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Abstract 

Alternative pre-mRNA splicing (AS) generates exceptionally diverse transcriptome and 

proteome profiles that critically affect eukaryotic gene expression in different tissues, 

developmental stages and disease. However, current efforts to evaluate tissue-specific AS 

patterns rely completely or partially on an annotated libraries of known gene transcripts, which 

hinders the analysis of AS patterns that are novel or specific to the cell/tissue or for non- or 

poorly annotated genomes. To tackle this problem, we describe a method called the Junction 

Usage Model (JUM) that offers a de novo approach to analyze tissue-specific AS profiles 

without any prior knowledge of the transcriptome. JUM exclusively uses RNA-seq reads mapped 

to splice junctions to construct statistical models and to accurately quantify AS changes, and then 

faithfully reconstructs the detected splice junctions into AS patterns based on their unique 

topological features. Compared to other recent methods, we found that JUM consistently 

identified true novel tissue-specific AS events that could not be identified by other methods, and 

further rejected false positive and/or misclassified AS events. In summary, JUM provides a new 

framework and software that enables the thorough investigation of the dynamic and tissue-

specific AS regulation in a wide range of cells, tissues and organisms.  
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Introduction 

Alternative pre-mRNA splicing (AS) is a major gene regulatory mechanism that greatly expands 

proteomic diversity and serves as a crucial determinant of cell fate and identity. More than 95% 

of human gene transcripts undergo AS that enables one single gene locus to produce multiple, 

and usually functionally distinct pre-mRNA and protein isoforms1,2. AS is under complex 

regulation using a large constellation of RNA-binding proteins that interact with cis-acting RNA 

elements embedded in nuclear pre-mRNA sequences and determine the AS of pre-mRNAs in 

cell- and tissue-specific patterns3,4. Specific AS mRNA isoforms are closely associated with 

distinct cellular states and these different mRNAs affect almost every aspect of cellular function, 

including proliferation, differentiation, apoptosis and migration1,5,6. Furthermore, mutations that 

result in aberrant AS are a major source for human diseases, such as cancer, immune disorders 

and neurodegeneration7-9. Given the role of defects in pre-mRNA splicing in human disease, a 

thorough and comprehensive evaluation of static global AS profiles, as well as the dynamic 

patterns of AS during development, differentiation and in specific tissue types will be critical to 

understand cellular disease states and facilitate the development of screening and therapeutic 

strategies to diagnose, treat and prevent many diseases linked to defects in AS. Examination of 

tissue-specific RNA-seq data sets has already revealed exceptionally diverse and dynamic 

features of AS that are tissue- and developmental stage-specific1,5. However, given this 

complexity the thorough and systematic quantification and analysis of cellular AS profiles 

among a complex array of tissues or cell types remains a major unsolved challenge in the 

bioinformatics of gene expression.             

Recent technical advances in short-read high-throughput Illumina transcriptome 

sequencing (RNA-seq) provides powerful tools with which to investigate AS at the genome-wide 
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scale, but at the same time presents a formidable computational challenge to accurately quantify 

global AS changes from raw RNA-seq data. Previously, a number of computational software 

tools and algorithms have been developed for this purpose7,10-18, and although they apply 

different statistical models, all of these tools rely either completely or partially on a developer- or 

user-defined pre-annotated library of known AS events or an incompletely annotated 

transcriptome. These splice junction annotation libraries can be generated using two different 

approaches: 1) combining known mRNA transcript isoforms and AS patterns from publicly 

available databases, such as the UCSC genome browser and Ensembl; and 2) assembling the 

transcriptome from RNA-seq data in a de novo way. For the first approach, the major caveat is 

that it restricts AS analysis to only previously known or annotated AS events. Many recent RNA-

seq experiments showed that a plethora of novel and functional AS patterns are constantly found 

in biological samples and using pre-built libraries of known AS events underestimates the 

complexity of AS in these samples2,19,20 (Fig. 1a).  Another caveat is that a fixed library of 

annotated AS events (usually compiled from all available tissues and cell type mRNAs from the 

organism in public databases) neglect the dynamic and tissue-specific characteristics of AS. In 

many cases, an annotated splicing event in an AS library can present a distinct pattern in the 

specific sample under study that is different from the annotated pattern21 (Fig. 1b). In this 

scenario, using the fixed, annotated patterns in the library will hinder analysis of the actual AS 

patterns in the specific RNA sample. Some recent methods (such as rMATS15 and MAJIQ18) are 

equipped with a “de novo” working mode, in which the previously annotated AS events are 

supplemented with novel splice junction-implicated AS events in the sample profiled by the 

software. However, the annotated library is still the primary source for AS events, which directly 

affects the accuracy and comprehensiveness of AS analysis and can mislead the detection of 
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novel AS events by the software. The second approach without an annotated library of splice 

junctions on the other hand, can identify novel AS isoforms in the sample and extend AS 

analysis to novel, sample-specific AS events. However, although there have been a few tools that 

offer re-assembling transcriptomes from RNA-seq data using probabilistic models22-26, a precise 

and deterministic ab initio assembly of transcriptomes from shotgun RNA sequencing remains a 

big challenge in the field. Especially for genes that produce multiple transcripts with complex 

