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Abstract 

Purpose of Review: To outline how ideas from Information Theory may be used to analyze single 

cell data and better understand stem cell behaviour. 

Recent findings: Recent technological breakthroughs in single cell profiling have made it possible 

to interrogate cell-to-cell variability in a multitude of contexts, including the role it plays in stem cell 

dynamics. Here we review how measures from information theory are being used to extract 

biological meaning from the complex, high-dimensional and noisy datasets that arise from single cell 

profiling experiments. We also discuss how concepts linking information theory and statistical 

mechanics are being used to provide insight into cellular identity, variability and dynamics. 

Summary: We provide a brief introduction to some basic notions from information theory and how 

they may be used to understand stem cell identities at the single cell level. We also discuss how work 

in this area might develop in the near future. 

 

Introduction 

Stem cells are characterized by their ability to self-renew and differentiate along multiple distinct 

lineages. Due to these remarkable properties there is much hope for stem cell based therapies in 

regenerative medicine. However, the development of such therapies will require a thorough 

understanding of the molecular mechanisms by which stem cells balance self-renewal and 

differentiation. Since stem cells are often rare (as in the adult) or exist only transiently (as in 

development), recent years have seen a growing focus on using single cell profiling technologies to 

understand stem cell dynamics. These studies have indicated that apparently functionally 

homogeneous stem cell populations can vary widely in their expression of important regulators of 

self-renewal and multipotency. In some cases this variability is driven by dynamic fluctuations of 

important master transcription factors, suggesting that stem cell heterogeneity has an important 
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functional role [1–3]. However, the relationship between molecular heterogeneity and stem cell 

function are still not well understood.  

 

Recent years have seen remarkable advances in single cell sequencing techniques, and it is now 

possible to profile large portions of the genome, or the entire transcriptome, in hundreds to thousands 

of individual cells in a single experiment [4–6]. Advances in single cell epigenetics and proteomics 

are not far behind [7–10]. These advances promise to transform our understanding of cellular 

identities, yet they also produce vast amounts of complex data, making it a significant challenge to 

distinguish meaningful biology from experimental noise. In the context of stem cell dynamics 

numerous reports have indicated that functionally homogeneous stem cell populations, both from the 

adult and the embryo, are highly heterogeneous with respect to their patterns of gene and protein 

expression [11–15] . However, the extent to which this variability plays a functional role, and the 

extent to which it represents variability due to inherent, but non-functional, expression noise are not 

clear. Therefore, in order to understand stem cell function at the individual cell level it has become 

increasingly necessary to use high-throughput profiling techniques to explore co-expression 

dynamics at the single cell level to identify rare (yet potentially functionally important) cells and 

determine how co-expression patterns change over time. The data provided by these experiments are 

fundamentally different from those obtained from measurements on cellular aggregates. While bulk 

methods typically provide estimates of the mean expression of each variable (e.g. gene) profiled over 

all cells in the aggregated sample (perhaps along with estimate of variance when the sample mean of 

multiple replicates are taken), they are not generally well suited to exploring dependencies between 

variables because they are only capable of examining expression patterns on average, not within 

individual cells. By contrast, since single cell methods profile co-expression patterns within 

individual cells they are able to provide a sample from the joint distribution of all the variables being 

profiled and so are much better suited to explore functional relationships between variables. 

Importantly, recent years have seen significant improvements in the efficiency of single cell RNA-

seq methods, which now allow profiling of many tens of thousands of individual cells thereby 

improving estimates of joint expression distributions [6, 16, 17]. The experimental progress made in 

capturing multivariate single cell data has also stimulated research into new analysis techniques that 

are specifically designed to handle high-dimensional single cell data [18, 19]. These new analysis 

methods often make use of classical multivariate statistics and statistical approaches have provided 

insight into many stem cell systems including identification and characterization of mixtures of 

cellular states [20], comparison of different stem cell lines [21], rare cell identification [22] and cell 
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lineage decision making [23].  However, methods from information theory are increasingly also 

being used to better understand how cellular expression patterns determine cellular identities. 

 

Information theory 

Information theory has its roots in Shannon’s work on communication and his famous 1948 paper 

laid out the mathematical theory of information [24, 25]. Shannon realized that in order to quantify 

the information content of a message it is necessary to consider the message’s context, or how 

probable it is. An intuitive understanding of this can be seen in the following example. Consider a 

search for this article using only the last name of one of the authors. Which one is it best to choose? 

