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Abstract 
Inexpensive, high-throughput sequencing has led to the generation of large numbers of 
sequenced genomes representing diverse lineages in both model and non-model 
organisms. Such resources are well suited for the creation of new multiparent 
populations to identify quantitative trait loci that contribute to variation in phenotypes of 
interest. However, despite significant drops in per-base sequencing costs, the costs of 
sample handling and library preparation remain high, particularly when many samples 
are sequenced. We describe a novel method for pooled genotyping of offspring from 
multiple genetic crosses, such as those that that make up multiparent populations. Our 
approach, which we call “private haplotype barcoding” (PHB), utilizes private haplotypes 
to deconvolve patterns of inheritance in individual offspring from mixed pools composed 
of multiple offspring. We demonstrate the efficacy of this approach by applying the PHB 
method to whole genome sequencing of 96 segregants from 12 yeast crosses, 
achieving over a 90% reduction in sample preparation costs relative to non-pooled 
sequencing. In addition, we implement a hidden Markov model to calculate genotype 
probabilities for a generic PHB run and a specialized hidden Markov model for the yeast 
crosses that improves genotyping accuracy by making use of tetrad information. Private 
haplotype barcoding holds particular promise for facilitating inexpensive genotyping of 
large pools of offspring in diverse non-model systems. 
 
 
Introduction 
Advances in high-throughput sequencing have led to remarkable increases in the 
availability of DNA sequence data from any desired species. This has facilitated the 
creation of large panels of fully sequenced or densely genotyped individuals from both 
model and non-model organisms (Keane et al. 2011; Cao et al. 2011; Wilkening et al. 
2013; Jeffares et al. 2015; Strope et al. 2015; The 1000 Genomes Project Consortium 
2015). These resources, along with advances in experimental design and the statistical 
analysis of multiparent populations (e.g. Churchill et al. 2004; Scutari et al. 2014; Gatti 
et al. 2014; Wei and Xu 2016), present a unique opportunity for identifying quantitative 
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trait loci (QTL) underlying complex traits (Threadgill and Churchill 2012; Huang et al. 
2015). Indeed, carefully designed multiparent populations are currently being used to 
understand the genetic architecture of complex trait variation in several major model 
organisms and crop species (Yu et al. 2008; Kover et al. 2009; Mackay et al. 2012; King 
et al. 2012b; Bandillo et al. 2013; Cubillos et al. 2013; Mackay et al. 2014; Nice et al. 
2016). These populations show tremendous promise for advancing complex trait 
genetics, but the cost of their construction is often substantial. Although existing 
multiparent populations are often justifiably promoted as permanent resources available 
to all researchers, there is a clear need for methods to facilitate construction of new 
multiparent populations in non-model organisms with smaller communities or for 
exploring specific phenotypes in model organisms. 
 
What factors contribute to the costs of constructing and maintaining a multiparent 
mapping population? Some organism-specific factors such as colony maintenance 
costs are an unavoidable consequence of biology and can be substantial (Churchill et 
al. 2004). However, the cost of obtaining high-resolution genotypes of offspring 
represents a large one-time cost required for each multiparent population. In particular, 
although the costs of high-throughput sequencing have fallen precipitously in recent 
years (a trend that is likely to continue; https://www.genome.gov/sequencingcosts), 
costs of sample handling and library preparation have remained comparatively high. 
When many individuals are sequenced, as for multiparent populations that are well-
powered to detect quantitative trait loci (QTL), these library preparation costs represent 
a significant portion of total genotyping costs (which increase proportionally as 
sequencing costs decrease).  
 
In this paper, we present a simple method – private haplotype barcoding (PHB) – that 
utilizes private haplotypes to deconvolve patterns of inheritance in individual offspring 
from pooled samples. At its core, PHB involves inferring genotypes using short 
sequencing reads from pooled samples. Short-read sequencing has become a common 
method for genotyping individuals, often combined with reduced representation 
approaches which sample a subset of the genome (Baird et al. 2008; Andolfatto et al. 
2011; Elshire et al. 2011; Peterson et al. 2012). Huang et al. (2009) used low coverage 
whole genome sequencing to genotype recombinant inbred lines from a cross. 
Andolfatto et al. (2011) developed a hidden Markov model (HMM) to infer ancestry in 
offspring from a backcross genotyped by reduced representation sequencing. King et al. 
(2012a) used an HMM to infer founder ancestry from reduced representation 
sequencing of members of a multiparent population. Both Xie et al. (2010) and Rowan 
et al. (2015) developed HMMs to obtain genotypes of offspring from a cross using low 
coverage whole genome sequence data. In contrast to all of these approaches, our 
approach is novel in that we do not barcode samples before pooling and sequencing. 
This can greatly facilitate sample handling and reduce library preparation costs. Thus, 
PHB has the potential to drastically lower genotyping costs for certain multiparent 
population designs. We demonstrate the utility of PHB by obtaining high-resolution 
genotypes of 96 segregants from 12 yeast crosses, achieving over a 90% reduction in 
sample preparation costs relative to non-pooled sequencing. 
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Results and Discussion 
 
