ni = 0) in all replicates at a given214

time point, i.e. if all the observed moments related to that organ are equal to zero. In215

some experimental systems, this may be an artefact of the observation method, e.g., when216

counting bacteria from a small sample: in this case, it is possible to “correct” the data for217

sampling biases (see Section 2.7). Otherwise, a simple solution would be to remove the218

moments relative to that organ from the inference procedure. In some cases, it may make219

sense to completely remove the empty organ from the model if no meaningful inference220

can be expected from its inclusion, as illustrated in Section 3.3.221

The Chi-Squared metric adds up the squared pairwise-differences between each pre-222

dicted moment and its corresponding observed moment, each term being scaled by the223

magnitude of the observed moment. As a result, all moments are effectively treated224

equally. The expression for this divergence is:225

∆χ =
∑
i

(µ
(θ)
i − µ

(D)
i )2

|µ(D)
i |

+
∑
i,j

(V
(θ)
i,j −V

(D)
i,j )2

V
(D)
i,j

(5)

The other three divergence expressions we tested make use of the fact that our chosen226

statistics µ and V are moments of distributions. Since we do not establish complete char-227

acterisations of the distributions, we decided to borrow the expressions of well-known di-228

vergences measures for multivariate normal distributions, as these only require the knowl-229

edge of their first and second-order moments. In other words, we compute the divergence230

between two multivariate normal distributions with respective moments (µ(D),V(D)) and231

(µ(θ),V(θ)).232

The Mahalanobis distance is measured between each point in the observed data, and233

the distribution described by the predicted moments. That is, by estimating the param-234

eters we are trying to find the distribution that these data are most likely to have been235

sampled from. Specifically, each observation Xj is given by column j of the data matrix236

D. The divergence is obtained by summing the distances to the predicted distribution237

from every observation:238

∆M =
∑
j

√
(Xj − µ(θ))T V(θ)−1(Xj − µ(θ)) (6)
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The squared Hellinger distance is given by:239

∆2
H = 1− exp

(
−1

8
µT V−1 µ− 1

2
log

|V|√
|V(θ)||V(D)|

)
, (7)

where µ = µ(θ) − µ(D) and V = V(θ)+V(D)

2 .240

The Kullback-Leibler divergence from the predicted distribution to the observed one241

is given by:242

∆K =
1

2

[
tr(V(D)−1

V(θ))− n+ µT V(D)−1
µ+ log

|V(D)|
|V(θ)|

]
, (8)

where tr(·) is the trace operator. The derivations of the Hellinger and Kullback-Leibler243

divergences are given in Supplementary Materials S1.2.244

Even though these expressions may not provide correct estimates of the actual “Ma-245

halanobis distance”, “Hellinger distance” and “Kullback-Leibler divergence” between the246

data and the predicted distributions (as these are not normally distributed), they still pro-247

vide adequate divergence measures: they all return positive values which are only equal248

to zero (hence are minimised) when µ(θ) = µ(D) and V(θ) = V(D), which occurs when the249

data are drawn from the predicted distribution. We used that property for the purpose250

of parameter inference, given a dataset and a model. The set of parameter values θ that251

minimises the divergence measure is termed the “minimum divergence estimate” (MDE).252

All code was written in R [28]. We used the UObyQA optimisation routine in the powell253

package [29].254

2.5 Bootstrap Variance Estimate255

In order to quantify the uncertainty in our parameter estimates conditional on the dynamic256

model considered, we utilise the parametric bootstrap method (e.g., [30]), which can257

be exploited simply here due to the computational efficiency of the inference approach.258

Having obtained an MDE, θ∗ for a given data matrix D and a given model, we simulate259

B data sets from the model at these parameters (i.e., xb ∼ f(x | θ∗), b = 1, . . . , B). For260

each simulation, we estimate the corresponding parameters using the MDE technique (θb,261

b = 1, . . . , B). These B estimated parameters are used to estimate the variance-covariance262

matrix of the parameter estimates. Subsequently, one can use this matrix to estimate263
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confidence intervals in a number of ways [31]. For simplicity, the analysis in Section 3.3264

uses the ellipse package in R [32] to obtain approximate 95% confidence intervals of265

the model parameters (that is, assuming the bootstrapped parameter estimates follow a266

multivariate normal distribution).267

2.6 Model Goodness-of-fit268

In order to assess the model goodness-of-fit, we once again utilise the parametric boot-269

strap. Concurrent to calculating the uncertainty estimates using the MDE method, the270

divergences corresponding to each simulated data set at their estimated parameter val-271

ues are recorded. These bootstrapped divergences can thus be used to represent the null272

distribution of divergences for the model at the estimated parameter values – giving a273

representation of the divergences we should expect from the model at these values. The274

divergence estimated for the observed data is then compared to the null distribution to275

obtain a p-value for the hypothesis that the data could have been generated by the model.276

