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Abstract 

The introduction of high-speed CMOS detectors is fast marching the field of transmission electron 

microscopy into an intersection with the computer science field of big data.  Automated data 

pipelines to control the instrument and the initial processing steps are imposing more and more 

onerous requirements on data transfer and archiving. We present a proposal for expansion of the 

venerable MRC file format to combine integer decimation and lossless compression to reduce 

storage requirements and improve file read/write times by >1000 % compared to uncompressed 
floating-point data.  The integer decimation of data necessitates application of the gain 

normalization and outlier pixel removal at the data destination, rather than the source. With direct 

electron detectors, the normalization step is typically provided by the vendor and is not open-

source. We provide robustly tested normalization algorithms that perform at-least as well as 

vendor software. We show that the generation of hot pixels is a highly dynamic process in direct 

electron detectors, and that outlier pixels must be detected on a stack-by-stack basis. In 

comparison, the low-frequency bias features of the detectors induced by the electronics on-top of 

the active layer, are extremely stable with time. Therefore we introduce a stochastic-based 

approach to identify outlier pixels and smoothly filter them, such that the degree of correlated noise 

in micrograph stacks is reduced. Both a priori and a posteriori gain normalization approaches that 

are compatible with pipeline image processing are discussed. The a priori approach adds a gamma-

correction to the gain reference, and the a posteriori approach normalized by a moving average of 

time-adjacent stacks, with the current stack being knocked-out, known as the KOMA (knock-out 

moving average) filter. The combination of outlier filter and KOMA normalization over ~25 frames 

can reduce the correlated noise in movies to nearly zero. Sample libraries and a command-line 

utility are hosted at github.com/em-MRCZ and released under the BSD license. 
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Abbreviations 

uint8 – unsigned 8-bit integer computer data, range 0-255 

float32 – floating-point 32-bit computer data, ~6 significant figures 

Blosc – blocked, shuffle, compress library 

CDF – cumulative density function 

CMOS – complementary metal-oxide semiconductor 

PDF – probability density function 

GB – Gigabyte 

Gb – Gigabit 

MB – Megabyte  

KOMA – knock-out moving average 
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1 Introduction 
The introduction of CMOS-based direct electron detectors for transmission electron microscopy 

greatly improved the duty cycle to nearly 100 % compared to traditional slow-scan CCD detectors. 

The high duty-cycle allows for nearly continuous read-out, such that dose fractionation has become 

ubiquitous as a means to record many-frame micrograph stacks in-place of traditional 2D images.  

The addition of a time-dimension, plus the large pixel counts of CMOS detectors, greatly increases 

both archival and data transfer requirements and associated costs to a laboratory.  Many 

laboratories have a 1 Gbit/s Ethernet connection from their microscope to their computing center, 

which implies a data transfer rate of around 60-90 MB/s under typical conditions.  If the 
microscope is run with automated data collection, such as SerialEM (Mastronade, 2005), then the 

so-called ‘movie’ may be 5-20 GB and may be saved every few minutes. In such a case, it may not be 

possible to transfer the data fast enough to keep up with collection. Costs for storing data on 

spinning (hard disk) storage, for example through the use of Google Cloud (Google Cloud Storage 

Pricing, accessed 2017), is typically US$100-200/TB/year.  A cryo-TEM laboratory producing 200 

TB of data per year is potentially faced with an annual data storage cost on the same order of 

magnitude as a post-doctoral fellow salary. 

One approach whereby considerable archival savings may be realized is by decimation of the data 

from floating-point format to integer-format.  Nominally, the analog-to-digital converted signal 

from the detector is typically output as a 16-bit integer. Due to data processing requirements, it is 

often necessary to convert the integer data to 32-bit floating point (decimal) format.  The most 

common initial step that results in decimal data is the application of a gain reference, where the 

bias of the detector white values is removed. In-addition, conversion to floating-point is often 

inevitable due to operations such as sub-pixel shifting in drift correction (Li et al., 2013a, Grant and 

Grigorieff, 2015, McLeod et al., 2016, Zheng et al. 2017), or image filtration. If instead the 

micrographs are stored as 8-bit integers, with the gain reference (and potentially other operations) 

stored in meta-data, then a 4x reduction in storage and transfer requirements is realized.  In this 

case, the gain reference and other bias corrections must be performed at the computing center, 

rather than using the software provided by the direct electron detector vendor. Since vendor gain 

normalization techniques are often proprietary and secret, there is a need for open-source 

equivalent solutions. 

Further improvements in data reduction can be realized by modern high-speed lossless 

compression codes. Lossless compression methods operate on the basis of repeated patterns in the 

data. Nominally, purely-random numbers are incompressible. However counting electron data is 

Poisson distributed, such that its range of pixel histogram covers on only a limited range of values. 

In such a regime substantial compression ratios may be achieved. Therefore due to the repetition of 

intensity values, integer-format data can be compressed much more efficiently than gain-

normalized floating-point data. Generally when comparing compression algorithms one is 

interested in the compression rate (in units of megabytes/second) and the compression ratio (in 

percent). Modern compression codecs such as Z-standard (github.com/facebook/zstd, accessed 

03/2017) or LZ4 (github.com/lz4/lz4, accessed 03/2017) are designed for efficient multi-threaded 

operation on modern, parallel CPUs and can compress on the order of 1-2 GB/s/core, such that the 

time for read/write/transfer plus compression operations is greatly faster than when operating on 

uncompressed data. 
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We propose here combining decimation to 8-bit integer combined with lossless compression, with 

a robust post-acquisition application of the gain reference and detection and filtering of outlier 

(hot/dead) pixels. We propose an extension of the venerable MRC format, where meta-compression 

is implemented which implies the combination of loseless compression and loseless filtering to 

improve compressibility as well as execution with efficient blocked and multi-threaded processing. 

We propose a method to embed an unrestricted quantity of additional metadata in a footer of the 

MRC file, and compare JSON (ECMA-404, 2013) and Message Pack (msgpack.org, accessed 

03/2017) encoders. The application of the gain reference by the detector vendors is often treated 

as a trade secret. We propose open-source outlier-pixel suppression and flat-field normalization 

algorithms.   