The knowledge that ‘Smith’ is a very common last name and ‘MacArthur’ is less common means 

that searching for ‘MacArthur’ is more likely to narrow the search and therefore likely to provide 

more information. The fact that ‘MacArthur’ is a more complex word than ‘Smith’ is irrelevant: it is 

the rarity of each name that dictates which to choose, not the name itself. In the context of gene 

expression, the fact that a cell has 7 transcripts of a particular mRNA does not in itself carry any 

information: this observation requires context in order to understand how much information is gained 

from the measurement. Without the context of how likely a read of 7 transcripts is, the information 

gained from the measurement is unknown (colloquially this is known as Shannon’s zeroth law). So 

how do we calculate information gain? Shannon argued that any measure of information should 

satisfy three basic requirements: monotonicity, independence and branching. Monotonicity ensures 

that the information gained from a question with a wide variety of answers is greater than the 

information gained from the answer to a question with only a few possible answers. For example, to 

identify a specific person an answer to the question “where do they come from?” provides more 

information than an answer to the question “are they female?”. Independence ensures that the total 

information gained from two independent questions should is a sum of the information gained from 

the questions separately. So, for example, the order in which the questions are asked should not 

matter. Lastly, branching ensures that when a series of questions is composed in a tree-like structure, 

the overall information gained by passing along a path through the tree is a weighted sum of the 

information gained from each branch point [25]. 

 

Shannon proved that the following function, which he called the entropy by analogy to the closely 

related thermodynamic entropy, uniquely satisfies these conditions. The Shannon entropy 𝐻 is the 

expected amount of information gained from answering a question for which the probability of 

answer 𝑥 is given by 𝑝 𝑥 ,   
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𝐻(𝑋) = − 𝑝 𝑥 log𝑝 𝑥
!

. 

 

The entropy is a property of the probability distribution 𝑝 𝑥 , in the same way that the mean and 

variance are properties of 𝑝 𝑥 . Informally, the entropy is simply a measure of how “flat” or close to 

uniform 𝑝 𝑥  is, and the “flatter” a distribution is, the greater the entropy and information gained. 

The units of entropy depend on the base of the logarithm: when the logarithm is taken to the base 2, 

as is common in information theory, entropy is measured in bits (one bit is the amount of 

information provided when observing one of two equally likely outcomes, e.g. the flip of a fair coin). 

Alternatively, entropy is measured in nats when using the natural logarithm (as is typically the case 

in statistical mechanics), and in hartleys when using base 10 (one hartley is the amount of 

information provided when observing one of 10 equally likely outcomes, e.g. a uniformly randomly 

chosen decimal digit).   The equation for the entropy given above assumes that the random variable 

𝑋 is discrete. In practice many measures of interest, such as molecular concentrations, are continuous 

and the continuous analogue to the entropy above is known as the differential entropy [26]. In the 

discrete case, the entropy has some useful properties (for example, 𝐻(𝑋) ≥ 0) that are not inherited 

by the differential entropy. To account for these differences, several closely related variations such 

as the Kullback-Leibler divergence (also known as the relative entropy) and its generalizations are 

commonly used to assess similarity between continuous expression distributions [27, 28]. For 

example, the widely-used t-SNE dimensionality reduction algorithm [29] (which has been used in 

several recent stem cell studies to explore heterogeneity in stem cell identities and cluster cell states 

[16, 17, 22, 23]) uses the Kullback-Leibler divergence to assess the similarity between the observed 

co-expression distribution and that obtained by projecting the data to a lower-dimensional space.  

 

Information theory and stem cell biology 

The utility of the entropy in understanding cell identities many be illustrated by returning to our 

example of the measurement of 7 mRNA transcripts in a cell. To gain context to this reading, we 

need to better understand the natural variability of mRNA expression in the cell population of 

interest to determine how unusual this reading is. Consider the following two hypothetical scenarios 

for mRNA expression in a population of stem cells, as shown in Fig. 1A: (1) all cells in the 

population have 7 mRNA transcripts (i.e. 7 is the only answer to the question how many transcripts 

are in the cell? and occurs with probability 1). In this case, since all cells are the same with respect 

to their transcript counts, the observation of 7 transcripts cannot be used to discriminate one cell 

from another, and therefore does not impart any information. Accordingly, the entropy is 𝐻 =

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2017. ; https://doi.org/10.1101/116673doi: bioRxiv preprint 

https://doi.org/10.1101/116673
http://creativecommons.org/licenses/by-nc-nd/4.0/


5	
  

−1 log 1 = 0 bits. (2) Two stem cell subtypes are present in the population (types A and B). Cells 

of type A occur with probability 0 < 𝑝 < 1 and have 7 transcripts, while cells of type B occur with 

probability (1− 𝑝) and have zero transcripts. In this case, the observation of 7 transcripts allows us 

to positively discriminate cells of types A from those of type B and so imparts useful information. 