AS patterns, it is very difficult to accurately identify all splicing isoforms simply from short 

Illumina sequencing reads, and the difficulty in transcriptome assembly directly affects the 

accuracy of downstream AS analysis. Considering the caveats and difficulties described above, 

there is an urgent need for development of tools that can perform accurate, comprehensive, and 

tissue-specific global AS analysis that do not depend on prior knowledge of annotated AS 

libraries or transcriptome.  

Here, we present a new method called the Junction Usage Model (JUM) that performs de 

novo differential analysis of global AS patterns completely independent of a priori knowledge of 

AS event libraries or transcriptome annotations. JUM utilizes sequence reads that are directly 

mapped over splice junctions to quantify and analyze AS patterns and through evaluating the 

“usage” of splice junctions providing a complete and accurate evaluation of global AS patterns 

that are specific to the biological sample(s) under study. JUM furthermore faithfully re-translates 

the analyzed junctions into AS patterns based on the unique topological features of each pattern. 

Specifically, JUM is equipped with stringent statistical criteria to accurately analyze the AS 

pattern of intron retention, an understudied AS category. JUM provides a new approach to study 

the extraordinarily diverse global cellular AS transcriptome profiles and the dynamic regulation 

of AS, and can be readily applied to a wide range of RNA samples for differential AS analysis 
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with high specificity, accuracy and sensitivity. 

 

Results 

JUM utilizes short sequence reads spanning splice junctions for AS analysis and defines AS 

structures as the basic quantification unit  

Many currently available methods for AS analysis utilize Illumina sequence reads that are 

mapped to a full or partial AS isoform to quantify the levels of that isoform, or reads mapped to 

every exon in the gene transcripts to evaluate if a specific exon is more included or excluded10-

12,14 (Supplemental Fig. 1). JUM, however, exclusively uses sequence reads mapped over splice 

junctions for AS quantification (Fig. 2a), as these reads provide the most direct evidence for the 

splicing of the corresponding intron, and the number of reads mapped to a splice junction is an 

unambiguous measure for the level of splicing. 

From there, JUM defines an AS structure as the basic quantification unit for AS analysis.  

An AS structure is a set of splice junctions that share the same start genomic coordinate or the 

same ending coordinate, with each splice junction in an AS structure defined as a sub-AS-

junction (Fig. 2a,2b). The AS structures are the essential elements that form the conventionally 

recognized AS patterns: alternative 5’ splice site (A5’SS), alternative 3’ splice site (A3’SS), 

cassette exon (CE) and mutually exclusive exons (MXE). For example, an A5’SS or A3’SS 

event is composed of one AS structure with two sub-AS-junctions (Fig. 2b); a CE event is 

composed of two AS structures, each with two sub-AS-junctions (Fig. 2c); a MXE event with 

two mutually exclusive exons is composed of two AS structures, each with two sub-AS-junctions 

(Fig. 2d). After the profiling of all AS structures, JUM counts sequence reads that are mapped to 

each sub-AS-junction in these AS structures under each biological condition, and defines the 
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read count as the “usage” of a sub-AS-junction in the corresponding AS structure under that 

condition.   

 

JUM performs global differential AS analysis by quantifying the differential usage of sub-

AS-junctions in AS structures upon various biological conditions 

To quantify global AS profile changes, JUM compares the usage of every profiled sub-AS-

junction in its corresponding AS structure between the control sample and a specific biological 

condition, and identifies all AS structures that contain sub-AS-junctions with differential usage 

(Fig. 3a). To do this, JUM utilizes multiple biological replicates to build robust statistical power 

directly from raw read counts mapped to each sub-AS-junction. JUM models the total number of 

reads that map to a sub-AS-junction as negative binomial distribution (Fig. 3b, Eq. 1). Negative 

binomial distributions have been widely applied in high-throughput sequencing data analysis to 

model read counts, as these models nicely depict the over-dispersion phenomenon observed in 

next-gen sequencing experiments11,27-30. In negative binomial distributions, the variance among 

biological replicates is dependent on the mean through a parameter that describes dispersion 