An overview of strategies for pooled genotyping 
A common strategy to lower genotyping costs involves pooling samples and sequencing 
short reads. Typically, molecular barcodes are employed as a method of distinguishing 
between distinct sequencing libraries prepared from individual samples but sequenced 
in a single pool. Known barcode sequences ligated to fragments within each 
sequencing library allow in silico sorting of reads according to their library of origin. 
Notably, this strategy requires separate library preparation steps for each sample to be 
genotyped. However, pooling samples for sequencing and in silico sorting by sample 
does not always require molecular barcodes. A major advantage of pooling without 
using barcodes is that samples can be pooled as early as the DNA extraction step, 
facilitating sample handling and spreading the costs of library preparation across 
multiple samples. We will refer to this method of pooling as raw pooling. 
 
Raw pooling followed by short-read sequencing can be used for many purposes 
including variant discovery, allele frequency estimation, and sample abundance 
estimation (Futschik and Schlötterer 2010; Eskin et al. 2013). Genotyping individual 
samples combined in raw pools requires more careful design of the pools, but is still 
useful in a wide variety of circumstances. For example, barcodes would be unnecessary 
for genotyping one individual from each of two diverse species with sequenced 
genomes – say, a human and a fruit fly, where even coding regions show only ~45% 
sequence identity (Shih et al. 2015). In this example, read origin could nearly always be 
assigned correctly as human or fly because of the high divergence between the 
species. At another extreme, if one could obtain very long multi-megabase reads with 
high accuracy, it would be possible to accurately genotype pooled DNA samples of two 
humans from different geographic regions using known population-specific variation to 
assign each long read (haplotype) to a sample. Indeed, with infinitely long read lengths 
and no sequencing errors, only a single marker of unique ancestry on each 
chromosome would be required to ascertain which chromosomes are found together in 
a single individual and genotype with perfect fidelity. More generally, the key metric 
governing success of a raw pooling approach is the fraction of reads overlapping 
polymorphisms that uniquely distinguish a sample. The space of possible read lengths 
and minimum pairwise divergence between all samples in a pool can be viewed as a 
landscape where the feasibility of raw pooling is a joint function of these two parameters 
(Figure 1). 
 
Private haplotype barcoding reduces sample handling and library preparation costs  
The construction of multiparent populations begins with the selection of parental lines, 
with available high-resolution genotype data, that will contribute ancestry to offspring in 
the mapping population via a defined breeding scheme. Thus, genotyping offspring that 
comprise a multiparent mapping population is a simpler task than genotyping a random 
selection of individuals from a natural population. Specifically, genotyping these 
offspring can be thought of as tracing the inheritance of segments of the parental 
genomes in recombinant offspring. PHB is a simple strategy for raw pooling that is 
particularly useful for genotyping of certain multiparent populations. Because PHB 
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involves genotyping of raw pools, it results in significant reductions in sample handling 
and library preparation costs in addition to the reduced sequencing costs shared with 
any pooled genotyping technique. 
 
PHB is a flexible method that may be most clearly illustrated with an example. The 
strategy involves careful pooling of individuals and computational deconvolution of 
patterns of haplotype inheritance from the pooled sequencing data. Specifically, we pool 
samples in such a way that every individual has a portion of ancestry that is unique to 
the pool (we note that other applications of the method could result in all of each 
individual’s ancestry being unique to the pool). For example, Figure 2A shows the 
design of a budding yeast (Saccharomyces cerevisiae) multiparent population where 
each of twelve diverse parental lines are mated to a common “reference” parent and F2 
offspring are generated to comprise the mapping population. In this example, one F2 
individual from each cross can be combined into a single pool (Figure 2B) and 
haplotypes inherited from the twelve diverse parental lines can be traced using 
polymorphisms unique to these parents. Inheritance from the reference parent is 
inferred to have occurred elsewhere in the genome. This pooling strategy reduces labor 
and library preparation costs 12-fold in this example.  
 
PHB could also be applied fruitfully for genotyping other multiparent populations or in 
other quantitative genetic studies. A prerequisite for PHB is that at least part of the 
genome of each individual in a pool is unique to that pool. Thus, PHB cannot be used to 
genotype offspring from a multiparent population design where every individual has an 
equal expected genetic contribution from each founder parent – for example, 
multiparent recombinant inbred lines such as Collaborative Cross mice or Arabidopsis 
thaliana MAGIC lines (Churchill et al. 2004; Kover et al. 2009). However, PHB can be 
used to genotype multiparent populations where individuals that constitute the pool 
have unique ancestry, and where the non-unique portion of their ancestry can be 
inferred. Examples of such multiparent populations include the maize nested 
association mapping population (Yu et al. 2008), the Drosophila synthetic population 
resource (King et al. 2012a), and the yeast example shown in Figure 2. More broadly, 
PHB is applicable to breeding designs where individuals are not exchangeable and can 
be pooled in such a fashion that ancestral haplotypes can be traced to unique 
individuals in each pool. Although PHB is not limited to applications involving 
multiparent mapping populations, it may be particularly pertinent for such populations 
because they tend to be composed of individuals with high genomic sequence diversity 
and haplotype blocks that are much longer than short read sequence lengths. 
 