Furthermore, the amount of information we gain is related to the relative rarity of types A and B. In 

particular, the entropy is given by, 𝐻 = −𝑝 log 𝑝 − 1− 𝑝 log  (1− 𝑝). Thus, when 𝑝 is small, the 

observation of 7 transcripts in a cell is a rare event, but the observation of zero transcripts is a 

common event and so the entropy is low. Conversely, when 𝑝 is large the observation of 7 transcripts 

is a common event while the observation of zero transcripts is a rare event and again the entropy is 

low. However, when cells of both types are common in the population (i.e if 𝑝~0.5) then the entropy 

reaches its maximum. In this example it is worth noting that the fact that cells of type B express no 

transcripts is not relevant to the calculation of entropy, they could have expressed any number of 

transcripts not equal to 7: all that is important is that cells of type B can be distinguished from those 

of type A by their mRNA transcript count.  

In practice we would not expect that all cells express a given mRNA at one of two fixed levels: 

rather, intrinsic noise in gene expression naturally gives rise to variations in gene expression levels 

over time within each individual cell, and within the cell population at any fixed time (see Fig. 1B). 

While it cannot often be calculated explicitly as above, the entropy can nevertheless be estimated 

from experimental data to better understand this natural variation, (it should be noted that entropy 

estimation is subject some technical issues including the effect of data binning and bias on entropy 

estimation [30–32]). For example, it has been suggested that a high degree of cell-cell variability in 

gene expression patterns within a functionally pure population, as quantified by the entropy of the 

joint expression distribution, is characteristic of undifferentiated pluripotent cells [33–35]. Similarly, 

by considering patterns of gene expression in light of a known signaling networks, Teschendorff and 

colleagues have argued that both pluripotent cells and cancer cells are associated with a state of high 

network entropy, characterized by the promiscuous co-expression of important hub proteins [36–38].  

Relatedly, it has been observed that the entropy of gene expression developing tissues increases with 

time in a manner that is closely related to differentiation dynamics [39–41]. 

While the entropy is good at assessing how likely it is that a particular expression value will occur, it 

is not well suited to assessing relationships between co-expression patterns. To do so a related 

measure, the mutual information (MI), is also widely used. Consider 2 discrete random variables, 𝑋 
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and 𝑌, which may be related in some unknown way. The entropy of the joint probability density 

𝑝 𝑥,𝑦   is: 

𝐻 𝑋,𝑌 = − 𝑝 𝑥,𝑦 log   𝑝 𝑥,𝑦
!!

Informally this is a measure of the information content of the joint distribution, but it is not a direct 

measure of association between the two random variables. In order to assess whether one variable 

provides information about the other, the mutual information 𝐼 𝑋;𝑌  may be used [26]. The mutual 

information compares the observed joint probability density with that which would be observed if 

the two random variables were independent. In particular 

𝐼 𝑋;𝑌 = 𝑝 𝑥,𝑦 log
𝑝 𝑥,𝑦
𝑝 𝑥   𝑝 𝑦

!!

,  

  = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻 𝑋,𝑌 ,  

where 𝐻(𝑋)  and 𝐻(𝑌)  are the marginal entropies. If 𝑋  and 𝑌  are independent then 𝑝 𝑥,𝑦 =

𝑝 𝑥   𝑝(𝑦) , so log !(!,!)
! !   !(!)

=    log 1 = 0  for all 𝑥  and 𝑦  and therefore 𝐼 𝑋;𝑌 = 0 . In this case, 

knowledge of one variable does not provide any information about the other variable. More generally 

since 𝐼 𝑋;𝑌 = 𝐼 𝑌;𝑋 ≥ 0  the magnitude of the MI is a measure of the extent to which the 

observed joint distribution deviates from independence: larger values of MI indicate a stronger 

dependency between  𝑋 and 𝑌. The advantage of MI as a measure of association is that does not 

specify in advance the nature of the relationship between 𝑋 and 𝑌 so it can capture non-linear, non-

monotonic, dependencies between variables in a general way that traditional correlation measures 

cannot (see Fig. 1C for some examples). 