(Fig. 3b, Eq. 2). To infer the dispersion parameter, JUM applies a similar empirical Bayes 

approach as described28-31. JUM first estimates a dispersion parameter for each sub-AS-junction 

with Cox-Reid-adjusted maximum likelihood. JUM then fits a mean-variance function for all 

sub-AS-junctions from all AS structures on their average normalized count values. Finally, JUM 

shrinks the dispersion parameter for each individual sub-AS-junction towards the fitted value 

depending on how close the real dispersion tends to be to the fitted value and the replicate 

sample size28-31. 
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To evaluate if a biological condition significantly changes the usage of a sub-AS-junction 

in the corresponding AS structure, JUM adapts a generalized linear model (GLM) approach as 

described11,30,32, so that two GLM models are fitted and tested for each sub-AS-junction in the 

corresponding AS structure11 (Fig. 3c). The basal model evaluates the effect from the following 

three elements to the usage of the sub-AS-junction: the basal expression level of the AS structure 

of the corresponding gene ( , Fig. 3c, Eq. 4), the fraction of sequence reads that mapped to 

each sub-AS-junction from the total number of reads mapped to the AS structure ( , Fig. 3c, 

Eq. 4), as well as the overall change of basal expression of the AS structure upon a biological 

condition ( , Fig. 3c, Eq. 4). The effect model evaluates an additional influence imposed on 

the usage of the sub-AS-junction by a biological condition ( , Fig. 3c, Eq. 3). The fitting of 

the effect and basal model are compared and a likelihood-ratio test performed11 so as to test if 

a biological condition causes significant differential usage of a sub-AS-junction in the 

corresponding AS structure. 

 

JUM faithfully re-constructs AS structures into conventionally recognized AS patterns 

without priori knowledge of the transcriptome or a previous AS event annotation 

AS structures with differential usage of sub-AS-junctions directly reflect changes in splicing 

patterns, but the concept of AS structures is abstract, compared to the simple and fixed five 

conventional categories of AS patterns (A5’SS, A3’SS, CE, MXE, and intron retention—IR) 

widely recognized by RNA biologists. Thus, after global differential AS analysis using AS 

structures, JUM re-constructs the profiled AS structures into the conventional categories of AS 

patterns, but does so in a de novo way that is completely independent of any a prior knowledge 
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of the transcriptome annotation nor the use of annotated libraries of AS events. As a result, the 

JUM output reports a list of AS events that are specific to the biological sample in each of the 

AS pattern categories, and also identifies those AS events whose splicing are significantly altered 

under a biological condition. To do this, JUM first converts each AS pattern into graphs by 

converting exons into nodes and representing splice junctions as arcs that connect to the exon 

nodes. Based on the unique topological features of the graphs representing each AS pattern and 

employing tools from graph theory, JUM then translates AS structures into AS patterns. JUM 

defines a frequency parameter  SI
 for each sub-AS-junction as the number of AS structures 

containing that specific sub-AS-junction. It can be proven that a given sub-AS-junction can only 

be included in up to two AS structures ( SI
 can only be 1 or 2), based on the definition of AS 

structures.  

For the AS pattern of A5SS or A3SS, the graph for these two AS patterns are 

asymmetric, and is composed of only one AS structure with sub-AS-junction  SI
 value all equal 

to 1 (Fig. 4a and 4b).  For the AS pattern of CE, the graph for CE is symmetric, and is composed 

of two AS structures, each AS structure containing two sub-AS-junctions with  SI  
value 1 and 2, 

respectively (Fig. 4c); extra quality control criterion here includes tiled sequence read support 

over the entire cassette exon region. For the AS pattern of MXE with  n  mutually exclusive 

exons, the graph for MXE is composed of one pair of A5SS- or A3SS-like AS structures, each 

has  n  sub-AS-junction with  SI
 value all equal to 1 (Fig. 4d).  In this case, extra quality control 

criteria include: coordinates of MXE exons meet condition , where (Fig. 

4d) and tiled sequence read support over the entire regions of all mutually exclusive exons. 

Based on the unique graphical symmetry of the AS structure composition in each AS pattern, 

ai < bi < ai+1 i = 1,..,n
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JUM searches for sets of AS structures that match each AS pattern and bundle them together as 

one AS event under the corresponding AS pattern category (for the detailed algorithm, see 

Online Methods). 