2 The MRCZ format 
The MRC format was introduced by Crowther et al. (Crowther et al., 1996) as an extension of the 

CCP4 format.  It features a 1024-byte metadata header, followed by binary image data with 

provisons for 3-dimensions. The supported data types are byte (int8), short (int16), or single-

precision floating-point (float32).  The simplicity of the MRC format, and its ease of 

implementation, is a likely reason contributing to its popularity. However, the MRC format suffers 

from some drawbacks. First, there is no one standard format for MRC, in-spite of many efforts to 

define one (Cheng et al. 2015). Second, the header for storing metadata is only 1024-bytes long, so 

the quantity of meta-data that may be embedded is limited. Third, it cannot compress the data, so it 

is inefficient from an archival and transmission/distributed computing perspective.   

An alternative public domain archival format for electron microscopy is HDF5. However, HDF5 is a 

“heavyweight” library consisting of ~350’000 of lines of code and 150-pages of specification (HDF 

Group, accessed 2017), which makes integration in existing projects difficult.  

Here we introduce an evolution of the MRC format, MRCZ with additional functionalities that have 

become needed in the era of ‘Big Data’ in electron microscopy.  We provide sample libraries for 

MRCZ in C/99 and also Python 2.7/3.5, as well as a command-line utility that may be used to 

compress/decompress MRC files so that legacy software can read the output.  To facilitate the 

introduction of MRCZ into other software packages, we have kept the implementations as small as 

possible (currently c-mrcz is < 1000 lines of code).   

The MRCZ library package leverages an open-source, meta-compression library, blosc (blocking, 

shuffle, compression), principally written by Francesc Alted and Valentin Haenel (Haenel, 2014, 

and Alted, accessed 03/2017).  Blosc combines multi-threaded compression (currently six different 

codecs are available) with blocking, such that each operation fits in CPU cache (typically optimized 

to level 2 cache), and filter operations (namely shuffle and bitshuffle).  In testing on cryo-TEM data 

blosc achieved > 10 𝐺𝐵/𝑠 compression rates on a modern CPU, and superior compression ratios to 

codecs such as LZW (Welch, 1984) implemented in TIFF.  The performance gain is sufficient such 

that loading a compressed image stack from disk and applying post-processing gain normalization 

and outlier pixel filtering to it is faster than loading an uncompressed but pre-processed floating-

point result.   

Here three compressors are compared for operation on cryo-EM data: 

1. lz4: is the fastest compressor, with the worst compression ratio, making it ideal for live 

situations where distributing the data from a master computer is the priority. 
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2. zStandard (zstd): achieves the highest compression ratio and has the fastest 

decompression, making it the best choice for archiving. On the lowest compression level it 

maintains good compression rates. 

3. Zlib: is a very common library that has been accelerated by blosc.  Zlib provides a valuable 

baseline for comparison, although blosc performance with zlib exceeds that of tools such as 

pigz.   

2.1 Blocked compression 
Roughly around 2005, further increases in CPU clock-frequencies were slowed due to heat 

generation limitations. Further performance improvements where then realized by packing parallel 

arithmetic and logic cores per chip. Most common compression algorithms were designed before 

the era of parallel processing. 

Operations in image processing are often relatively simple and executed on the full-frame 

consisting of many million elements.  With the larger number of cores available on modern CPU, 

often program execution rate is limited not by processing power but the amount of memory 

bandwidth available to feed data to the cores.  Typically fetching data from random-access memory 

(RAM) is an order of magnitude slower than the cache found on the CPU die. Therefore if the data 

can be cut into blocks that fit into the lower-level caches large speed improvements are often 

observed. Parallel algorithms can be made to work efficiently in the case where a computational 

task can be cut into blocks, and each block can be dispatched to an individual core, and run through 
an algorithm to completion, as illustrated in Fig. 1a. Parallel algorithms should also avoid branching 

instructions (e.g. conditional if statements), as modern processors request instructions from 

memory in-advance, and a wrong guess can leave the process idle waiting for memory. For 

example, zStandard also makes use a of a faster and more effective method for evaluating entropy, 

known as Asymmetric Numeral System (ANS), than classic compression algorithms. ANS 

significantly improves compression ratio in data with large degrees of randomness (Duda, 2013, 

and Duda et al., 2015).   

In blocking strategies, data is conceptually separated into chunks and blocks, with chunks being 

senior to blocks. In the MRCZ format, each chunk is a single image frame (~16 million pixels for 4k 

detectors, or ~64 million for 8k), and each chunk is broken into numerous blocks, with a default 

block size of 1 MB. Such a block size provides a balanced trade-off between compression rate and 

the ratio between compressed and uncompressed data. For image stacks, the highest compression 

ratio would likely be in the time-axis, but this is the least convenient axis for chunking, as it would 

make retrieving individual frames or slices of frames impossible. 

 

2.2 Bit-decimation by shuffling 
Some direct electron detectors, such as the K2 Summit (Gatan, Pleasanton, CA) cycle fast enough to 

count individual electrons during image acquisition. Counted electron images are often dose 

fractionated whereby each time slice has mean dose < 4 𝑒− 𝑝𝑖𝑥 𝑓𝑟𝑎𝑚𝑒⁄⁄ .  This implies that even a 

single byte (uint8) to store each pixel is too large of a data container, as it can hold data values up to 

255.  David Mastronde implemented in SerialEM and IMOD (Mastronade, 2004) a new data type for 

MRC that incorporates a decimation step where each pixel is packed into 4-bits, leading to 

maximum per-pixel values of 16 before clipping occurs, thereby providing an effective compression 

ratio of 2.0 compared to uint8. The disadvantage of 4-bit packed data is that it is not a hardware 
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data type, such that two pixels are actually packed into an 8-bit integer. Whenever the data is 

loaded into memory for processing, it must be unpacked with bit-shifting operations, which is 

computationally not free. There is also the risk of intensity-value clipping.  