PHB accurately genotypes yeast segregants 
To demonstrate the power of PHB for accurately inferring genotypes from a pooled 
sequencing library, we obtained 96 yeast segregants according to the breeding design 
shown in Figure 2A. Specifically, we crossed each of twelve diverse parental lines to a 
common “reference” parent and generated eight F2 offspring from each cross to 
comprise the population. This design is conveniently suited to plate-based sample 
handling approaches (Figure 2B). To carry out PHB to obtain genotypes, we pooled 
rows of the plate (Figure 2B). Note that, for a given row, each haploid segregant is 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2017. ; https://doi.org/10.1101/116582doi: bioRxiv preprint 

https://doi.org/10.1101/116582
http://creativecommons.org/licenses/by-nc-nd/4.0/


expected to inherit half of its genome from the common reference parent and the other 
half from one of the diverse set of twelve other parents (with this latter parent unique to 
the pool). 
 
After pooling cells from each row of the plate, extracting DNA, and carrying out library 
preparation for short-read sequencing, we obtained millions of short reads from each 
pool (Table 1). Each parent contributing ancestry to the population has a fully 
sequenced, de novo-assembled genome (Strope et al. 2015). We mapped the short 
reads to a combined genome of all thirteen parents, with a separate contig for each 
chromosome in each parent (the pool genome). Overall, ~97% of reads aligned to at 
least one genomic locus in the pool genome, with ~5% mapping uniquely to the 
reference strain and 0.5–2.5% mapping uniquely to one of the other twelve parental 
strains (Table 1). The higher rate of reads mapping to the reference genome reflects the 
fact that all individuals in the pool are expected to inherit half of their genomes from the 
reference strain. These rates of unique mappings are much lower than the percentage 
of reads (~86%) that uniquely map to the reference genome alone, as opposed to the 
pool genome. This reflects the fact that many reads do not overlap haplotypes that are 
private to a single ancestor of the pool. Nevertheless, there remains substantial 
information about the ancestry of blocks inherited from parental strains for each 
individual sequenced as part of a pool.  
 
Figure 3A shows coverage of uniquely mapping reads in one pooled library across the 
genome of strain YJM1701, a parental strain contributing ancestry to exactly one 
segregant in the pool. It is apparent that large blocks of the genome show high read 
depth while the remaining blocks are very sparsely covered. The blocks with high read 
depth are composed of many short reads overlapping YJM1701 haplotypes that are 
unique to the pool, and thus reflect inheritance of that genomic segment from the 
YJM1701 parent. Conversely, the sparsely covered blocks have few uniquely mapping 
reads and reflect ancestry of S288c, the reference strain common to all individuals in 
the pool. 
 
A naïve approach to inferring ancestry quantitatively would be to simply smooth read 
coverage across the genome of each non-reference parent unique to the pool and 
employ a genomic window-based filter to obtain estimates of ancestry originating from 
reference versus non-reference parents. Instead, we implemented an HMM that 
provides probabilistic estimates of the genotypes underlying each segregant’s genome. 
We chose this more sophisticated HMM approach for two reasons. First, the HMM is a 
way to use the machinery of probability theory to translate from depth of sequencing 
coverage across a particular bin to a quantitative measure of our confidence in ancestry 
within that bin. This provides genotype probabilities that would be suitable for QTL 
mapping. Second, the HMM incorporates information from neighboring bins to inform 
our confidence in the ancestry calls. 
 
In this HMM, we examine read depth in 7.5kb bins tiling across the genome of each 
non-reference strain (parent j) that contributes ancestry to the pool (i.e. ancestry 
traceable to one individual in the pool). Following our intuition from above, bins with 
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many reads likely represent a genomic segment inherited from parent j, while bins with 
few reads likely represent either inheritance from the reference parent or bins with low 
mappability (e.g. due to low sequence complexity). The HMM has two underlying states 
corresponding to reference ancestry and parent j ancestry. Given the total number of 
reads mapping uniquely to parent j’s genome, read depth counts are distributed 
binomially to each bin. We calibrate bin-specific “success” probabilities using simulation 
(Methods). In the reference ancestry state, reads are effectively invisible since this 
ancestry is not unique to the pool, so reads are emitted at bin-specific background error 
rates. In the parent j ancestry state, reads are emitted at higher bin-specific rates. This 
HMM could be modified to incorporate inference about diploid ancestry in non-inbred 
diploid individuals, but we do not explore this further as the end product of many 
multiparent populations is a set of haploid or inbred diploid lines. 
 
This approach allowed us to accurately resolve genotypes of the yeast segregants with 
high confidence. Figure 3B shows smoothed ancestry probabilities superimposed over 
read coverage data for chromosome II, demonstrating that estimates of ancestry match 
intuition. Figure 3C shows data across the same chromosome as Figure 3B but for one 
of the least diverse non-reference strains in the pool; the similar positions of inherited 
segments of non-reference ancestry in Figures 3B-C are merely coincidental. Across all 
yeast segregants that we sequenced, genotype probabilities were strongly bimodal 
(Figure 4A), with >96% of genomic segments assigned a probability >99% of ancestry 
from one parent. Thus, genotypes can be confidently assigned as originating from one 
of two possible haplotypes for the vast majority of the genome.  
 