It should be noted that JUM defines an additional AS pattern category called “composite 

AS”, which describes an AS event that is a coherent combination of several conventionally 

recognized AS patterns. Such complex AS events are usually not included in currently available 

AS computational analysis tools, but can be naturally found extensively in physiological RNA 

samples from Drosophila, rodents and humans (Fig. 4e), further illustrating the complexity and 

diversity of AS in specific tissues. For example, JUM observes an AS event in the transcripts of 

gene Eif-4E in Drosophila male heads that is a combination of CE, A5’SS and A3’SS patterns 

and can not be simply decomposed into any of the three categories (Fig. 4e). JUM is able to 

recognize such complex AS patterns and quantify their AS changes, because the topological 

features for a composite AS pattern are a linear combination of the corresponding conventional 

AS patterns that form the composite AS pattern. For example, a composite AS pattern event that 

is a combination of an A5’SS and CE is composed of four AS structures, three of them have sub-

AS-junction  SI  value all equal to 2 and one AS structure has a sub-AS-junction  SI
value equal to 

1 with the rest  SI
value equal to 2 (Fig. 4e). 

 

JUM performs stringent differential AS analysis on intron retention  

Compared to other AS patterns, intron retention (IR) has been an under-investigated category but 

nevertheless a key AS mechanism. Many IR events in eukaryotes have been shown to play 

crucial roles for the normal functioning of the organism. For example, tissue-specific IR of the 

Drosophila P-element transposase transcripts enables the restriction of transposon activity only 
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in the germ line tissues33,34. Recently, a bioinformatics study reported that widespread retained 

intron was associated with various cancer types compared to normal tissues35. Increased IR has 

also been shown to be associated with the pluripotent state of stem cells36. For analyzing IR, two 

most commonly applied methods to quantify intron-retained Mrna isoforms is to either use the 

sum of sequence reads mapped to the upstream exon-intron boundary and the downstream 

intron-exon boundary, or to use reads mapped to the intronic region (Fig. 5a). The intron-

exclusion isoform is usually quantified by using the reads that mapped to the splice junction that 

resulted from the splicing of the intron (Fig. 5a). A major caveat for these methods of 

measurement of intron retention is that many other AS patterns can be mistaken for IR, 

especially if using a pre-built annotated AS event library. Many introns listed in a pre-built AS 

library that are classified as intron retention can actually be due to more complicated AS within 

the intronic region in a specific sample under study (Fig. 5b,c,d), the most common cases being 

CE or MXE exons residing within the intron (Fig. 5b,c,d) or an A5’SS/A3’SS event at the edge 

of the intron (Fig. 5d). In situations like these, sequence reads mapped to the intronic region can 

in fact come from exonic reads for CE or MXE exons and reads mapped to exon-intron or intron-

exon boundaries can actually come from A5’SS or A3’SS events, but these reads are mistakenly 

used as support for intron-retained isoforms.  

To avoid false-positive calls of IR as described above, JUM applies a stringent three-

criteria strategy to perform differential AS analysis on IR (Fig. 5e). JUM first profiles for all of 

the valid splice junctions from the RNA-seq data. For each splice junction and the corresponding 

intron, JUM counts the number of sequence reads mapped to the upstream exon-intron boundary 

(  N1
), the number of reads mapped to the splice junction (  N2

) and the number of reads mapped 

to the downstream intron-exon boundary (  N3
) (Fig. 5e). JUM then defines two AS structures for 
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each intron:   N1
versus   N2

, as well as   N3
 versus   N2

. For an intron to be classified as 

significantly changed IR, both AS structures must be differentially “used” with the same trend (

  N1
 significantly differing from   N2

 and   N3
 differing from   N2

, with the same trend). These two 

criteria are set to avoid an A5’SS or A3’SS event to be mistaken as IR (Fig. 5e). Finally, JUM 

requires sequence reads mapped to the intronic region to be approximately uniformly distributed 

all across the intron, in order to confirm the retention of the whole intron (Fig. 5e). This criterion 

is used to prevent a CE or MXE event to be mistaken as IR, as reads mapped to CE or MXE 

exons in the intron will present a “spikey” read distribution compared to the whole intronic 

region.  

We tested the performance of JUM on IR analysis on different sample types. A 

comparison of JUM and MISO10 in analyzing IR events in Drosophila male fly head RNA 

samples showed that JUM significantly deduced the false positive rate of IR identification 

compared to MISO (Fig. 5b,c,d and Supplemental Table 1, Supplemental Fig. 2). Moreover, 

Dvinge et al.35 recently used MISO and a pre-annotated human AS event library to compare the 

AS profiles of patient tumor and matched normal tissues in The Cancer Genome Atlas (TCGA) 

database and reported that extensive retained intron is a featured and highly elevated pattern of 

splicing observed in many different cancer types35. To test if elevated intron retention is indeed 

associated with cancer, we used JUM to analyze the global AS patterns in colon cancer patient 

tumor versus matched normal colon tissue RNA-seq datasets from the TCGA database. Colon 

cancer was chosen for JUM analysis because it is one of the cancer types reported in Dvinge et 

al.35 to have the most elevated intron retention. In addition, almost no biological replicates were 

provided for the tumor and matched normal tissue sample for each patient in TCGA. Dvinge et 

al. used the median of the number of increased retained IR events across all patients as a 
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measurement for evaluating IR in cancer. This measurement does not account for biological 

variance among cancer patients and thus does not provide high statistical significance for 

evaluating increased IR in cancer (Supplemental Fig. 3). The importance of integrating 

biological variation has been emphasized by numerous previous studies11,29,30,37,38 in order to 

draw meaningful and accurate conclusions about a biological process with certainty. JUM is 

capable of incorporating biological variance across patients to build robust statistics. We used 