2.7 Data analysis with observational noise277

A common source of error when fitting a model to experimental data is the observation278

process. In the type of microbiology experiments considered here, where the data represent279

bacterial loads in infected animals, there are at least two steps that affect the accuracy280

of the measurements: sampling (when only part of the bacterial loads are recovered) and281

and quantitation (the process by which the number of bacterial cells in the samples is282

measured). For example, in a recent IT experiment [11], sampling error was modelled283

as a binomial process (as known fractions of each homogenised organ were plated) and284

quantitation error was modelled using a log-normal distribution which was estimated285

empirically using an independent control experiment (in which known numbers of bacterial286

colonies were processed by qPCR in the same way as bacterial samples extracted from287

animals in the main experiment). Although both error distributions were centred on the288

true bacterial numbers (i.e. the mean numbers of bacteria were not biased), the variance289

and covariance in the reported data would not have been accurate estimates of the variance290

and covariance within the animals: hence our MDE could be biased if we did not account291
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for observational errors.292

In our present reanalysis of those data, we integrate both error terms before perform-293

ing parameter inference, using the following procedure. Our goal is to propose a simple294

heuristic which could be applied to any experimental dataset with known (or assumed)295

observational error distributions. First, we generate a large number of stochastic simula-296

tions of the model under a biologically reasonable range of parameter values (i.e. using297

uniform prior distributions across sensible ranges) to generate “perfect” observations. We298

then calculate the corresponding “perfect moments” from every simulated dataset. Next,299

we apply the observation noise to the simulated data, and calculate the corresponding300

“observed moments”. We then use linear regression models to establish a relationship301

between each of the perfect and observed moments (with transformations where appro-302

priate), with weights given by the simulations proximity to the actual observed moments303

from the experiment. This calibrated regression model is then applied to the moments304

of the experimental data of interest, in order to estimate the moments of the true, unob-305

served bacterial loads in the animals. We eventually compute MDE using these corrected306

moments.307

We note that for some models of the observation process, it may be possible to establish308

analytic relationships between the “perfect” and “observed” moments using conditional309

expectation and variance theory (e.g., [33]). The choice of suitable correction methods310

for a given system will depend on both the model complexity and the level of empirical311

quantification of observation noise.312

3 Results313

We begin by demonstrating the speed and accuracy of the computation of the first two mo-314

ments for arbitrary network structures, compared to Gillespie simulations. We then assess315

the four previously mentioned divergence measures to validate our minimum divergence316

estimation procedure with each model, across a range of parameter values. Finally, we317

apply our inference method to reanalyse a published experimental dataset, and compare318

the results with the previous maximum likelihood estimates.319
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Figure 2: Illustrations of three representative model structures.

3.1 Moment computation320

As a proof-of-concept, we compare our proposed computation method of the means, vari-321

ances and covariances of bacterial loads, with the values derived from large numbers of322

Gillespie simulations, across a range of model structures and parameter values. Our re-323

sults illustrate the computational effort required to obtain the same level of accuracy with324

each method. For each model and each parameter set, we simulated 100 experiments, each325

consisting of 10, 50, 100, 250, 500, or 1000 observations (representing the product of the326

number of animals A by the number of tagged strains T as per section 2.1) at a given327

time, without observational error. The initial bacterial loads at t = 0 in each replicate ex-328

periment were drawn at random from a Poisson distribution, to mimic typical variability329

in inoculum doses in experiments [11]. We considered three model structures, illustrated330

in Fig. 2: (a) basic migration-birth-death model, (b) four-compartment radial network,331

and (c) four-compartment linear network. For each virtual experiment, we calculated the332
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first- and second-order moments of the bacterial loads in two ways at a given time point333

(t = 6 for the basic migration-birth-death model, and t = 4 for the four-compartment334

radial and linear network).335

We randomly draw the stated number of initial conditions (ranging from 10 to 1000),336

and evaluate the moments at the future time point in the following two ways. First, we use337