To objectively assess the accuracy of the genotypes we obtained using PHB, we 
individually sequenced the genomes (unpooled data) of four segregants that were 
present in PHB pools. We chose the four segregants such that the unique parent of 
each varied in terms of its “uniqueness” among the thirteen ancestors of the population: 
one parent was among the most diverse, one was of intermediate diversity, and two 
were among the least diverse. Figure 3D compares pooled and unpooled data for the 
segregants shown in Figure 3B-C. Using our unpooled data, we inferred switches in 
ancestry representing locations of recombination breakpoints, and compared these 
genomic locations to those inferred using PHB. In general, the locations of breakpoints 
inferred via PHB were highly accurate, with breakpoints estimated using pooled data 
within 3.5kb (median) of their estimate in the unpooled data (Figure 4B). Of 166 
breakpoints inferred using unpooled data, 141 (87%) were called in our pooled data. Of 
the 25 missed calls, all fell into one of two categories: (1) two nearby breakpoints 
constituting a small block of ancestry (median 38kb, N=6), or (2) a breakpoint near the 
end of the chromosome (median 34.6kb from end, N=19). There were also 9 
breakpoints called in the pooled data not found in the unpooled data, all of which fell 
into these same two categories. Fortunately, both types of missed calls affect a small 
portion of the complete genome (for these four segregants, 0.5%-6.1%). Thus, PHB 
allows us to accurately and efficiently reconstruct genotypes of offspring sequenced in 
an unlabeled pool. 
 
Using tetrad structure improves genotyping accuracy and resolution 
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A peculiarity of yeast biology is that the ascus that contains the four products of a single 
meiosis (a tetrad) can be physically isolated and each of the four segregants, or spores, 
can be separated and grown into a colony. Since we tracked spore ancestry when 
crossing strains to obtain segregants (Figure 2), we developed an alternative HMM for 
analyzing PHB data that utilizes this tetrad information. Because each tetrad results 
from a single meiosis, our expectation according to the principles of Mendelian 
inheritance is that across the tetrad the parental alleles at any genomic locus should 
show 2:2 segregation in the offspring (Figure 5A, 5B). This HMM jointly models read 
count data arising from a genomic locus in each of four separate pooled sequencing 
runs that together contain all the products of twelve separate meioses. The HMM is run 
separately for each parent (which we will refer to as parent j) that uniquely distinguishes 
an individual in the pools. 
 
The states in this model represent the six different ways in which parent j ancestry can 
be inherited in two of four segregants. The HMM directly models read counts in each bin 
such that, in each hidden state, we expect the bulk of reads to be divided equally 
between the two segregants in each cross that inherited that genomic segment from 
parent j and only a few reads (errors due to sequencing errors or mismapped reads) to 
map to the two segregants that inherited from the reference parent. We assume that 
crossovers are non-overlapping, constraining transitions between states to those that 
can be accessed by a single crossover. Figures 5A and 5B show ancestry probabilities 
derived from this HMM superimposed over the raw coverage data. It is apparent that 
ancestry calls match our intuition based on the coverage data. 
 
As in our simpler model above, genotype probabilities across all segregants were 
strongly bimodal (Figure 5C), with >97% of genomic segments assigned a probability 
>99% of ancestry from one parent. Thus, genotypes can be confidently assigned as 
originating from one of two possible haplotypes for the vast majority of the genome. We 
compared recombination breakpoint calls using unpooled data as above, and found that 
incorporating meiotic expectations in the model further improved the accuracy and 
resolution of our calls. Specifically, our estimates using the pooled tetrad HMM were 
within 2.1kb (median) of the breakpoint locations called in unpooled data, as compared 
to 3.5kb (median) for the simpler HMM above. We also found fewer missed calls and 
false positive calls: of 169 breakpoints inferred using unpooled data, three were missed 
in pooled data and six incorrect breakpoints were called in the pooled data. Again, these 
breakpoints were either small blocks of ancestry (<15kb; N=6) or near (<40kb) the end 
of a chromosome (N=3). As above, these types of missed calls affected only a small 
portion of the complete genome (for these four segregants, 0%-0.6%). 
 
Cost savings 
How cost-effective is the PHB approach for resolving genotypes? This question is highly 
dependent on the specific details of a particular experiment. For the yeast segregants 
detailed in this paper, we achieved ~92% savings in sample preparation costs by 
pooling using PHB (relative to non-pooled sequencing). This estimate excludes in-
house labor costs, which makes it highly conservative. Additionally, the PHB strategy 
greatly facilitates sample handling. In this example, we pooled cultures after growing 
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cells to saturation, which allowed us to perform only 12 DNA extractions and 12 library 
preparations instead of the 96 that would be required for a strategy not utilizing pooling. 
Note that, while the example described above results in a small mapping population 
(N=96) that lacks substantial power for detecting and resolving QTL, the savings in 
library preparation costs and ease in sample handling scale linearly with size; thus, the 
same principles could be used to generate a far larger population. 
 