Blosc optionally makes use of a filter step, of which there are two currently implemented, shuffle 
and bitshuffle. Shuffle re-arranges each pixel by its most significant byte to least, whereas bitshuffle 
performs the same task on a bit-level, illustrated in Fig. 1b. The shuffle-style filters are highly 

efficient when the underlying data has a narrow histogram, such that the most-significant digit in a 
pixel has more commonality with other pixels’ most significant digit than its own least-significant 

digit. For example, if an image is saved as uint8 type contains mostly zeros in its most significant 

digits, they will be bit-shuffled into a long-series of zeros, which is trivially compressible. As such, 

bitshuffle effectively performs optimized data decimation without any risk of clipping values. 

Shuffling is also effective for floating-point compression, as the sign bit and the exponent are 

compressible whereas the mantissa usually does not contain repeated values and therefore it is not 

especially compressible. The mantissa can be made more compressible by rounding to some 

significant bits, for example the nearest 0.001 of an electron, but this generates round-off error.     

 

(a) 

 

 

(b) 

Figure 1: (a) Each MRC volume is chunked, such that each z-axis slice is compressed separately.  

Then in blosc each chunk is further sliced into blocks, which are then dispatched to individual CPU 

cores for compression. Decompression works in reverse.  (b) Normally pixel values are stored in 

memory contiguously (top row). With bit-shuffling (on little endian systems) the most significant 

bits (7 index) are stored adjacently, and similarly for the least-significant bits (0 index). This 
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improves compressibility and as a result both compression ratio and compression rate are 

improved. 

 

2.3 Benchmarks 
Benchmarks for synthetic random Poisson data were conducted for images covering a range of 

electron dose levels consisting of [0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 4.0] electron counts/pixel.  The free 

parameters examined consist of: compression codec, blocksize, threads, and compression level 

were all evaluated. Here the term ‘compression level’ refers to the degree of computing effort the 

algorithm will use to achieve higher compression ratios.  The machine specification for benchmark 

results is as follows: 

Two Intel Xeon E5-2680 v3 CPUs operating with Hyperthreading and Turboboost: 
 No. of physical cores: 2 × 12 
 Average clock rate: 2.9 GHz  (spec: 2.4 GHz) 
 L1 cache size: 32 KB per core 
 L2 cache size: 256 KB per core 
 L3 cache size: 30720 KB per processor 

The size of the L2 cache generally has a large impact on the compression rate as a function of the 
blocksize used by blosc. For file I/O the RAID0 hard drive used was benchmarked to have a 

read/write rate of ~300 MB/s, which is comparable to parallel-file systems in general use in cluster 

environments.  

Example benchmarks on cryo-TEM image stacks are shown in Table 1 for a variety of blosc libraries 

as well as external compression tools.  Uint4 refers to the SerialEM practice of interlaced packing of 

two pixels into a single-byte.  JPEG2000 and uint4 were not multi-threaded; all other operations 

used 48 threads. Pigz, lbzip2 and pxz are command-line utilities and hence include a read and write. 

Indicated times are averages over 20 read/writes. To achieve repeatable result, the disk was 

flushed between each operation, with the Linux command: 

echo 3 | sudo tee /proc/sys/vm/drop_caches 

The gains in compression ratio by using more expensive algorithm such as Burrows-Wheeler 

(bzip2) or LZMA2 (xz) are quite minimal with cryo-TEM data, likely due to the high degree of 

underlying randomness (or entropy). Lbzip2 is the clear winner among command-line compression 

tools, as it still is faster than reading or writing uncompressed data and achieves the second-best 

compression ratio. Blosc accelerates the read/write by a factor of 3-6x over that of the 

uncompressed data.   

Table 1: Comparison of read/write times for 60 x 3838 x 3710 cryo-TEM image stacks.  

Codec  
/ data type 
/compression level 

Compressed Size 
(MB) 

Compression 
Ratio 

Compression-
Write Time 
(s) 

Decompression-
Read Time 
(s) 

None / int8  854 1.00 3.40 3.21 
uint4 427 0.50 2.14  6.05 
blosc-lz4 / int8 / 9 340 0.40 0.50 0.96 
blosc-zstd /  int8 / 1 320 0.37 0.76 1.10 
blosc-zstd /  int8 / 5 319 0.37 0.86 1.09 
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JPEG2000 / uint8 317 0.37 106.8 N/A 
pigz / int8 / 1 367 0.43 0.86 4.74 
lbzip2 / int8/ 9 314 0.37 3.17 2.23 
pxz / int8 / 6 305 0.36 47.5 31.8 

 

Figures for benchmark results are shown in Figure 2.  Best compression ratio as a function of dose 

rate is shown in Figure 2a.  An important consequence of compressing Poisson-like data is that 

compression ratios increase substantially with sparseness. I.e. compressed size scales sub-linearly 

with decreasing dose fractions. For example, a cryo-tomography projection of 10 frames of 4k x 4k 
data recorded at a dose rate of 0.1 𝑒− 𝑝𝑖𝑥 𝑓𝑟𝑎𝑚𝑒⁄⁄  would have a compressed size of 13 MB, 

compared to 670 MB for its uncompressed, gain-normalized image stack. Such compression 

therefore enables finer-dose fractionation for advanced drift correction algorithms without 

imposing onerous storage requirements. 

With regards to compression level, shown in Figure 2b, which is a reflection on the effort level of 

the compressor, generally zlib saturates at 4-5, whereas zstd saturates at 2-3, and lz4 sees little 

disadvantage to running at its highest compression level. Good compromises for processing are 

compression level 1 for zstd and zlib and for archiving 3 for zstd and 5 for zlib.  Lz4 can operate 

with compression levels of 9 for real-time applications but it is not as suitable for archiving due to 

the lower compression ratios. The bitshuffle filter is important in this situation and contributes 

heavily to the quickest compression level of 1 being the best compromise between rate and ratio for 

zstd, in that it uses a priori knowledge about the structure of the pixel values to pre-align the data 

into its most compressible order. 

In blosc the scaling with threads is roughly 1 0.7𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠⁄  for 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ≥ 2, up to the number of 

physical cores.  When hyper-threading is enabled an oversubscription of approximately 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ≈

1.5𝑁𝑐𝑜𝑟𝑒𝑠 gives the highest absolute compression rate. 