Gillespie simulations to progress each initial condition forward to the stated observation338

time, and then calculate the moments from the collection of simulations. Second, we take339

the stated number of initial conditions to estimate the moments at time zero, and use340

these to evaluate the moments at the observation time using equations (3) and (4); we341

refer to this as the direct moment-calculation method.342

Figure 3 shows that there is still a greater amount of variation in the moments from343

1000 Gillespie simulations, compared to the direct approach. The direct method pro-344

duces less variable moment estimates as experiment size increases, as a result of more345

accurate estimates of the initial distribution of bacteria. Furthermore, the computation346

time of the Gillespie approach increases steadily with the number of simulations, while347

the direct method is consistently more efficient, independent of the size of the experiment348

(Figure 4). Similar patterns are shown in the Supplementary Materials (S1.3) for the349

four-compartment linear and and radial network models.350
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Figure 3: Box plots of estimated moments from 100 simulated experiments using the two-

compartment birth-death-migration model (Figure 2a). For each experiment (of size 10, 50, 100,

250, 500 or 1000), the lower moments of variables N1 and N2 at time t = 6 were calculated from

Gillespie simulations (red boxes) or from the moments equations (”direct method”, blue boxes),

starting from Poisson-distributed initial conditions. The stated number of simulations per experi-

ments is equivalent to the total number of replicate observation (AiT at time point τi as per section

2.1).
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Figure 4: Box plots of computation time to evaluate the moments from 100 simulated experiments

of the two-compartment birth-death-migration model, as per Figure 3. The vertical axis shows the

logarithm in base 10 of running times in seconds.

3.2 Divergence Measures: Simulation Study351

Next, we compared the accuracy of MDE among the four candidate divergence measures,352

using data simulated from the same three model structures as in the previous section353

and across a range of parameter values. For each model structure and each parameter354

combination, we ran 100 series of 100 Gillespie simulations from t = 0 to each of 8 obser-355

vation times, representing 800 experiments (each of size 100) with “perfect” observations356

of the system (i.e., without experimental noise). This process was repeated for a range of357

different parameter values for each model to represent different scenarios – three represen-358

tative values for each parameter in the basic model (33 = 27 scenarios), and five randomly359

generated sets of parameters for the four compartment linear and radial networks with360

parameters. The initial conditions for each simulation, in every scenario, were randomly361
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generated from a Poisson distribution with mean parameter 200. The optimisation rou-362

tine was initiated at randomly generated conditions each time, with each parameter values363

drawn independently from a Uniform(0,1) distribution.364

From the results of each simulated experiment, we computed the MDE using each of the365

Chi-Squared, Mahalanobis, Hellinger, and Kullback-Leibler divergences. The performance366

of each divergence is measured by the mean absolute relative error (MARE). That is, under367

scenario s, with p target parameters θs = (θ1s, θ2s, . . . , θps), and estimated parameters368

θ̂sj = (θ̂1sj , θ̂2sj , . . . , θ̂psj) for the jth simulation, the MARE is given by:369

MAREs,j =
1

p

p∑
i=1

|θis − θ̂isj |
θis

Figure 5 displays the average error across each scenario for the four divergence mea-370

sures, at a range of observation times, for each of the three models under consideration.371

We can see that both the Hellinger and Kullback-Leibler divergence measures perform372

considerably better than the Chi-Squared and Mahalanobis divergences for the Basic,373

Linear and Radial networks. The similar performance of the Hellinger and Kullback-374

Leibler divergences is not unexpected, due to their relationship. We observe a marginal375

advantage in favour of the Kullback-Leibler divergence for the basic and radial network,376

and thus we use the Kullback-Leibler divergence in analysing experimental data in Sec-377

tion 3.3. The results aggregated by scenario for each model are shown in Supplementary378

Materials S1.4.379
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Figure 5: The average mean absolute relative error (MARE) across a number of observation

times, for the two-compartment network (top panel), the linear four-compartment network (middle

panel) and the radial four-compartment network (bottom panel). Each point is the average for that

measure, at that observation time, with error bars representing the standard error.