JUM to analyze five male colon cancer patients that are of similar ages (60-68 years old), tumor 

type, vital states and with matched tumor and normal tissue samples sequenced from the same 

platform (Supplemental Table 2). Interestingly, in contrast to previous analyses35, JUM does not 

identify significantly elevated or widespread intron retention events in the human tumor samples. 

Only a total of 98 IR events are significantly changed in colon tumor versus normal tissues 

(Supplemental Table 1; Supplemental Fig. 4). Among them, 59 IR events showed an increase of 

the retained intron isoform and 39 IR events showed an increase of the intron exclusive isoform 

(Supplemental Fig. 4). We also used JUM to analyze six female colon cancer patients that are 

picked using the same standards, and obtained similar results (Supplemental Table 3). From here, 

we conclude that with the heterogeneity of tumor, widespread IR is not associated with the colon 

cancer transcriptome. 

 

JUM provides a thorough and accurate differential analysis of tissue-specific global AS 

profile changes 

Experimental validation of JUM analysis: We tested the performance of JUM on various types 

of RNA-seq datasets derived from RNA samples spanning Drosophila, mouse and human tissues 

and cell lines. JUM identifies many novel and functionally important AS events in these samples 
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that can be directly linked to the phenotypes observed in the biological treatment or tissue-type 

in these studies20,21. Importantly, JUM-predicted significant AS pattern changes are validated 

using experimental methods. For one study in mouse embryonic cortical neurons, we randomly 

picked ten JUM-predicted AS targets of the splicing factor PQBP1 and two JUM-predicted non-

AS targets for verification, and all 12 AS events were validated by RT-PCR20. Among them, the 

significant AS changes of the Ncam1 transcripts upon PQBP1 knockdown was only discovered 

through JUM but not other tools in use, and this AS change in Ncam1 is functionally associated 

to the dendritic outgrowth defect observed in PQBP1-perturbed neurons20 (Fig. 1a). For another 

study in male fruit fly heads, the significant AS changes of the fruitless mRNA transcript 

isoforms that are directly linked to abnormal male courtship behavior in a Drosophila strain were 

captured exclusively using JUM analysis, but not other annotation-library-based AS analysis 

software in comparison, and validated using RT-PCR21. 

 

JUM performance compared to other methods: To further evaluate the performance of JUM in 

differential AS analysis, we compared JUM to two recently developed AS analysis tools, 

MISO10 and rMATS15, in analyzing the Drosophila head transcriptomes between the wildtype 

and a male-courtship defect strain21. MISO completely depends on a developer-provided 

annotated library of AS events10 while rMATS, although also depends on a user-provided 

annotated library of known gene transcripts, offers a “de novo” mode to detect novel AS events 

in the sample15. We compared JUM with MISO and rMATS (with the de novo mode) 

(Supplemental Table 5).  

We first checked if MISO and rMATS also detected the 26 JUM-identified and RNA-seq 

experiment-validated significantly changed AS events in Drosophila male head that are closely 
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associated with the courtship behavior defect phenotype21 (Fig. 6a; Supplemental Table 6). 

Among them, we found that the majority of AS events (14 events, 56%) are exclusively 

identified by JUM, due to the fact that neither MISO nor rMATS recognizes these novel, 

Drosophila male head sample-specific AS events in the annotated AS library nor by the de novo 

detection mode (Fig. 6a; Supplemental Table 6); 4 AS events (16%) are identified by MISO and 

rMATS also and interestingly, all of these events are cassette exon patterns, the most well 

studied and annotated AS pattern type (Fig. 6a; Supplemental Table 6); 1 AS event is identified 

by rMATS also but not MISO and 1 by MISO also but not rMATS (4%); 1 AS event is identified 

by rMATS and MISO also, respectively, however with only part of the correctly annotated 

coordinates (4%) (Supplemental Table 6). These results suggest that JUM is capable of 

identifying true novel, tissue-specific AS events that could not be recognized by annotation-

based or partially annotation-dependent techniques (even with a de novo working mode).  