Cache sizes are important in that they impose thresholds on data sizes, shown in Fig. 1d.  blosc 
chops the data into blocks, and MRCZ cuts a volume into single z-axis slices called chunks. For 

example a 4 k x 4k image chunk may be cut into 64 separate 256 kB blocks. If the block size fits into 
the L2 cache (≤ 256 𝑘𝐵) then compression rate advantage is expected, and this is evident.  

However, testing on simulated Poisson data shows that larger blocks (which result in larger 

dictionaries in the compression algorithm) achieve a higher compression ratio. Similarly for 
chunking, if the chunk size is less than the L3 cache (≤ 30 𝑀𝐵) then only one memory call is 

sufficient for the entire chunk.  

The optimal block size for compression ratio is expected to be when each block holds one 

significant bit each.  So for 4k x 4k x 8-bit images the ideal block size would be 16 8⁄ =  2 𝑀𝐵, 

whereas the saturation in compression ratio actually appears at 1 MB.   
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(c) 

 
(d) 

Figure 2: Performance for various compression codecs found in blosc. (a) The dependence of 

compression ratio varies strongly with the dose. Here zstd has the best compression ratio. (b) The 

dependence of the compression level on the compression ratio is mild, such that for zstd and zlib 

typically 1 is used. (c) Scaling on the compression rate with the number of parallel computing 

threads employed. The machine used has 2 × 12 physical cores, indicated with the dashed line. The 

area to the right of the dashed line indicates the region in which Intel Hyperthreading is active.  

(d) Dependence of the compression ratio and rate on the blocksize used, which is the most critical 
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parameter examined. Typically a blocksize scaled to fit into L2 cache (256 𝑘𝐵) is optimal for speed, 

but the compression ratio benefits from a larger blocksize (≥ 512 𝑘𝐵).  

 

2.4 Enabling Electron Counting in Remote Computers with Image 

Compression 
The K2 Summit direct electron detector is able to count single electrons by sampling fast enough 

(400 Hz) such that two electrons are unlikely to impact the same pixel in the same sampling period. 

The raw data is transferred to a field-programmable gate array (FPGA) processor, which conducts 

thresholding operations in real-time to count and optionally estimate electron impact points with 

subpixel precision by center-of-mass determination.  Such a device is a remarkable achievement, 
but the user does not have access to the raw data largely due to the enormous data rate (5.7 GB/s) 

at which the images are recorded.  This is unfortunate as it does not permit experimentation with 

alternative subpixel detection algorithms that might better localize the impact of the primary 

electron in the detector layer. 

However the multi-threaded meta-compression discussed above may be able to alleviate the data 

flow problem. A Gatan K2 detector samples at 3838 x 3710 x 400 Hz, or 5.7 GB/s, and the FEI 

Falcon 3 at 4096 x 4096 x 100 Hz = 1.7 GB/s. Both throughputs are less than that demonstrated 

above for blosc.  A master node could, using zstd (or falling that, lz4) as a compression codec, 

compress the raw data from a K2 on-the-fly and dispatch it to worker computers for counting, thus 

enabling counting without a FPGA or similar hardware counting solution. The compression ratio 

achievable would depend heavily on thresholding of low intensity values but could be in the range 

of 50:1.   

3 Extended Metadata in MRCZ 
The MRC2014 format allows for the potential of an extended header that is longer than the 

standard 1024 bytes.  The disadvantage of this approach is that is it not backward compatible with 

previous MRC file formats where the programmer could safely assume the data begins at byte 1024.  
In order to preserve backward compatibility with the original MRC specification we propose that 

instead extra meta-data be added as a footer to the MRC data.  This is backward compatible (when 

using uncompressed data) with all tested MRC using software (Relion, Frealign, SerialEM, Digital 

Micrograph, EMAN2) as they simply ignore the presence of the extra meta-data.    

File formats require complex, nested metadata to be encoded into a stream of bytes.  The 

conversion of metadata to bytes is called serialization. In order to achieve a high level of portability 

into the future for the metadata, we advise use of a well-established serialization standard. Here 

two serialization standards are compared, JSON (JavaScript Object Notation), which is the most 

ubiquitous serialization method in the world, and Message Pack (msgpack.org and 

pypi.python.org/pypi/msgpack-python), a binary serialization tool with a similar language 

structure to JSON.  Libraries are available for both for many different programming languages, with 

the exception of Matlab and Fortran for Message Pack.  Here two high-speed JSON encoders 

available for C and Python are profiled, RapidJSON (rapidjson.org and 

pypi.python.org/pypi/pyrapidjson ) and UltraJSON (github.com/esnme/ujson4c and 

pypi.python.org/pypi/ujson).  
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The three serialization methods were tested on a sample of 25 MB of complicated JSON data.  All 

three methods produce more-or-less similar results in terms of read/write times to disk, as shown 

in Fig. 2a. Compression does not speed nor slow read/write times, except for Message Pack read 

rates. Lz4 reduces the data size on disk to roughly one-half, and zstd to roughly one-third, of the 

uncompressed size. Message Pack was tested with Unicode-encoding enabled to make it equivalent 

to the JSON encoders, which slows its read/write time by 20 %.  

 

(a) 

 

(b) 

Figure 3: Performance evaluation of different serialization methods for meta-data paired with 
compression. (a) Read and write times for the profiled serialization methods on a sample of 25 MB 
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of JSON-like text metadata data, when used with and without blosc compression. (b) Size on disk of 
the metadata.  

 

 

4 Stochastic outlier pixel suppression algorithm 
With direct electron detectors the active layer and CMOS electronics suffer constant radiation 

damage during data acquisition. As such, outlier pixels apparently are far more common than in 

traditional scintillator coupled CCD detectors, and they also appear to be far more dynamic, 
appearing and disappearing from image to image. Outlier pixels are effectively Dirac functions in 

real-space, which makes them impractical to filter in reciprocal-space as they span all frequencies. 