Figure 9 further illustrates the distribution of parameter estimates for a few selected380

scenarios and time points. For each time point, the variation is generated by the stochas-381

tic birth-death-migration process, demonstrating the level of uncertainty in parameter382

estimates due to the biological process itself. In this case, each simulated experiment was383

made up of 100 simulations; fewer replicates would increase the parameter uncertainty.384

At each time point, the estimates of the migration rate m12 are much less variable than385

hose of the killing rate k2 and replication rate r2: this is actually caused by a very strong386

positive correlation between the latter two parameters (Figure 7). This can be understood387

intuitively, as the net growth rate r2 − k2 is the main determinant of the mean bacterial388

load in compartment 2. We also remark that the earlier observation time contains more389
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information about the clearance rate, whereas the later observation time better captures390

the replication and killing rates. Results of all scenarios are shown in Supplementary391

Materials S1.6.392
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Figure 6: Box plots of MDE’s corresponding to simulated data for two different choices of parameter

values (Scenario 4 and 12), at a number of different observation times (1, 4 and 8) of the simple

model. The box plots represent 100 parameter estimates corresponding to the 100 simulations, and

the red crosses denote the true parameter value.
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Figure 7: Bivariate plot of MDE’s corresponding to simulated data for two different choices of

parameter values (Scenario 4 and 12), at a number of different observation times (1, 4 and 8) of

the simple model. The points represent 100 parameter estimates of r2 and k2 corresponding to the

100 simulations, and the red crosses denote the true parameter value.
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Figure 8: Box plots of MDE’s corresponding to simulated data for a random set of parameter

values (Scenario 4), at a number of different observation times (1, 4 and 8) of the linear model.

The box plots represent 100 parameter estimates corresponding to the 100 simulations, and the red

crosses denote the true parameter value.
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Figure 9: Box plots of MDE’s corresponding to simulated data for a random set of parameter

values (Scenario 4), at a number of different observation times (1, 4 and 8) of the radial model.

The box plots represent 100 parameter estimates corresponding to the 100 simulations, and the red

crosses denote the true parameter value.

3.3 Analysis of experimental data393

3.3.1 Description of the system394

Finally, we perform a re-analysis of experimental data from [11], in which groups of

mice received an intravenous dose of Salmonella enterica Typhimurium, composed of an

even mixture of 8 wildtype isogenic tagged strains (WITS). Bacterial loads and WITS

composition were measured in the blood, liver and spleen of 10 mice at each observation

time. During the first phase of the WITS experiments (represented by the first two

time points at 0.5 and 6 hours post inoculation), the only biologically relevant processes

considered are: migration of bacteria from blood to liver or spleen, replication and death
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inside the liver and the spleen. That is, on state space S = {(nB, nL, nS) | nB, nL, nS ≥ 0},

we have the following transition rates:

q(nB ,nL,nS),(nB−1,nL+1,nS) = cLnL,

q(nB ,nL,nS),(nB ,nL+1,nS) = rLnL,

q(nB ,nL,nS),(nB ,nL−1,nS) = kLnL,

q(nB ,nL,nS),(nB−1,nL,nS+1) = cSnS ,

q(nB ,nL,nS),(nB ,nL,nS+1) = rSnS ,

q(nB ,nL,nS),(nB ,nL,nS−1) = kSnS ,

where cL, cS are the clearance (=migration) rates from the blood into the liver and spleen395

respectively, rL, rS are the replication rates in the liver and spleen respectively, and kL, kS396

are the killing rates in the liver and spleen, respectively.397

One purpose of the study in [11] was to assess the efficacy of different vaccine strategies398

with regards to clearing infection. Here, we re-analyse two of the experimental groups: an399

untreated group (naive) who received no vaccine, and a group who received a live-vaccine400

(LV). In the vaccinated group, no data were observed in the blood at either of the two401

observation times, meaning we are unable to estimate the clearance rates and thus take402

an alternative approach to the initial conditions of the model. In the naive group, we403

estimate the effective inoculum size consistent with the observed data to estimate the loss404

of inoculum (that is, we estimate i0 = NB(0)), as well as the clearance, replication and405

killing rates. However, in the LV-group, as no bacteria are observed in the blood at the406

earliest time point, we assume that the inoculum is located directly in the liver or spleen407

at time zero (i.e., iL = NL(0) and iS = NS(0)). Hence, we estimate the effective inoculum408

in these two organs individually (rather than the clearance rate from the blood), as well409

as estimating the replication and killing rates. In each case, the inoculum size is assumed410

to be Poisson distributed.411

3.3.2 Parameter estimation with observation noise412

We use the MDE tool to estimate the parameters corresponding to these systems, and413

compare the results to the estimates obtained via the MLE approach, presented in [11].414

Having obtained the MDE parameter estimates, we use the bootstrap approach to calcu-415

late uncertainty intervals on the estimates, and assess the model goodness-of-fit.416

Furthermore, the observed moments of this system are subject to observation noise.417