Conclusions 
In this paper, we describe a method for pooled genotyping of offspring from multiple 
genetic crosses, such as those that that constitute multiparent populations. This method 
takes advantage of the fact that genotyping of multiparent populations can be 
conceptualized as tracing the inheritance of genomic segments of the population 
founders in recombinant offspring. We develop and test HMMs to genotype yeast 
segregants sequenced in a raw pool. These HMMs gave excellent accuracy and 
resolution for genotyping the F2 segregants we describe and may be useful for other 
applications as well. For some applications an even more powerful method would be to 
explicitly examine each private haplotype discriminating individuals in the pool and to 
utilize base quality scores and read mapping qualities to calibrate a probability that the 
haplotype was seen in the pool. Armed with this probability and an accurate genetic 
map, one could implement an HMM to infer genotype probabilities (Gatti et al. 2014) 
that avoids binning and counting reads altogether. 
 
Although PHB could conceivably be applied in many different scenarios, it is clear that 
the strategy requires genetically diverse individuals in order to produce useful output. 
How diverse should the individuals composing each pool be? This question cannot be 
answered in general terms because the solution depends on biological factors specific 
to the organism and details of experimental design that are specific to the study. There 
are several factors important to any application of PHB, including the density of uniquely 
distinguishing polymorphisms across the genome, the expected haplotype block size, 
genome size, sequencing depth and read length, and the user’s desired confidence in 
genotype calls. Large haplotype blocks, a small genome, high read depth and long 
reads, and a high density (and relatively even distribution) of uniquely distinguishing 
polymorphisms will all result in improved ability to trace ancestry of genomic segments 
from parents to sequenced offspring. These issues are best resolved by conducting 
simulations of a short-read sequencing experiment using realistic sequencing error 
profiles and generating reads from offspring with a known genome derived via the 
desired breeding design, in order to empirically explore the accuracy of pooled 
genotyping using PHB. The strategy has built-in tunability in the sense that the pooling 
can be made more aggressive to maximize cost and labor savings or less aggressive to 
increase confidence in ancestry calls. 
 
When does employing PHB make the most sense? The strategy is applicable for 
multiparent population designs where individuals are not exchangeable and can be 
pooled such that each individual in the pool has some unique ancestry. Given a 
compatible breeding design, the PHB strategy is most advantageous when library 
preparation constitutes a significant portion of the total project cost. This will be 
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particularly likely for organisms with small- to medium-sized genomes, but will continue 
to be accentuated as sequencing throughput increases and costs fall. Furthermore, the 
strategy could be creatively applied to organisms with larger genomes in concert with 
techniques for reduced-representation genome sequencing (e.g. Peterson et al. 2012). 
PHB might be particularly pertinent for low budget scenarios such as investigators 
studying non-model systems or a single laboratory creating a mapping population to 
consider a question of particular interest. Aside from cost considerations, the PHB 
strategy also has potentially beneficial logistical advantages. In particular, for very large 
mapping populations (thousands of individuals) where sample handling is significant, 
PHB has the potential to reduce the number of samples by an order of magnitude or 
more. 
 
 
Methods 
 
Yeast crosses and generation of F2 segregants 
We crossed a haploid, heterothallic ρ0 strain isogenic with S288c (ho∆::kanMX4 MATα 
ρ0) to each of twelve other strains (ho∆::loxP MATa ρ+; for details of strains used in this 
study, see Supplementary Table 1). We crossed a ρ0 strain to ρ+ strains to control for 
mitochondrial ancestry. In contrast to higher eukaryotes, offspring from a ρ+ x ρ+ S. 
cerevisiae cross possess highly recombinant mitochondria (Nunnari et al. 1997; Solieri 
2010). A ρ0 x ρ+ cross thus allows for the control of mitochondrial ancestry and 
minimizes this potential confounding factor. All strains used (and thus the F2 strains 
generated in this study) lack auxotrophic mutations, which can be both debilitating and 
environmentally limiting. 
 
We selected diploids and streaked for single colonies on YP(EG) (1% Yeast Extract, 2% 
Bacto Peptone, 1% ethanol, 1% glycerol, 2% Bacto Agar) + 200mg/L G418. In each 
tetrad we verified 2:2 segregation of G418 resistance by testing for growth on YPD (1% 
Yeast Extract, 2% Bacto Peptone, 2% dextrose, 2% Bacto Agar) + 200mg/L G418 and 
2:2 segregation of mating type by PCR of the MAT locus. For each segregant, we also 
tested at least four restriction fragment length polymorphisms (RFLPs) that together 
uniquely distinguished pairs of the 13 strains studied, in order to verify expectations of 
ancestry and confirm 2:2 segregation of the RFLPs within each tetrad. The strain 
backgrounds that we chose for this study possess collinear genomes with no major 
translocations or known large inversions (Strope et al. 2015). 
 