Outlier pixels appear as statistically anomalous “fat tails” to the expected distribution of a 

compound Poisson distribution (which can be well approximated by a normal distribution). They 

can be dead pixels, with low values, which are relatively rare, or hot pixels, which with direct 

electron detectors are far more likely.  Typically around 0.5 % of the pixels on a Gatan K2 are found 

to be outliers using the approach detailed below. The problem is illustrated schematically in Fig. 3. 

A synthetic particle has suffered motion blur due to drift, but the outlier pixels are stable in position 

over the course of the dose fractionation. After drift correction, ideally the particle motion is 

compensated for but the outlier pixels have not.   

Common approaches to detecting outlier pixels find either those that are spatially anomalous, by 

measuring the standard deviation of a pixel compared to the neighbors or the ensemble average, or 

temporarily anomalous, by measuring the standard deviation in time.  Here the approach is to 

examine for spatial anomalies by detecting pixels that deviate strongly from a normal distribution 

in the image histogram. Computational time for the outlier pixel removal algorithm is ~2-3 s for a 

50 x 4096 x 4096 image stack. The algorithm is described as conceptual steps:  

Step 1: Calculate a histogram of the stack summed along the time axis with electron count-centered 

bins over the range (-8 , 8). The unaligned sum is used as the outlier pixels will reinforce their 

intensities whereas the specimen contrast will be somewhat blurred by the motion during the 

acquisition. The cumulative summation of the histogram represents the estimate for the 

experimental cumulative distribution function CDFℎ𝑖𝑠𝑡, and is typically normal for cryo-TEM 

micrographs. Samples with visible carbon may have a bi-normal histogram. All fit estimates are 

conducted on the cumulative rather than density function because, due to the numerical 

integration, it is more robust against noise.   

Step 2: Fit the histogram cumulative distribution function with a normal CDF: 

CDF𝑚𝑜𝑑𝑒𝑙(𝐝; 𝜇𝑓𝑖𝑡 , 𝜎𝑓𝑖𝑡) = min ∑ |CDFℎ𝑖𝑠𝑡(𝐝) −
1

2
(1 + erf (

𝐝−𝜇𝑓𝑖𝑡

√2𝜎𝑓𝑖𝑡
))|          (1.) 

where 𝐝 is the dose axis of the histogram, 𝜇𝑓𝑖𝑡  is the fit mean, and 𝜎𝑓𝑖𝑡 the best-fit standard 

deviation and erf the error function. In this work functional minimization was performed with the 

L-BFGS-B functional minimization algorithm but a least squares approach would likely suffice.   
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Step3: Typically outlier pixels are described in terms of sigma values, or multiples of the standard 

deviation: transform the experiment CDFℎ𝑖𝑠𝑡 from counts to terms of standard deviations (i.e. -
values), 

CDFℎ𝑖𝑠𝑡(𝛔) = √2𝑒𝑟𝑓−1(2 ∙ CDFℎ𝑖𝑠𝑡(𝐝) − 1)                                              (2.) 

CDF𝑚𝑜𝑑𝑒𝑙(𝛔; 𝜇𝑓𝑖𝑡 , 𝜎𝑓𝑖𝑡) =
𝐝−𝜇𝑓𝑖𝑡

√2𝜎𝑓𝑖𝑡
                                                    (3.) 

And then the residual difference 𝑟 is 

𝑟(𝛔) = CDFℎ𝑖𝑠𝑡(𝛔) − CDF𝑚𝑜𝑑𝑒𝑙(𝛔)                                                    (4.) 

An example residual is shown in Fig. 4 as the orange line.  

Step 4: Fit the left- and right-side large residuals with linear polynomials to find the respective zero 

residual intercepts for dark pixels, 𝑡𝑑𝑎𝑟𝑘, which are outliers on the black end of the histogram, and 

hot pixels, 𝑡ℎ𝑜𝑡, which are outliers on the white end of the histogram. 

𝑡𝑑𝑎𝑟𝑘 = min ∑ |𝑟(𝛔) − (a𝑑𝛔 + b𝑑)|

𝑟(𝛔)<𝑙𝑖𝑚

 

(5.a) 

𝑡ℎ𝑜𝑡 = min ∑ |𝑟(𝛔) − (aℎ𝛔 + bℎ)|

𝑟(𝛔)>𝑙𝑖𝑚

 

(5.b) 

The fit is only conducted over the 𝛔-range where the residual magnitude |𝑟(𝛔)| is greater than 

some limit, typically 𝜎 = 0.5.  From these thresholds a logistic weighting function 𝑤 is constructed, 

𝑤(𝛔; 𝑡𝑑𝑎𝑟𝑘 , 𝑡ℎ𝑜𝑡 , 𝜌) = (1 −
1

(1+𝑒𝑘(𝛔−𝑡𝑑𝜌))
) (

1

(1+𝑒𝑘(𝛔−𝑡ℎ𝜌))
)                      (6.) 

where 𝑘 is the filter order and defaults to 6.0, and 𝜌 is a relaxation of the threshold for which a 

typical value is 0.95.  

Step 5: Compute the outlier pixel mask. Two approaches are used to fill in outlier pixels.  Singletons 

are outlier pixels that have no outlier neighbors within a two pixel radius.  In this case, the 

estimated point-spread function of the detector is used to estimate the expectation value for the 

outlier pixel; the estimated fill-in values for the Gatan K2 are shown in Table 1 (negative shifts are 

not shown as the function is symmetric). Non-singleton neighborly pixels, i.e. those with outlier 

neighbors within a two pixel radius, can constitute as high as 15 – 25 % of the total outlier pixels in 
normal mode and > 66 % in super-resolution mode and must be handled differently.  Here the 

mean (not including any outlier pixels) of a 5 x 5 neighborhood about each outlier replaces the 

outlier pixel value.  

