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Parasitic nematodes impose a debilitating health and economic burden across much of the world. Nematode resistance to
anthelmintic drugs threatens parasite control efforts in both human and veterinary medicine. Despite this threat, the genetic
landscape of potential resistance mechanisms to these critical drugs remains largely unexplored. Here, we exploit natural vari-
ation in the model nematodes Caenorhabditis elegans and Caenorhabditis briggsae to discover quantitative trait loci (QTL) that
control sensitivity to benzimidazoles widely used in human and animal medicine. High-throughput phenotyping of albendazole,
fenbendazole, mebendazole, and thiabendazole responses in panels of recombinant lines led to the discovery of over 15 QTL
in C. elegans and four QTL in C. briggsae associated with divergent responses to these anthelmintics. Many of these QTL are
conserved across benzimidazole derivatives, but others show drug and dose specificity. We used near-isogenic lines to recapitulate
and narrow the C. elegans albendazole QTL of largest effect and identified candidate variants correlated with the resistance
phenotype. These QTL do not overlap with known benzimidazole resistance genes from parasitic nematodes and present specific
new leads for the discovery of novel mechanisms of nematode benzimidazole resistance. Analyses of orthologous genes reveal
significant conservation of candidate benzimidazole resistance genes in medically important parasitic nematodes. These data
provide a basis for extending these approaches to other anthelmintic drug classes and a pathway towards validating new markers
for anthelmintic resistance that can be deployed to improve parasite disease control.

Author Summary: The treatment of roundworm (nematode) infections in both humans and animals relies on a small number
of anti-parasitic drugs. Resistance to these drugs has appeared in veterinary parasite populations and is a growing concern
in human medicine. A better understanding of the genetic basis for parasite drug resistance can be used to help maintain
the effectiveness of anti-parasitic drugs and to slow or to prevent the spread of drug resistance in parasite populations. This
goal is hampered by the experimental intractability of nematode parasites. Here, we use non-parasitic model nematodes to
systematically explore responses to the critical benzimidazole class of anti-parasitic compounds. Using a quantitative genetics
approach, we discovered unique genomic intervals that control drug effects, and we identified differences in the genetic
architectures of drug responses across compounds and doses. We were able to narrow a major-effect genomic region associated
with albendazole resistance and to establish that candidate genes discovered in our genetic mappings are largely conserved in
important human and animal parasites. This work provides new leads for understanding parasite drug resistance and contributes
a powerful template that can be extended to other anti-parasitic drug classes.

Introduction
Parasitic nematodes impose a debilitating health and economic burden across much of the developing world, conservatively
resulting in the loss of 14 million disability-adjusted life years per annum1. This disease burden is partly curtailed by mass
drug administration (MDA) programs that depend on the continued efficacy of a limited portfolio of anthelmintic drugs.
Benzimidazoles are an indispensable component of this limited chemotherapeutic arsenal and three benzimidazole derivatives
are considered ‘Essential Medicines’ by the World Health Organization. In veterinary medicine, aggressive benzimidazole
chemotherapy has generated geographically widespread benzimidazole resistance2. The ongoing expansion of anthelmintic
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coverage in humans threatens a similar outcome3, 4. Reduced cure rates suggestive of benzimidazole resistance have been
reported for human soil-transmitted helminths, including the etiological agents of hookworm infection, trichuriasis, and
ascariasis5–9. The sustainability of chemotherapy-based parasite control is jeopardized by our deficient knowledge of potential
mechanisms of anthelmintic resistance and a paucity of molecular markers to detect and slow the spread of resistance alleles in
parasite populations.

Traditional approaches to identify anthelmintic resistance markers rely on surveying candidate genes for polymorphisms10.
Known mechanisms of nematode benzimidazole resistance have been limited to variants in the drug target beta-tubulin10–13.
However, genetic differences in beta-tubulin genes do not explain all interspecific and intraspecific variation observed in
benzimidazole efficacy14 or in responses to different benzimidazole derivatives15, 16. A more complete understanding of
potential pathways to parasite benzimidazole resistance is necessary to help discover loci that are predictive of drug response.
Although C. elegans has been historically indispensable to the discovery of mechanisms of action for benzimidazoles and
other anthelmintics17, genetic variation within C. elegans has only recently been exploited to study phenotypic variation in
anthelmintic responses18.