Since the mutual information assesses the extent to which two random variables are independent of 

one another, it can be used to identify putative functional relationships between experimentally 

observed variables (e.g. genes or proteins) [42, 43]. For this reason, there has been much interest in 

using information-theoretic methods to infer genetic regulatory networks from gene expression data, 

in order to better understand cellular dynamics. Typically these methods make use of generalizations 

of the MI as well as more advanced information theory concepts to assess co-dependencies between 

multiple variables [44–46]. Recent examples include the use of: the data processing inequality [47, 
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48]; the conditional mutual information, which assess the dependency between 2 random variables, 

conditioned on a third [49]; information-theoretic redundancy, which assesses the extent to which 

observed distributions deviate from the maximum entropy uniform distribution [50] and 

combinations of these measures [51, 52]. In the context of stem cell biology information-based 

network reconstruction methods have been used with some success to identify novel regulators of 

pluripotency and lineage specifiers [53, 54], as well as track changes in network structures during 

cellular differentiation [52, 55]. 

Conclusions 

Here we have summarized some of the ways that information theory can be used in combination 

with multivariate statistics to investigate stem cell identities. Although information-theoretic 

measures are not always intuitive and their practical application needs careful consideration, 

information theory provides a suite of tools that can help make the most of experimentally hard-

earned data. As well as providing improved measures of variability and association, information 

theory also has a natural relationship with statistical mechanics [56, 57], and thereby provides a 

natural approach to the investigation of cellular dynamics.  Statistical mechanics addresses the 

question of how observable ‘macroscopic’ properties of a system arise from unobserved 

‘microscopic’ dynamics. For example, the pressure of a gas in a confined container (a macrostate) 

depends upon the average kinetic energy of the molecules in the gas and can therefore be predicted 

without detailed knowledge of the instantaneous position and velocity of all the individual gas 

molecules involved (a microstate). In the 1950s Jaynes showed that statistical mechanics could be 

derived directly from information-theoretic principles [56, 57]. For example, he observed that the 

Boltzmann distribution, which is ubiquitous in statistical mechanics, arises naturally as the maximum 

entropy probability distribution subject to appropriate physical constraint. It would be interesting to 

see if similar approaches can be used to better understand cell-cell variability in stem cell systems: 

do observed patterns of variability in stem cell populations reflect natural biological constraints? If 

so, what are they? To what extent does cell-cell variability relate to stem cell function? Can a general 

theory of regulated cellular variability be derived using physical and information-theoretic 

principles? Some minor progress has been made towards these aims [33, 58–60] and this is an 

exciting area of current research, yet there is still much to be done. Although the relationships 

between cell-cell variability, entropy and cell function have yet to be fully deciphered, ongoing 

research indicates that information-theoretic measures can provide insight into cellular identities that 

are not apparent from more traditional multivariate statistical methods. We anticipate that advances 
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in the accuracy and reductions in the cost of single cell methods are likely to see increased interest in 

the development and use of these methods in the near future. 

Figure 1: Entropy and Mutual Information  

A) Entropy of hypothetical binary cell types: Scenario 1: All cells have 7 mRNA transcripts and
entropy is zero (there is no uncertainty). Scenario 2: Cells are either type A (7 transcripts), which 

occurs with probability 𝑝, or type B (zero transcripts), which occurs with probability 1 − 𝑝. When 

there is an equal probability of observing either cell type (𝑝 = 0.5), we are maximally uncertain 

about the identity of a randomly drawn cell and the entropy 𝐻 = 1 bit, the same as for tossing a fair 

coin. When there are unequal probabilities, for example when 𝑝 = 0.25, uncertainty is reduced the 

entropy is less than 1 bit. The final panel gives the relationship between entropy and 𝑝 from which it 

can be seen that maximum entropy occurs when 𝑝 = 0.5. 

B) Entropy of distributions: Distributions of transcript abundance are typically not binary, but

rather exhibit a spread of possible outcomes. Examples of a unimodal and a bimodal distribution 

with the same mean and variance, but different entropies are shown. In the unimodal case the 

measures such as the mean and variance may make good sense. However, in the bimodal case the 
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population mean is not characteristic of either of the two subpopulations (it is rare to find a cell with 

the mean level of expression) and the variance as a measure of the spread about this mean is also 

misleading. By contrast the entropy, which measures the amount of uncertainty we have concerning 

the identity of a randomly draw cell from the population, provides useful information about cell-cell 

variability.  

C) Mutual information as a measure of association: Association between two random variables 

can be assessed by Pearson’s correlation coefficient (PCC), which considers the strength of linear 

association, Spearman’s correlation coefficient (SCC) which is based on rankings, and mutual 

information (MI) which assesses how much information one variable provides about the other. All 

three measures can assess linear associations well (left panel), SCC is a good measure of non-linear, 

monotonic associations (middle panel), but neither PCC or SCC are good measures of association for 

non-linear, non-monotonic associations (right panel). However, the MI may be used to determine 

that the two variables are related. 
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