Table 1: Gatan K2 point-spread function as a function of neighbor adjacency.   
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Y / X  0 pix shift 1 pix shift 2 pix shift 

0 pix shift 0 0.173 0.03 
1 pix shift 0.173 0.084 0.02 
2 pix shift 0.03 0.02 0.007 

 

4.1 Effect of outlier suppression on correlated noise 
In order to evaluate the capacity of the algorithm to reduce correlated noise, 500 dose fractionated 

image stacks were acquired, each consisting of 100 frames each with an exposure time of 
300 𝑚𝑠 𝑓𝑟𝑎𝑚𝑒⁄ , and a dose rate of 4 𝑒− 𝑝𝑖𝑥 𝑠⁄⁄ .  The detector was annealed prior to data 

acquisition and then a fresh gain reference acquired, with a gain factor of 100, which was applied to 

each image in the set.  As shown in Fig. 7(a) the number of hot pixels rises over the course of 500 

image stacks, from approximately 5’500 to 12’300, representing > four hours of continuous 

imaging.  The dead pixel count is more stable, rising from approximately 160 to 180.  A similar 

experiment was conducted with the detector in a mature-state, at a higher dose rate 

(7 𝑒− 𝑝ℎ𝑦𝑠. 𝑝𝑖𝑥 𝑠⁄⁄ ), and in super-resolution mode.  Here the proportion of outlier pixels was 

approximately 10x higher, as shown in Fig. 7(b), but the number of outliers does not appear to 

increase with cumulative dose.   

To assess the degree of stationary correlated noise the Pearson correlation coefficient was 

employed, which can be calculate from the covariance of two images. For two images 𝑋 and 𝑌, the 

Pearson correlation R is computed as, 

𝑅 =
∑ (𝑋𝑖−𝜇𝑋)(𝑌𝑖−𝜇𝑌)𝑛

𝑖

√∑ (𝑋𝑖−𝜇𝑋)2𝑛
𝑖 √∑ (𝑌𝑖−𝜇𝑌)2𝑛

𝑖

                                                       (7.) 

As shown in Fig. 7(c) the outlier filter reduces the correlated noise among frames inside an 

individual stack by approximately 550 %. The major source of residual correlated noise after 

outlier pixel suppression is thought to be caused by CMOS read-out lines. 
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(a) 

 

(b) 
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(c) 

Figure 4: Scheme illustrating the effect of outlier pixels when drift correction is applied. (a) 
Representation of an unaligned average of a protein particle. Outlier pixels are represented by 
magenta dots and are stationary.  (b) After drift correction, the aligned average shows a crisp 

projection of the particle but the outlier pixels are dragged across the frame, resulting in the shown 
magenta lines. The drift tracks contribute correlated noise to the aligned particle image. (c) An 

example 512 x 512 box from a K2 super-resolution gain reference shows approximately 200 outlier 
pixels. The CMOS pattern is visible as vertical lines in this case. 

 

 

(a) 
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(b) 

Figure 5: Outlier detection is performed with the cumulative histogram (i.e. cumulative distribution 
function) of the stack average. (a) The cumulative histogram of the image (green line), after 

intensity values are transformed to sigma values, by dividing by the Poisson standard distribution, 

√𝑑, compared to the normal distribution model (blue dashed line).  The ‘fat’ outlier tails onset at 
sigma values of  ~(−4.0,3.25). (b)The residual difference between the model and experiment 

(orange line). The zero-intercepts of the best-fits to the fat tails (black dashed lines) are used as the 
thresholds for dark and hot pixels.  A logistical weighting function (purple line) is used to 

determine the proportion of the original pixel value that is retained by the filter. 

 

(a) 
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(b) 

Figure 6: Example of a recorded cryo-EM image of a vitrified 160 kDa protein particle containing 
several examples of outlier artifacts. (a) Pre- and (b) Post-outlier pixel filter results for a 256 x 256 

patch. Arrows in (a) indicate locations of outlier clusters, and the circle in (b) shows the 160 kDa 
particle, demonstrating that the contrast of outlier pixels can be quite strong relative to the contrast 

of small protein particles. 

 

Video 1 (available on-line): The distribution of outlier pixels is tracked over ~6 hours of single 
particle data acquisition. The still frame shows the average proportion of outliers, which shows that 

outlier distribution is more-or-less random. 
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(a) 

 

(b) 

 

(c) 

Figure 7: Analysis of the density of outlier pixels as a function of cumulative electron dose for two 
cases. (a) For normal resolution mode of a K2 Summit, plotting the percentage of outlier pixels 

versus cumulative dose starting from an annealed-state at a dose rate of 4 𝑒− 𝑝𝑖𝑥 𝑠⁄⁄  shows the rise 
in the number of hot pixels over approximately four hours of operation. (b) An analysis of the 
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detector from a mature-state in super-resolution mode at a dose rate of 7 𝑒− 𝑝𝑖𝑥 𝑠⁄⁄ . Here because 
each physical pixel contributes to four super-resolution pixels the proportion of outlier pixels is 
much larger. The proportion of outlier pixels appears to have saturated and does not increase 

significantly with dose. (c) The amount of correlated noise among super-resolution frames in the 
mature-state is reduced by approximately 5-fold after the outlier filter is applied.  

 

5 Image normalization 
Image normalization (also known as ‘flat-field correction’ or ‘gain reference multiplication’) is a 

standard method to suppress detector artifacts in digital imaging. Image normalization is 

particularly important when performing dose-fractionated image correction, as the fixed-pattern 

noise can often significantly displace template-matching methods from the true image drift. 

Historically, image normalization for CCD detectors consisted of subtraction of a dark reference 

image followed by multiplication by the gain reference,  

𝐼𝑛𝑜𝑟𝑚−𝐶𝐶𝐷 = (𝐼𝑟𝑎𝑤 − 𝐼𝑑𝑎𝑟𝑘) ∙ 𝐼𝑔𝑎𝑖𝑛                                                        (8.) 

where 𝐼𝑔𝑎𝑖𝑛 was typically the reciprocal of a ‘flat-field’ average of images obtained by illuminating 

the detector without a specimen in the field-of-view. The reciprocal is pre-screened for zeros, which 

cause divide-by-zero errors. With the Gatan K2 Summit, the normalization is believed to be applied 
in hardware, then thresholding is applied to count electrons.  After accumulation electrons sampled 

at 400 Hz into a dose-fractionated frame, second gain reference is applied in software.  It is likely 

that the second, software gain reference is more than a simple multiplication, as the gain reference 

changes significantly with dose rate, and there is also a need to further suppress features such as 

CMOS read-out lines. 