Sample preparation for genotyping of yeast segregants 
We revived segregants from frozen stocks and grew overnight in YPD at 30C. We 
transferred a toothpick of cells for each segregant to a different well containing 200ul 
YPD in a 96-well round-bottom plate. We grew these cultures for 48 hours to ensure 
saturation. To create pools we combined the full volumes of each well in every row of 
the plate, which resulted in eight pools. We extracted DNA from each pool using the 
Qiagen Genomic-tip kit. We performed library preparation using recommended Illumina 
protocols and sequenced 101bp paired-end reads on an Illumina HiSeq machine. 
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Read mapping, counting, and coordinate conversion 
For all genomic analyses of yeast strains in this study, we used full genomes 
sequenced and de novo assembled by (Strope et al. 2015). We mapped short reads 
using bwa mem v0.7.12 (Li and Durbin 2009) and kept reads with a mapping quality of 
at least ten. We also tested mapping only perfectly matching reads using BBMap v35.x 
(https://sourceforge.net/projects/bbmap/) and found very similar overall results (data not 
shown). We sorted and manipulated bam files and marked duplicates using samtools 
v0.1.19 (Li et al. 2009) and Picard tools 1.101 (http://broadinstitute.github.io/picard). We 
used bedtools v2.25.0 to count reads mapping to bins of defined sizes (Quinlan and Hall 
2010). To convert coordinates between the reference S288c genome and de novo 
assembled non-reference strain genomes we used liftOver (Hinrichs et al. 2006) 
 
Hidden Markov model for PHB genotyping 
We implemented an HMM that provides probabilistic estimates of ancestry across each 
segregant’s genome that is sequenced in a pool. For a single segregant present in a 
pool, only reads that uniquely map to one of the 𝑗 = 1,… ,12 non-reference strains are 
visible evidence of inheritance from that segregant’s (known) parents, since reference 
strain ancestry is shared by all members of the pool (Figure 2). Thus, reference strain 
ancestry in a particular segregant must be inferred by the absence of reads uniquely 
attributable to parent 𝑗 at a particular genomic locus. We examine read counts in 7.5kb 
bins tiling across the genome of each non-reference strain. Using the more 
sophisticated HMM incorporating tetrad information as described below, we examined a 
range of bin sizes and found the most stable estimates of recombination breakpoint 
count for bins between 5-10kb (Supplementary Figure 1). 
 
Bins with many reads likely represent a genomic segment inherited from non-reference 
parent 𝑗, while bins with few reads likely represent either inheritance from the reference 
parent or bins with low mappability. This HMM has two underlying states – reference 
ancestry and parent 𝑗 ancestry. In both states, reads are emitted according to the 
binomial distribution, with size equal to the total number of reads mapping uniquely to 
parent 𝑗 across the genome and bin-specific “success” probabilities. In the reference 
ancestry state, reads are effectively invisible since this ancestry is not unique to the 
pool, so reads are emitted at bin-specific background error rates. In the parent 𝑗 
ancestry state, reads are also emitted at bin-specific rates. We used bin-specific 
probabilities because bins with low mappability are expected to have few uniquely 
mapping reads in either ancestral state, and factors such as sequence complexity and 
the density of private variation are expected to lead to large variability in read coverage 
density between bins. In order to calibrate these bin-specific probabilities as accurately 
as possible, we simulated reads from hybrid genomes using dwgsim v0.1.10 
(https://github.com/nh13/DWGSIM) and obtained empirical estimates of the fraction of 
all uniquely mapping simulated reads within each bin. Specifically, we conducted 
multiple simulations where half of a hypothetical segregant’s genome was inherited from 
parent j and the other half from the reference strain, mapped reads to the pool genome 
using the same procedures as the real data, and tallied the fraction that mapped to each 
bin. For transitions between hidden states (switches in ancestry), we calculate a 
transition probability 𝑐 (assumed to be constant across the genome) based on the size 
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of genomic bins and an approximate average recombination rate in the yeast genome of 
one centiMorgan per two kilobases. For example, for windows of size 100bp, the 
transition probability between states separated by one recombination event would be 
𝑐 = 100× !.!"

!"""
= 5×10!!.   

 
We implemented the HMM described above using the python package hmmlearn v0.2.0 
(https://github.com/hmmlearn/hmmlearn) and used this software to obtain posterior 
probabilities of ancestry for each bin. Before providing read coverage counts to the 
HMM we used the R package mmand (https://github.com/jonclayden/mmand) to apply a 
median filter of size 11 in order to sharpen edges at sites of breakpoints. After running 
the HMM and obtaining posterior probabilities of ancestry, we rounded probabilities to 
call blocks of ancestry and infer the locations of breakpoints. We filtered out any 
ancestry blocks supported by less than three bins as crossover interference suggests 
that such small blocks are likely spurious. 
 
Hidden Markov model for yeast tetrad genotypes 
We implemented an HMM that utilizes information on segregant relatedness that is 
known due to tetrad structure. Since each tetrad results from a single meiosis, our 
expectation according to the principles of Mendelian inheritance is that parental alleles 
at any genomic locus should show 2:2 segregation in the offspring. This assumption is 
violated at sites of allelic gene conversion, but such conversion tracts should be 
relatively short and should not strongly influence our results.  
 
