


















9 
 

	
Figure 5. Spatial distribution of traction in wounded fibroblast monolayers varies with substrate elasticity. (a,d) Map of 
traction distribution in wounded fibroblast monolayers on PA gels. Quivers indicate direction of traction. (b,e) Traction 
magnitude profile as a function of distance from the wound edge. The origin of the y-coordinate is approximately located at 
the wound edge. Non-vanishing traction below y = 0 results from limited spatial traction resolution, noise, and the wavy shape 
of the edge. Gray points: original data, lines: average over different experiments, dashed lines: standard deviation of data. At 
least five experiments are repeated for each condition. (c,f) Relative density profile of Ca2+ oscillations. Note that the 
distributions of traction magnitude and calcium oscillations co-localize on both substrate rigidities. 
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monolayer cells. Wound-induced oscillations are much more persistent than the previously reported 
oscillations following chemical stimulation by ATP (49). Measurable oscillations can last for > 2 hours after 
wounding, which is comparable to the time it takes to start cellular reorientation and migration. We conclude 
that similar timescales of calcium excitation and cell organization could in principle allow a causal 
connection between calcium dynamics and mechanical reorganization following wound creation. 

We next vary the density of cells in the monolayer to see if calcium oscillations are affected by 
cellular crosstalk. Increase of cell density leads to higher oscillation frequency and a higher number of 
oscillating cells. This finding suggests that wound-induced calcium oscillations, similar to agonist-induced 
oscillations, are a collective effect where the calcium signal is propagated via gap junctions from cell to cell 
(61, 66). Gap junctions in 3T3 cells were identified as crucial in preserving the spatial pattern of Ca2+ 
communication during the initial stages of collective chemosensing (59), and its inhibition by palmitoleic 
acid changes the dynamics of the Ca2+ oscillations (49). The importance of short-range gap junction 
communication in regulating collective Ca2+ dynamics is also supported by nearest neighbor cross-correlation 
analysis of the Ca2+ responses in our wounded 3T3 systems, where synchronization events are observed as 
indicated by the positive correlation peak at zero time delay (figure S10 in the supplementary material). At 
regions of 3T3 cell-cell contacts, cadherins are present and are colocalized with connexin43 (Cx43α1) gap 
junction protein, where knockdown of either protein results in reduced gap junctional communication and 
inhibition of cell motility (67). The formation of gap junction, adherens junction, and the association 
between the two depend on the intracellular coassembly of connexin and cadherin, thus confirming the 
relevance of investigating Ca2+ communication through gap junctions and force transmission through cell-
cell junctions in our system of wounded fibroblast monolayer. 

	

Our current and previous studies suggest that dynamic coupling of cells through gap junction is 
the dominant mode of Ca2+ communication following wounding and ATP excitation in 3T3 cell monolayers 
(49,59). It is also known that gap junctions can close upon elevated intracellular Ca2+ level (68). Despite 
this evidence for the role of gap junctions, the observed oscillations can also occur without this short-ranged 
type of interactions, as seen in 3T3 cells embedded in gels (49), suggesting the presence of diffusive paracrine 
signaling in this system. The coupling between gap junction dynamics, paracrine signaling, wound-induced 
Ca2+ release, and Ca2+-induced Ca2+ release can allow the oscillations to synchronize, therefore also 
contributing to the large variability in the oscillation period.  

Regarding Ca2+ oscillations in 3T3 fibroblast cells, involvements of Ca2+ stores and second messenger 
IP3 has previously been investigated quite extensively. In single cells, inhibition of sarcoplasmic-endoplasmic 
Ca2+-ATPase (SERCA) using thapsigargin results in the depletion of Ca2+ from Ca2+ storage, triggering 
Ca2+ influx (69-73). Mechanically, an intact cytoskeleton is required for agonist-induced Ca2+ signaling, not 
through lower capacitative calcium entry, impaired IP3 receptor function, or diminished phospholipase C 
(PLC) activity, but through alteration of spatial relationship between PLC and IP3 receptors (74). The 
severe rearrangement of endoplasmic reticulum (ER) membranes, the site for PLC generation of IP3, also 
confirmed that such spatial change could impair PLC-dependent calcium signaling. 

Earlier studies demonstrate that the tensile state of intracellular actin controls Ca2+ activities in 
various cell types (75-77). Moreover, opening of mechanosensitive Ca2+ channels, which allows entry of 
extracellular Ca2+, are regulated by stress fiber formation and contraction (18, 78). To test if our wound-
induced calcium oscillations also depend on cytoskeletal tension, we partially inhibit cell contractility using 
blebbistatin. After disruption of contractility, fewer cells show calcium oscillations. This finding directly 
confirms the coupling between actomyosin activity and calcium response in wounded fibroblast monolayers.  