An alternative approach to image normalization is to perform correction after acquiring a large 

volume of data, i.e. an a posteriori approach (Afanasyev, 2015). A posteriori approaches are 

inherently less convenient than a priori approaches because they require the research to wait but 

potentially can improve on the reduction in correlated noise. In section 5.1, a first effort on an 

equivalent-to-vendor a priori gain normalization is presented, whereby the gain reference is scaled 

by the dose rate with a gamma-factor.  In section 5.2 the a posteriori approach is examined and a 

methodology suitable for pipeline processing is presented.   

 

Figure 8: Schematic depiction of a K2 sensor.  The incoming electron passes through the CMOS 
electronics first before impacting the active layer.  The active layer is back-thinned, often some 
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thickness variation due to etching is present (exaggerated here).  Therefore the image on the 
detector is modified both by the patterns in the CMOS electronics, and the etching of the active 
layer, each with different dose-rate scaling.  

 

5.1 Gain variation with dose rate 
Here a priori approaches to improve on Eqn. 8 are presented. With direct electron detectors it is 

apparent that the gain normalization is a function of the dose rate. As such, an additional gamma 

correction has been evaluated when applied to the gain reference. For a dose rate 𝛅, the proposed 

image normalization equation is, 

𝐼𝑛𝑜𝑟𝑚−𝐶𝑀𝑂𝑆(𝛅) = (𝐼𝑟𝑎𝑤 − 𝐼𝐶𝑀𝑂𝑆) ∙ 𝐼𝑔𝑎𝑖𝑛
𝛾(𝛅)

                                                (9.) 

where 𝐼𝑔𝑎𝑖𝑛 is the vendor provided gain reference, 𝛾 is a gamma correction to account for the active 

layer etching pattern, and  𝐼𝐶𝑀𝑂𝑆 is a subtraction term designed to remove the overlain pattern of 

the CMOS electronics. A number of approaches were examined to find a suitable approach to 

compute 𝐼𝐶𝑀𝑂𝑆 a priori, such as Fourier filtering to generate electronic seam maps, but have been 

found to be unsatisfactory compared to the limited a posteriori approach in Section 5.2.  

The best gamma for each dose rate 𝜹 is determined by minimizing the root-mean-square difference 

min𝛾(std(uniform〈𝑓𝑙𝑎𝑡 ∙ 𝑔𝑎𝑖𝑛𝛾 , 64〉))                                              (10.) 

where uniform〈⋯ ,64〉 is the application of a uniform filter over a 64 x 64 pixel patch, to minimize 

high-frequency components, std(⋯ ) computes the standard deviation over the entire field-of-view 

after filtering, and min𝛾(⋯ ) is a functional minimization with 𝛾 as the free parameter. Example 

data were collected over a range of dose rates (0.25,9) 𝑒− 𝑝𝑖𝑥 𝑠⁄⁄ . The gamma normalization in Fig. 

9 for a dose rate 𝛿 is fit to a power-linear function, 

𝛾(𝛿) = 𝑎1𝜹𝑏1 + 𝑎2𝜹 + 𝑎3                                                             (11.) 

where 𝑎𝑛 and 𝑏𝑛 are free best-fit parameters (𝑎1 = 0.12, 𝑎1 = −0.0336, 𝑎3 = 1.04, 𝑏1 = −1.04). 

The gamma normalization does effectively remove the variation due to the etching of the active 

layer, as shown in Fig. 10, but it is ineffective in removing the CMOS electronics pattern. 
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Figure 9: Plot of optimized gain reference gamma-factor versus dose rate. Green line is the best-fit 
of a power plus linear function to the data (crosses). 

  

(a) 

  

(b) 

Figure 10: Example vacuum reference at a dose rate of 7 𝑒− 𝑝𝑖𝑥 𝑠⁄⁄  of (a) typical-normalization as in 
Eqn. 7 and (b) gamma-normalization with 𝛾 = 0.85 in Eqn. 8.  Images have been low-pass filtered 

to better show the etching pattern (diagonal sweeps).  The CMOS read-out electronics are still 
evident in (b) as horizontal-lines on the right-side. 
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5.2 Knock-out Moving Average (KOMA) Normalization 
In the a posteriori approach it is desirable to assess how many stacks must be averaged in order to 

generate an efficient normalization term 𝐼𝐶𝑀𝑂𝑆 for Eqn. 9. In vacuum reference images, the 

correlation between stack averages drops rapidly with increasing separation in the dose (or time) 

axis as the detector is dynamically annealed in-situ by the electron beam. A series of 30 s dose-

fractionated stacked were acquired over a period of four hours on an FEI Polara operated at 300 
keV equipped with a Gatan K2 Summit detector, constituting over 50’000 electrons per pixel total 

dose, with the correlation of the stack sums (blue points) to the first stack sum shown in Fig. 11.  

The fit to the vacuum correlation with cumulative dose (gold line) shown in Fig. 11 is, 

𝑅 = 0.0308 𝐝−0.289 + 0.0317                                                         (12.) 

Given the power-law decay in correlated noise with dose separation, from the perspective then of 

gain normalization, it is hypothesized that using the entire data set as in Afanasyev et al. is 

unnecessary.  

Rather, a moving average filter with a radius ±a stacks may be sufficient, which would render the 

approach much more compatible with pipeline processing. In this approach all stacks have uniform 

weights, which greatly simplifies computational requirements. The moving average must skip, or 

‘knock-out,’ the stack undergoing normalization from the moving-average, to avoid intentionally 

subtracting part of the image from itself. Then the calculation of each knock-out moving average 

(KOMA) filter requires two image adds (of the previous stack and the latest stack) and two 

subtractions (of the current stack and the last stack in the series), which is computationally 

inexpensive. End-points (at the start or end of data acquisition) are asymmetrically adjusted to 

maintain the same number of stack in the filter, so as to maintain an even signal-to-noise ratio. No 

gamma normalization has been applied in this case. 