We then took the top 30 most significantly changed AS events identified by rMATS in 

the most well-studied and annotated AS pattern category, cassette exon, and tested if JUM can 

identify these CE events as well. We found that among them, only 5 CE events are also 

identified by JUM as CE events (17%) (Fig. 6b, Supplemental Table 7). However, for the rest 25 

CE events identified by rMATs, the majority (21 events, 70%) are in fact mis-classified as CE 

events in the fly heads. JUM identified them as significant AS events but re-classified them 

correctly as composite AS patterns (Fig. 6b; Supplemental Table 7); 4 CE events (17%) are not 

identified in JUM, because JUM did not include the involved junctions for downstream analysis 

in the first place, due to a custom-set quality control setting for filtering valid splice junctions 

(Online Methods). These events are identified by JUM once the setting is adjusted. These results 

suggest that JUM efficiently rejects false positive AS events suggested by other annotation-
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dependent techniques and re-classifies mis-annotated AS events to the correct category based on 

the actual AS pattern in the tissue. 

 

Discussion 

As a major mechanism for eukaryotic gene regulation, AS generates exceptional 

diversity. Different tissues, even sub-cellular populations within a given tissue or organ possess 

their own distinct AS profiles and these profiles are dynamically changed over different temporal 

stages of development and cellular activities. Such transcriptome diversity and dynamics of AS 

patterns impose a major challenge for computational tools to quantify and compare AS profiles 

from RNA-seq data. Many of the currently available AS analysis software tools employ the 

strategy of using pre-built annotated libraries of AS event derived from previous EST or RNA-

seq data. This strategy greatly facilitates downstream analysis, but at the same time fails to 

address, detect and classify the diversity of AS, because different RNA samples can present their 

own unique AS profiles and many novel AS events. Some splicing analysis tools can use a de 

novo built transcriptome annotation in order to focus AS analysis on sample-specific AS 

patterns. However, the difficulty in reconstructing accurate transcriptome annotations from 

shotgun sequencing RNA-seq data affects the quality of downstream AS mRNA isoform 

analysis. JUM, on the other hand, uses a completely novel approach for analyzing tissue-specific 

AS patterns. Instead of relying on priori knowledge of annotated transcriptomes, JUM identifies 

AS patterns present in the specific RNA samples de novo utilizing the unique topological 

features of each AS pattern classification. JUM then provides differential quantitative analysis of 

these AS events by modeling short-read sequence reads mapped to splice junctions by 

integrating biological variance across replicates and statistically testing the effects imposed on 
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splice junction usage from distinct biological conditions. The approach that JUM uses not only 

provides a thorough and statistically robust investigation of the diverse and dynamic AS patterns 

specific to a given biological sample, but also eliminates the labor-intensive computational effort 

required to build pre-annotated AS event libraries or transcriptome re-assembly. 

Another novel feature of JUM lies in its stringent statistical parameters to analyze IR 

events. IR is a crucial AS regulatory mechanism for gene control and is a clear, yet understudied 

AS pattern, compared to the other AS categories. The complexity of AS and the composition and 

structure of IR makes it easy to mistake other AS types as IR events (Fig. 5). JUM designs a 

well-developed program to analyze IR specifically, and provides a reliable measure to evaluate 

the importance of IR in cellular activities and diseased cellular states. 

JUM presents a totally novel and statistically rigorous approach to address, evaluate, 

quantitate and classify the complex and diverse patterns of AS profiles in eukaryotic 

transcriptomes. We are confident that this new approach will provide new and important insights 

to the dynamic regulation of AS and gene expression.  Our results indicate novel isoform 

detection, quantification and classification of transcripts from Drosophila head, mouse neurons 

and human cancer genome RNA samples.  These initial applications already indicate that JUM 

will be the method of choice going forward to analyze complex pre-mRNA splicing patterns at 

the transcriptome-wide level, particularly in complex tissue types that are already known to 

generate extremely diverse mRNA isoform profiles, such as gonads (testes and ovaries), 

pluripotent stem cells and a variety of neuronal cell types and nervous system tissues.  Finally, 

the JUM algorithm should be useful for detecting, mapping and analyzing the biogenesis of a 

novel pattern of non-coding RNAs that are circular in structure.  These newly discovered RNA 

species are thought to play a role in microRNA regulation39. 
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Online Methods 

JUM package distribution 

A user-friendly version of the JUM package has been deposited on GitHub. The codes are 

written in perl and bash shell scripts. 