In particular, only a fraction of some organs were sampled (e.g., as we are not able to418
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fully recover the total amount of blood from an individual mouse), and there is noise419

introduced via the qPCR. The observed moments were adjusted using the simulation-420

based, pre-processing procedure described in Section 2.7, where it is assumed that the421

form of the sampling is binomial, and the qPCR noise has been previously modelled us-422

ing a log-Normal distribution [11]. For example, for the näıve group, we sampled 10,000423

parameters (cL, cS , kL, kS , rL, rS) each independently from U [0, 3], and initial inoculums424

i0 ∼ Poisson(30.33) (the mean WITS population calculated from plating experiments425

[11]). “Perfect moments” were calculated from simulations of the same size as the ex-426

perimental data. The corresponding observed moments were then calculated by applying427

the observation noise model – binomial sampling to represent the fractional sampling of428

organs within each mouse, and log-Normal noise to represent the qPCR noise – to each429

simulation, and calculating the moments. The variances were logged for the purposes of430

the regression models to predict the corresponding perfect moments from those observed431

from the experiment.432

Figure 10 provides a comparison of the MLE and MDE estimation procedures for the433

naive and LV experimental groups. The box plots represent the bootstrapped parameter434

estimates, with the MDE parameter estimate (blue dots), and MLE parameter estimates435

(red crosses). As explained in the previous section, the strong positive correlation between436

the replication and killing rates within each organ is shown on Figure 11.437

3.3.3 Model Goodness-of-fit438

In calculating the MDE parameter estimates for the bootstrap samples, we evaluate diver-439

gence measures for data that is known to be created by the model. Thus, the collection of440

these divergences provide a suitable representation of the null distribution of divergences441

under this model. We can simply compare the divergence for our observed data set to442

this null distribution in order to assess the model goodness-of-fit. Figure 12 demonstrates443

the goodness-of-fit measure for the models fit to the two experimental groups.444

The approximate p-values associated with the goodness-of-fit tests for the naive and445

LV experimental groups are 0.002 and 0.882, respectively. This suggests that the model446

provides a suitable fit to the vaccinated experimental group, however, there is a non-447
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Figure 10: Left: Diagram of each model illustrating the relevant compartments, initial conditions,

and rates of interest. Right: MDE parameter estimate (blue dot), MLE parameter estimate (red

cross), and box plots of the bootstrapped parameter estimates.
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Figure 11: Bivariate distributions of replication and killing rates in liver and spleen, for both

naive and live-vaccinated groups. Blue circles are the MDE values, with the blue (solid) ellipses

representing the 95% confidence ellipses calculated using the 1000 bootstrap samples (grey points).

The red crosses are the MLE values, with red (dashed) ellipse calculated using the hessian evaluated

at the MLE.
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Figure 12: Figures demonstrating the goodness-of-fit of the two models to the respective data sets.

The histogram bars are the bootstrapped estimate of the null distribution of divergences under the

model at the estimated parameter values for the respective model. The (blue) vertical dashed-line

is the divergence corresponding to the observed data set.
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Figure 13: Observed experimental data for both naive and vaccinated groups, at both observation

times, compared to simulations from the model at parameters estimated by both the MLE and MDE

methods, in each of the blood (B), liver (L) and spleen (S).

negligible discrepancy between the model output for the naive group fit, and the observed448

data. This suggests that some of the assumptions in the original dynamic model may be449

erroneous; however, revisiting them goes beyond the scope of the present study.450

As a further demonstration of the model goodness-of-fit, we compare the model output451

at each of the estimated parameter sets, to the observed data. Figure 13 shows these452

simulations from each of the MDE and MLE approaches, at each of the 0.5 and 6 hour453

observation times, for both the naive and vaccinated experimental groups. Observational454

noise consistent with that in the experimental data was added to the simulated data455

(i.e., binomial sampling of observed counts, and log-normal noise consistent with qPCR).456

The plots indicate that the main source of discrepancy between data and model in the457

naive-mice group is the distribution of bacterial loads in the blood after 6 hours.458
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4 Discussion459