Cytoskeletal tension of adherent cells is directly transmitted to the extracellular substrate via 
integrin-based adhesions. Since tension affects calcium oscillations, we examine how the extracellular matrix 
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rigidity affects oscillations. To this end, cell monolayers are grown on substrates with different elastic 
modulus. We find that an increased rigidity of the substrate leads to an increase of the number of oscillating 
cells. However, the oscillation frequency varies non-monotonically with substrate rigidity. This observation 
suggests that mechanonsensitivity of fibroblast calcium oscillations is more systematically encoded in 
excitability than in the oscillation frequency. Consequently, we next focus on the spatial distribution of the 
number of calcium oscillations to determine if cells react locally to the creation of a wound edge. We find 
that generally, cells throughout the observed region in the monolayer may show calcium oscillations after 
wound edge creation. However, with decreasing substrate rigidity, the mode of the spatial oscillation 
distribution moves closer to the monolayer edge. For soft substrates with E < ~2 kPa, we observe a 
pronounced localization of the number of Ca2+ oscillations within a region on the order of 100 μm around 
the edge. Thus, calcium oscillations co-localize with the wound edge on soft substrates. 

To establish a possible link between mechanosensitivity of calcium oscillations and edge-localization 
on soft substrates, we next investigate the cell-substrate traction of our fibroblast monolayers. For epithelial 
cell monolayers on a soft substrate (E = 1.3 kPa), it has been reported that the traction normal to the edge 
is highest near the edge and decays to a non-zero average value away from the edge (20, 79). Although 
epithelial cell sheets undergo efficient durotaxis (80), their collective response to substrate stiffness has been 
reported to be less pronounced than for individual cells (20). In contrast, endothelial cell sheets (HUVEC) 
respond to a higher substrate rigidity by producing higher traction (81). Likewise, we find for fibroblast 
monolayers an increased traction magnitude with higher substrate rigidity. However, we find that substrate 
rigidity not only affects traction magnitude, but also traction distribution for our system. For substrates 
with E < ~2 kPa, we observe a strong localization of absolute traction magnitude to the newly created edge 
of the cell monolayer. On more rigid substrates, traction magnitude is statistically uniform in the monolayer.  

The rigidity-dependent edge localization of traction could be plausibly explained by a change of the 
force balance among cadherin-based intercellular connection and integrin-based cell-matrix connections. On 
soft substrates, we assume that the forces are preferentially transmitted via cell-cell adhesions, which leads 
to a traction build-up at the monolayer edge where no neighboring cells are present. On stiff substrates, the 
fraction of force transmitted by cells directly to the substrate is larger, leading to less force at the monolayer 
edge. This interpretation of our data is consistent with the observation that individual fibroblasts require a 
substrate rigidity above around E ~ 8-9 kPa to form pronounced adhesion sites and actin stress fibers, while 
cells in dense collections can maintain the same morphology on soft and stiff substrates (53). 

In this study on calcium dynamics, we find that upon the creation of a wound, cell-substrate traction 
and calcium oscillations both localize close to the wound if the substrate is soft, E < 2 kPa. Our results 
suggest that the higher number of calcium spikes at the edge results from a local buildup of traction which 
in turn is determined by the balance of cell-substrate and cell-cell forces in the monolayer. It has previously 
been shown that spontaneous calcium oscillations are mainly transmitted via gap junctions among 
fibroblasts, while inhibition of OB-cadherins and N-cadherins does not affect oscillation periods significantly 
(78). Based on our own results and these earlier studies, we believe that intercellular mechanical stress does 
not affect calcium oscillations in a direct way, but likely affects the overall excitability of the cell through 
an interplay with substrate forces. Gap-junctional connections, in contrast, likely directly excite oscillations 
(59).  

Further studies are needed to separate the effects of cell-substrate forces, intercellular forces, and 
intercellular signaling, which are all necessary for Ca2+ oscillations in fibroblasts. In future research, careful 
titration of pharmacological inhibitors will hopefully produce a more detailed picture of the mechanisms 
underlying calcium oscillations after wounding that was reported here. The observed spatial correlation 
between calcium oscillations and traction in our study suggests a causal link between both, leading us to 
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speculate that the described mechanism of collective edge localization by calcium oscillations may play an 
unknown physiological role.          
     
CONCLUSIONS 
 

We have demonstrated that calcium oscillations are modulated by forces associated with wound 
creation in fibroblast cell monolayers. Our observations lead us to conclude that collective calcium oscillatory 
behavior can allow localization of wound edges in a substrate-dependent fashion. The study highlights a 
potential significance of wound-induced calcium dynamics in diverse microenvironments. 
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