 

RNA-seq data  

Raw RNA-seq data (FASTQ format) for mouse embryonic cortical neurons and Drosophila male 

fly heads described in the paper are derived as previously described20,21. Human colon tumor and 

matched normal tissue poly-A selected RNA-seq data (in BAM format) are acquired from the 

TCGA database. To avoid technical and sampling bias brought by factors other than the 

cancerous state, five male colon cancer patients and six female colon cancer patients are picked 

that have matched tumor and normal tissue samples sequenced with the same platform/center 

and sequencing read length, with vital state “alive”, tumor type “primary” and within a certain 

age range. A detailed description of the patient tumor and normal samples used in this study are 

listed in Supplemental Table 1. The downloaded BAM files are transformed back to FASTQ 

format by using the SamToFastq function in PICARD tools before analysis. The FASTQ data are 

then mapped to the human genome hg38 as described below. The sequencing read mapping 

results are summarized in Supplemental Table 3 for each patient.  

 

RNA-seq data preparation for JUM 
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RNA-seq reads are mapped to the human (hg38), mouse (mm9) and Drosophila (dm3) genomes 

respectively using STAR40 in the 2-pass mode, as instructed in the STAR manual. Only unique 

mapped reads are kept in the output for JUM analysis. 

 

Junction filtering in JUM analysis 

The current version of JUM filters for valid junctions to be included in the downstream analysis 

as those identified from all samples (all replicates for both control and treated samples, for 

example) with a minimum of a user-defined number of reads mapped to it. We used 5 reads for 

all the analysis presented in this paper. 

 

Algorithm to construct AS patterns from profiled AS structures 

We first profile all AS structures from the RNA-seq data and calculate the  SI
value for each sub-

AS-junction in these AS structures. Two AS structures are defined as “linked”, if they share one 

specific sub-AS-junction, and a “path” is drawn between the two AS structures. Under this 

definition, a “loop” of AS structures are searched in the whole pool of AS structures, with every 

AS structure in the loop linked to one other by a path. Each profiled loop of AS structures is 

corresponding to an AS pattern, and is allocated to each AS pattern category based on the 

features of the sub-AS-junction  SI  value distributions.  
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Figure legends 

Figure 1. Software that relies on pre-annotated AS splice junction libraries cannot detect or 

accurately quantitate novel AS events or distinct AS patterns specific to different tissue 

samples. (a) A novel and functionally important AS event of the Ncam1 gene transcript in mouse 

embryonic cortical neurons, that is not included in publically available mouse transcriptome 

annotation. Genomic structure of Ncam1 is shown. Blue rectangles are exons and lines between 

exons introns. Genomic annotation on top is from the RefSsq database, while the annotation on 

the bottom is the actual transcriptome profile inferred from RNA-seq data of mouse embryonic 

cortical neurons20. RNA-seq tracks from control and splicing factor PQBP1 knockdown samples 

are shown in the middle, with red arc between exons representing level of sequence reads 

mapped to the corresponding splice junction. The height of an arc shows the relative depth of 

read counts mapped to that splice junction. The VASE exon is a novel alternatively spliced 

cassette exon41. The VASE exon-included isoform encodes a Ncam1 protein that inhibits neurite 

outgrowth, while the VASE exon-excluded isoform encodes a Ncam1 protein that promotes 

neurite outgrowth41. The shRNA knockdown of splicing factor PQBP1 results in elevated 

inclusion of the VASE exon-containing isoform and is linked to the dendritic outgrowth defects 

observed in PQBP1 knockdown neurons20. AS analysis methods that depend on pre-built AS 

annotation libraries missed this crucial exon that can be targeted by splicing factors to change the 

function of Ncam1 and neurite outgrowth in neurons20. (b) Two distinct AS patterns of the 

Drosophila fruitless gene mRNAs expressed in male Drosophila head tissue and the Drosophila 

Schineider-2 (S2) cell line21. RNA-seq data read density tracks derived from both tissue types are 

shown, with arcs representing splice junctions that link a common 5’ exon to the three alternative 

last exons, each corresponding to the fruitless isoform fru-A, fru-B and fru-C, respectively. The 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2017. ; https://doi.org/10.1101/116863doi: bioRxiv preprint 

https://doi.org/10.1101/116863


 24

relative levels of the fru-A, fru-B and fru-C isoforms determine normal male fly courtship 

behavior21. In Drosophila male heads, all three isoforms are present. However, in the Drosophila 

S2 tissue culture cell line only fru-B and fru-C mRNA isoforms are expressed, together with an 

additional isoform (fru-i) that uses an alternative polyadenylation signal downstream of the 

common 5’ exon present in the fru-B and fru-C mRNA isoforms. AS analysis software tools that 

rely on a fixed annotated AS splice junction library can not detect and accurately quantitate the 

distinct fruitless mRNA isoform distributions present in these two different types of Drosophila 

RNA samples.  