We have described a functional and flexible moments-based method to estimate parame-460

ters of stochastic metapopulation models, and applied it to experimental data on within-461

host bacterial infection dynamics. Compared to simulation-based methods, our technique462

delivers accurate estimation orders of magnitude faster. Although simulation-based infer-463

ence has grown in popularity in computational biology—either within likelihood-free [17]464

or approximate-likelihood [16] approaches— even with the increasing availability of fast,465

multi-core computers, algorithms can still take days to converge in multi-parameter and466

multi-variable problems. While this is not a major issue when fitting a single model to a467

single dataset, it is a hindrance for more ambitious applications: indeed there is a grow-468

ing demand in biology for model selection and model-based optimal experimental design,469

which are much more computationally intensive tasks (e.g., [34, 35, 36, 37]).470

In its current form, our method can incorporate any linear, multivariate, continuous-471

time Markovian model, and fit it to experimental data that include multiple replicates472

and an arbitrary number of independent time points. These last two characteristics are473

typical of experimental biology, yet little attention has been given to systems of this form474

in recent statistical developments. Indeed, many inference methods for stochastic models475

(for example, driven by applications to epidemiology), target inference from a single time-476

series [38, 16].477

In addition, we have provided a worked example for how to correct for observation478

noise, applicable to any given experimental system. While sampling error is typically479

taken into account in likelihood-based inference, many inference studies either ignore480

experimental noise (e.g. [24]) or choose arbitrary distributions (e.g. [39]). Even if ex-481

perimental error has limited impact on the mean of the observations, it will affect the482

variance, with implications for the precision and reliability of statistical inference. The483

method we demonstrated here is based on pre-processing experimental data to effect an484

empirical correction of the observation noise. Crucially, it is not limited by mathematical485

tractability when combining multiple error sources, and it does not slow down the infer-486

ence computation (i.e., it only needs to be performed once before fitting the model, and487

the same simulations are also used to adjust the moments of the noisy-simulated data).488
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The choice of a metric to minimise for likelihood-free inference is a common issue489

in computational statistics, especially in the context of increasingly popular ABC meth-490

ods [40]. When the data and the model output are summarised by multiple statistics,491

the default option is to use either euclidian distance or a chi-squared type variant. The492

latter was chosen, for example, in a recent study using moment-based inference to solve a493

systems-biology problem [24]. However, because the summary statistics of interest are the494

moments of statistical distributions, we hypothesised it would be more informative to use a495

divergence metric instead. While many divergence measures exist for the purpose of com-496

paring mathematically defined distributions [41], we are not aware of standard methods to497

compute divergence between multivariate distributions generated by complex stochastic498

processes. Instead, we took a pragmatic approach and used mathematical expressions for499

the Hellinger distance or the Kullback-Liebler divergence between multivariate normal500

distributions, because these expressions depend on the first two moments of the distribu-501

tions only. Even though the resulting divergence measures are not the actual Hellinger502

distance or Kullback-Liebler divergence between our observed and predicted distributions,503

they still outperform the chi-squared metric based on parameter inference accuracy. It504

is worth noting that, across the three model structures we tested, there was not a single505

metric that was consistently better than any other, and the differences in accuracy were506

often relatively small (Fig. 5). Depending on the degree of accuracy sought, it may be507

worth testing these and other metrics against simulations before applying this method to508

a different experimental system. It is our intention to provide a flexible blueprint that can509

be tailored to other problems, rather than a one-size-fits-all black box which may prove510

unreliable as soon as the circumstances change.511

The particular molecular technology (isogenic tagging) that motivated the develop-512

ment of this inference method, has become pervasive in the study of within-host dynamics513

of bacterial infection in the last 10 years (see reviews by [42, 2, 43]). Yet, to our knowl-514

edge, this is the first attempt to provide a general modelling and inference framework that515

could be applied to most of these experimental systems. Indeed, previous efforts have been516

tailored to specific case studies [43, 7, 9, 13, 44, 8] despite asking fundamentally similar517

questions: how fast are bacteria replicating and dying? How much migration is taking518
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place among organs or tissues? As soon as any two of these dynamic processes are co-519

occurring, it is not possible to evaluate them based solely on average bacterial loads: it is520

necessary to obtain reliable estimates of the variance, preferably within a single animal,521

by quantifying a set of independent and isogenic tags. The first known example goes back522

60 years, using two naturally occurring mutants of S. enterica that could be distinguished523

by selective growth medium to investigate colonisation dynamics in mice. Although a524

wide range of bacterial tagging methods (including antibiotic markers and fluorophores)525

have been used since, non-coding DNA barcodes have opened new prospects as arbitrarily526

large numbers of truly isogenic tags can be generated and quantified by sequencing [14].527

It is our hope that the inference framework presented here will contribute to the field’s ex-528

tension by providing much needed analytical support to analyse and design microbiology529

experiments.530
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