The effectiveness of the KOMA filter drops off near reciprocally towards an asymptotic limit.  For 

both vacuum references and cryo-EM data, the correlated noise from KOMA filters with a radius of a 

are shown in Fig. 12(a), and the outlier filter combined with KOMA in Fig. 12(b). For KOMA alone 

with the cryo-EM data, the correlated noise is reduced below the baseline unfiltered stacks after 

subtraction of the mean of the 8 trailing and following frames, whereas for vacuum reference 

images only 4 stacks were required. The asymptotic limit for the reduction in correlated noise was 

300 % for the cryo case and 650 % for the vacuum reference case. The power-law best fits to the 

data are, 

𝑅𝑣𝑎𝑐𝑢𝑢𝑚(𝑎; 𝐾𝑂𝑀𝐴) = 0.01 a−1.02 + 0.00026                                              (13.a) 

𝑅𝑐𝑟𝑦𝑜(𝑎; 𝐾𝑂𝑀𝐴) = 0.0192 a−1.24 + 0.00055                                             (13.b) 

𝑅𝑣𝑎𝑐(𝑎; 𝑜𝑢𝑡𝑙𝑖𝑒𝑟, 𝐾𝑂𝑀𝐴) = 0.0090 a−1.01 − 0.00111                                             (13.c) 

𝑅𝑐𝑟𝑦𝑜(𝑎; 𝑜𝑢𝑡𝑙𝑖𝑒𝑟, 𝐾𝑂𝑀𝐴) = 0.0116 a−1.02 − 0.00043                                             (13.d) 

which are effectively reciprocal functions in all but the cryo case with KOMA alone. When the 

outlier and KOMA filters are combined the correlated noise actually becomes anti-correlated as the 

radius of the KOMA filter increases, which likely indicates that the KOMA filter is too broad and the 

extra frames added no longer have significantly correlated artifacts with the stack under 

examination. In comparison the anti-correlation is not nearly as significant for the cryo-EM data. 
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The average dose rate for the cryo-EM data was 4.5 𝑝𝑖𝑥 𝑠⁄⁄  and 7𝑒− 𝑝𝑖𝑥 𝑠⁄⁄  for the vacuum 

references.  Thus there is also an expectation of some coincidence counting errors in the vacuum 

reference case (Li et al., 2013). 

Note that here the correlation coefficients are calculated amongst frames inside an individual stack 

after normalization, whereas in Fig. 11 the correlations were between stack sums.  Therefore there 

is more random-nose in-between each correlation in Fig. 12(a) and as such the observed 

coefficients are lower. One must be careful not to over-interpret the cryo-EM results as the 
appearance of a minimum value in the Pearson coefficient may be indicative of a minimum in image 

contrast rather than correlated noise.  In general, there appears to be little advantage to averaging 

more than ±25 stacks in the KOMA filter in the cases studied here.  One must be cautious to avoid 

including high-contrast micrographs (such as those with carbon film or crystalline ice), however, 

and here the micrographs were pruned by hand. Automated detection of such high-contrast 

micrographs remains a subject of future work. 

 

Figure 11: Pearson correlation for flat-field illuminated images shows a rapid-drop in adjacent 
frame correlation after a critical dose of approximately 4000 e-. A similar analysis of practical cryo-

EM data shows no obvious drop off with dose as the image contrast dominates the signal.  
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Figure 12: Analysis of correlated noise with the KOMA filter. (a) The correlated noise within frames 
of image stacks drops with a near-reciprocal relationship with the KOMA filter radius for both 

vacuum references and sample cryo-EM data. (b) When the outlier and KOMA filters are combined 
the correlated noise drops rapidly to zero before becoming, in the vacuum case, slightly anti-
correlated with increasing KOMA radius.  (c) After outlier and KOMA filtering with a 12-stack 

radius there is no visible detector artifacts remaining in a vacuum reference, even at a dose rate of 
7𝑒− 𝑝𝑖𝑥 𝑠⁄⁄ . 

6 Conclusion 
The introduction of fast, large-pixel count direct electron detectors has moved the field of electron 

microscopy inside the domain of “Big Data” in terms of data processing and storage requirements.  

Here an extension of the MRC file format is presented that permits on-the-fly data compression to 

lessen both transmission and storage requirements, using the meta-compression library blosc. 

Blosc is well suited as a library for Big Data purposes because it does not explicitly endorse any 

particular algorithm and intends to support new compression methods as they are developed. 

Development of a blosc2 standard, with additional features, is currently underway.  Also blosc is 

especially targeted towards high-speed compression codecs. With high-speed compression using 

the zStandard codec, file input-output rates are accelerated and archival storage requirements are 

reduced. The primary disadvantage of the use of a compressed MRC format is backward 

compatibility, which is mitigated by the availability of a command-line conversion tool. The simple 

implementation of the C-MRCZ library should facilitate its insertion into legacy codebases.   

With the use of compression, sparse data can be compressed to very high ratios. Hence, data can be 

recorded in smaller dose fractions with a less-than-linear increase in data size. For very small dose 

fraction applications, such as cryo-electron tomography, electron crystallography, or software 

electron counting schemes, compression can reduce data transmission and storage requirements 

by 10-50x.   

Effective compression requires the raw data to be stored as integers, which in turn requires artifact 

removal and gain normalization to be performed at the destination at least as well as vendors’ 

methods. The generation of outlier pixels in a direct-electron detector is a dynamic process and an 

algorithm which can effectively detect and suppress outliers was presented, reducing the correlated 

noise greater than five-fold over a simple gain normalization. The remaining degree of correlated 

noise likely sources from the CMOS electronics and active layer etching pattern. Here, an a priori 
approach of applying a gamma correction to the gain reference, and an a posteriori approach 

known as a knock-out moving average (KOMA) filter that is compatible with pipeline processing 

were presented. The gamma correction suppresses the etching but not the CMOS pattern, whereas 

the KOMA filter suppresses both. The outlier pixel and KOMA filters may be combined, in which 

case the degree of correlated noise can be negligible, even for relatively high dose-rates 

~7𝑒− 𝑝𝑖𝑥 𝑠⁄⁄ , where some coincidence counting loss is expected. 
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