As above, reads uniquely mapping to one of the 𝑗 = 1,… ,12 non-reference strains are 
evidence of inheritance from that segregant’s non-reference parent, since reference 
strain ancestry is shared by all members of a pool, and reference strain ancestry must 
be inferred by the absence of reads uniquely attributable to parent 𝑗 at a particular 
genomic locus. Our HMM is run separately for each of the 12 non-reference parents but 
simultaneously on data from four pools. Hidden states in the model represent the 
(!!) = 6 different possible ways in which the ancestry of two parents (A and B) can be 
partitioned 2:2 among the four spores in a tetrad: AABB, ABAB, ABBA, BAAB, BABA, 
and BBAA. Data emitted by each hidden state is four-dimensional and represents read 
counts (of uniquely mapping reads) across genomic bin 𝑖 for each of the four spores in 
the tetrad. We model this data as multinomially distributed conditional on the total read 
coverage observed in bin 𝑖. Since we expect to observe only reads attributable to the 
non-reference parent, in the ideal case a bin with, say, 800 total reads would show ~400 
reads in each of two pools and ~0 reads in the other two pools (data qualitatively 
matching this pattern is apparent in Figure 5A). In practice, mismapped reads and 
sequencing errors will result in some reads mapping to bin 𝑖 even in the two pools 
without ancestry. Moreover, reads derived from pools with ancestry will not be split 
50:50 due to differences in sequencing coverage between pools and variation in the 
abundance of each segregant within pools. Thus, we initialize emission probabilities 
randomly and optimize them as described below. 
 
Transitions between states correspond to switches in patterns of ancestry that occur 
due to recombination events. For simplicity we assume zero probability of transitioning 
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between states separated by more than one recombination event (e.g. AABB à BBAA). 
As above, for transitions between states separated by exactly one recombination event, 
we based the transition probability 𝑐 on a rough estimate of the average rate of 
recombination in the yeast genome (1cM/2kb). From any of the six states, there is one 
inaccessible state (requiring two recombination events) and four accessible states 
(requiring one recombination event). Thus the probability of remaining in the current 
state is 1− 4𝑐.  
 
Finally, we observed a chromosome-wide loss of heterozygosity in the two tetrads from 
the cross between YJM1617 and YJM1759, which we attribute to an event which 
occurred during the F1 mating of these two strains. Rather than discarding data arising 
from these segregants, we added a seventh hidden state where we expect to observe 
approximately equal read counts within bins tiling across an entire chromosome in 
offspring from this cross. We found that this method resulted in ancestry probabilities 
that matched intuition as well as results from segregants without loss of heterozygosity 
events (data not shown). 
 
We implemented this HMM using hmmlearn v0.2.0 as above. For each tetrad, we ran 
the HMM at least six times using randomly initialized emission probabilities and used 
the Baum-Welch algorithm to optimize transition and emission probabilities. We used 
parameters from the model with the highest likelihood (typically, all runs produced 
likelihoods that were substantially similar) to calculate posterior probabilities of each 
hidden state for every genomic bin. Using this matrix of probabilities for each of the six 
states, the probability that each segment of a particular segregant’s genome is derived 
from parent 𝑗 can be computed by summing posterior probabilities for all states 
matching this criterion. We filtered out any ancestry blocks supported by less than three 
bins as crossover interference suggests that such small blocks are likely spurious. 
 
Data and reagent availability 
A pipeline to analyze the pooled sequencing experiment described in this study, as well 
as python code implementing the two HMMs described above, are available at 
github.com/daskelly/phb_paper. Yeast strains used in this study are available upon 
request. 
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Tables: 
 
Table 1 – Mapping statistics from pooled yeast DNA sequencing 

sample Reads 
(millions) 

Percent of reads that map: 

to ref uniquely 
to ref 

to pool 
genome 

uniquely to pool genome 

total ref nonref 
range* 

P
oo

le
d 

A 47.5 95.5 86.2 97.6 18.1 5.2 0.5–1.7 
B 46.6 94.9 85.4 97.3 19.0 5.2 0.6–2.4 
C 48.0 95.5 85.8 97.4 18.3 5.4 0.6–1.8 
D 51.8 95.6 86.3 97.9 18.5 5.5 0.6–2.4 
E 49.8 95.4 86.1 97.5 18.7 5.4 0.5–2.7 
F 48.9 95.3 86.3 97.3 18.3 5.4 0.5–1.8 
G 45.6 95.5 86.6 97.6 19.2 5.2 0.6–2.4 
H 44.3 94.7 85.5 97.3 19.1 5.3 0.5–2.1  

co
nt

ro
l A10 8.4 95.8 83.7 97.6 47.9 21.3 26.6 

B7 10.2 95.3 86.7 97.2 51.0 20.8 30.1 
G11 14.1 95.8 87.2 96.4 62.6 25.5 37.1 
H3 7.0 94.9 85.8 95.7 54.3 22.7 31.6 

*For control samples this column lists the percent of reads mapping uniquely to the 
single non-reference strain that contributed ancestry to the segregant sequenced 
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Figures: 
 