 

Figure 2. JUM exclusively uses and quantitates sequence reads mapped to splice junctions 

and defines AS structures as the basic quantification unit for global AS pattern analysis. (a) 

JUM uses RNA-seq reads mapped to splice junctions for AS quantification. Green rectangles 

indicate exons and lines introns. Green and blue short lines represent reads that mapped to splice 

junctions connecting exons, which are the most direct evidence for the existence and quantitative 

assessment of a given splice junction. JUM defines the start coordinate of a splice junction as the 

5’ initiation site (5’IS) and the end coordinate of a splice junction as the 3’ ending site (3’ES). 

An AS “structure” is defined as a set of junctions that share the same 5’IS or the same 3’ES. 

Each splice junction in an AS structure is defined as a sub-AS-junction. (b,c,d) AS structures are 

the basic element that comprise all conventionally recognized AS patterns.  

 

Figure 3. JUM performs differential AS analysis by evaluating the differential usage of 

each sub-AS-junction found in AS structures. (a) The flow chart of the procedure JUM uses to 

perform and quantitate differential AS analysis. (b) JUM models the sequence reads that map to 
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a sub-AS-junction as negative binomial distribution. (c) JUM fits two generalized linear models 

to evaluate the influence of a given biological condition on the usage of a specific sub-AS-

junction.  

 

Figure 4. JUM constructs AS structures into conventionally recognized categories of AS 

patterns based on the unique topological features of each AS pattern type. (a, b, c, d) The 

topological features of AS patterns: Cassette exons (a), mutually exclusive exons (b), alternative 

5’ splice sites (c), and alternative 3’ splice sites (d) represented by graphs and the frequency 

parameter  SI  of sub-AS-junctions. (e) JUM defines an additional AS pattern category—the 

“composite AS” which is a more complex combination of several conventionally recognized AS 

patterns. An example for such a complex “composite” AS pattern is shown in the bottom panel 

for the eIF-4E gene transcripts found in Drosophila male head tissue RNA-seq samples21. Arcs 

represent splice junctions that connect different exons. 

 

Figure 5. JUM applies stringent criteria for detection, quantitation and analysis of intron 

retention events that dramatically reduces false positive rates compared to software relying 

on pre-annotated splice junction libraries. (a) The most commonly used quantification 

parameters for intron retention. RNA-seq reads spanning intron-exon or exon-intron boundaries 

are represented by short green or blue lines, respectively. Short purple lines represent sequence 

reads mapped to intronic regions. Short red lines represent sequence reads mapped to the splice 

junction to the corresponding intron. (b,c,d) The commonly applied strategies in AS analysis 

software mis-classify other AS patterns as intron retention. Three MISO-reported10 significantly 

changed intron retention events were shown that actually correspond to mutually exclusive exons 
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splicing events (b), alternative promoters (c), cassette exons mixed with alternative 3’ splice sites 

(d) from Drosophila male head tissue in a comparison of control wildtype fly strain and a 

transgenic fly strain that expresses the truncated PSI protein20. The start and end points of the 

retained intron events reported by MISO are denoted by red arrows. Arcs represent splice 

junctions identified from the RNA-seq data. Exon coverage from RNA-seq data is also shown in 

blue. (e) The three criteria that JUM uses to analyze intron retention, in order to reduce false 

positive intron retention calls. Short blue and green lines represent reads mapped to the exon-

intron or intron-exon boundaries, respectively. Short red lines represent sequence reads mapped 

to the splice junctions. Short purple reads represent sequence reads mapped to the intronic 

regions and are required to be approximately uniformly distributed all across the entire intronic 

region of the retained intron. 

 

Figure 6. Comparison of JUM performance to rMATs and MISO. (a) Comparison of JUM, 

rMATS and MISO in detecting significantly changed, male courtship defect phenotype-

associated AS events in Drosophila male head RNA-seq samples. (b) Comparison of JUM and 

rMATS in detecting rMATS-identified top 30 most significantly changed CE events between 

wildtype Drosophila head sample and a male courtship defect strain. 
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a Reads crossing 
upstream exon-
intron boundary

Reads crossing 
downstream intron-

exon boundary
Intronic reads

Spliced junction reads

b

7,042,041 7,042,594 7,043,148 7,043,702

c

3,225,195 3,225,764 3,226,334 3,226,904

intron start intron end

intron start intron end

e N1

N2

N2

N3

AS structure 1
N1
N2

AS structure 2
N2

N3

Tiled read 
distribution over the 
whole intronic region

JUM analysis for intron retention

d intron start intron end

9,823,865 9,824,444 9,825,023 9,825,602
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a

b

rMATs + JUM, 17%

Not included in JUM 
due to quality control 
level setting, 13%

Mis-classified CE events 
in fly head 

re-classified by JUM, 70%

JUM + rMATs + MISO, 16%JUM only, 56%

JUM + rMATS, 16%

JUM + rMATs (partial), 4%

JUM + MISO, 4%

JUM + MISO (partial), 4%
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