Figure 1: The feasibility of raw pooling as a joint function of read length and pool 
sequence diversity. Feasibility is quantified as the fraction of reads overlapping 
polymorphic sites, a significant fraction of which are assumed to be uniquely 
distinguishing either alone or in combination. For simplicity, we calculate this quantity 
using a crude model where polymorphisms are modeled as occurring randomly along 
an infinitely long chromosome. The distance between consecutive polymorphisms is 
exponentially distributed with rate parameter equal to the polymorphism rate. Then the 
chance of a read of N base pairs overlapping at least one polymorphism is the 
probability that the distance between any two polymorphisms is less than N bases, 
which is calculated analytically from the exponential distribution function. The box 
outlined in a dark blue dotted line indicates the approximate region of the plot that is 
applicable to studies using current short-read technology and populations with levels of 
diversity that are roughly in line with the yeast strains studied here. 
 
Figure 2: Design of the PHB genotyping study. (A) The breeding design of a yeast 
multiparent mapping population where each of twelve diverse parental lines are mated 
to a common “reference” parent and eight F2 offspring are generated from each cross. 
Large X represents a cross, with arrows leading to a depiction of the resulting diploid 
hybrid. Dotted line represents meiosis. Offspring are shown as a tetrad, with the four 
haploid spores that result from a single round of meiosis encapsulated in a sac known 
as an ascus. Two ascii per cross were analyzed in this study. (B) The design shown in 
(A) is conveniently suited to plate-based sample handling approaches. To carry out 
PHB for genotyping, we pooled rows of the plate. 
 
Figure 3: Pooled sequencing read depth reveals blocks of ancestry inherited from 
reference (YJM1617, isogenic with S288c) or non-reference parental strains. (A) Depth 
of uniquely mapping reads in 3kb bins tiling across all 16 chromosomes for one spore 
produced by the YJM1617-YJM1701 hybrid and sequenced in a pooled library. Note the 
clear boundaries between blocks of ancestry inherited from the non-reference parent. 
Read depths are trimmed at a maximum of 300 reads as indicated by axis label on the 
left. Roman numerals indicate individual chromosomes, each bounded by a gray box. 
The large empty space on chromosome XII is the highly repetitive rDNA array. (B) 
Detailed view of coverage across chromosome II, with posterior probabilities of non-
reference ancestry overlain on each read depth plot. The magnitude of the posterior 
probability is scaled to the same range as the read depths. Red triangles indicate 
locations of inferred recombination breakpoints. (C) The same plot as shown in (B), but 
for a spore with ancestry from a non-reference parent (YJM1753) that is among the 
least diverged in our pool from the common reference. The read depth threshold is 
~40% of that in (A) and (B) but segments of ancestry are still visible. (D) Comparison of 
ancestry-distinguishing read depth for pooled data versus individually sequenced 
segregants. Dark grey lines depict ancestry from the reference strain and other colors 
match subplots (A)-(C). Note much higher read depths in unpooled data. 
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Figure 4: PHB efficiently and accurately infers genotypes of recombinant offspring. (A) 
Histogram of the probability of reference (YJM1617, isogenic with S288c) ancestry 
across all 7.5kb bins tiling the yeast genome. This histogram shows probabilities from 
all pooled segregants sequenced in this study. (B) Histogram of the accuracy of 
recombination breakpoint estimation. This quantity is measured as the absolute 
difference between breakpoints inferred using PHB and those calculated by individually 
sequencing segregants and inferring breakpoint locations. Four segregants were 
sequenced individually and this histogram combines results across all four. 
 
Figure 5: Read depth reveals blocks of ancestry inherited according to Mendelian 
expectations in the four spores resulting from a single meiosis. (A) Depth of uniquely 
mapping reads in 3kb bins tiling across chromosome II for four spores from a tetrad 
produced by a reference-YJM1701 hybrid. The four spores were each sequenced as 
members of different pools. Read depth plots across the chromosome are stacked for 
the four spores. Note the clear boundaries between blocks of ancestry inherited from 
parents and plainly visible breakpoints due to recombination. Read depths are trimmed 
at a maximum of 200 reads as indicated by axis labels on the left. Posterior probabilities 
of non-reference ancestry from the HMM are overlain on each read depth plot, scaled to 
the same range as the read depths. Red triangles indicate locations of inferred 
recombination breakpoints. (B) Read depth across chromosome II as shown in (A), but 
for a tetrad with a non-reference parent (YJM1753) that is among the least diverged in 
the pool, relative to the common reference. The read depth threshold is 20% that in (A) 
but segments of ancestry are still clearly visible and inferences of ancestry match 
intuition. (C) Histogram of the accuracy of recombination breakpoint estimation 
compared between pooled and unpooled data. This histogram is identical to that plotted 
in Figure 4B but using breakpoints inferred with the HMM that uses tetrad information. 
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Figure 2 
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