We used standing genetic variation and high-throughput quantitative phenotyping in two experimentally tractable Caenorhab-
ditis species, C. elegans and C. briggsae, to identify genomic loci that control susceptibility to four clinically relevant benzimida-
zoles. Our findings reveal both conserved and drug-specific loci in each species that contribute to the effects of benzimidazoles
on animal offspring production and growth rate. The genetic architectures of benzimidazole sensitivity and the specific genomic
loci identified in this work provide new leads to identify genetic markers and molecular mechanisms that govern anthelmintic
resistance in parasitic nematodes. We expect that translation of these leads will help to improve the detection and management
of drug resistance in parasite populations.

Methods

High-throughput phenotyping assay
Strains were propagated for four generations to reduce transgenerational effects of starvation and bleach-synchronized before
transfer to 96-well growth plates (∼ 1 embryo/µ l in K medium). Hatched L1 larvae were fed HB101 bacterial lysate (5 mg/ml)
and incubated for 48 hours at 20◦C. L4 larvae were sorted into 96-well drug plates (three animals/well) using the COPAS
BIOSORT large particle sorter (Union Biometrica). Drug plates contained anthelmintics dissolved in K medium at the desired
final concentrations along with 1% DMSO, 10 mg/ml HB101 bacterial lysate, and 31.25 µM kanamycin. These cultures were
incubated for 96 hours at 20◦C to allow development to the adult stage and the maturation of deposited embryos. Animals
were fed a solution of 1 mg/ml bacterial lysate and 0.01 µM red fluorescent microspheres (Polysciences, cat. 19507-5) for
five minutes prior to scoring. Animals were immobilized with 50 mM sodium azide, and the COPAS BIOSORT large particle
sorter was used to measure a range of animal fitness traits including length, pharyngeal pumping (red fluorescence), and brood
size19, 20.

Trait generation for dose responses and linkage mapping
Raw phenotype data collected from the COPAS BIOSORT large particle sorter were processed with the R package easysorter21.
The function read data() was used to distinguish animals from bubbles using a support vector machine (SVM). The
functions remove contamination() and sumplate() were used to mask contaminated wells and to calculate sum-
mary statistics across measured parameters. Parameters included time-of-flight (animal length), extinction (optical density),
fluorescence (pharyngeal pumping), and total object count (brood size). Summary statistics included the mean and quantiles
(10th, 25th, 50th, 75th, and 90th) for each of these parameters. Brood size was normalized to the sorted number of animals per
well (n), while fluorescence was normalized to animal length (TOF). The regress(assay=TRUE) function was used to fit
a linear model to account for differences in assays carried out on different days. Outliers were defined as observations that fall
outside the IQR by at least twice the IQR and that do not group with at least 5% of the observations. Outliers were removed
using the bamf prune() function and regress(assay=FALSE) was used to fit a linear model (phenotype ∼ control
phenotype) to calculate drug effects with respect to control (DMSO solvent) conditions.

Dose responses and selection of heritable doses
The dose-dependent phenotypic effects of benzimidazoles were assayed in technical quadruplicate across four genetically
diverged C. elegans (N2, CB4856, DL238, and JU258) and C. briggsae (AF16, HK104, VT847, and ED3035) strains. Pheno-
types were measured using the high-throughput assay and trait generation pipeline described previously. Drug concentrations
for linkage mapping experiments were selected based on broad-sense heritability calculations for traits of interest and with the
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goal of maximizing differences in sublethal drug effects between the parental strains used to generate recombinant lines (C.
elegans: N2 and CB4856; C. briggsae: AF16 and HK104).

Linkage mapping of fitness traits
Benzimidazole exposure phenotypes were measured for a population of 292 unique C. elegans recombinant inbred advanced
intercross lines (RIAILs) resulting from an advanced intercross of N2 and CB4856, as well as 153 unique C. briggsae
recombinant inbred lines (RILs) created using AF16 and HK104. These phenotypic data were collected and processed as
described above. R/qtl22 was used to carry out marker regression on 1454 C. elegans markers and 1031 C. briggsae markers.
QTL were detected by calculating logarithm of odds (LOD) scores for each marker and each trait as −n(ln(1− r2)/2ln(10)),
where r is the Pearson correlation coefficient between RIAIL genotypes at the marker and phenotype trait values23. Significance
thresholds for QTL detection were calculated using 1000 permutations and a genome-wide error rate of 0.05. The marker with
the maximal LOD score exceeding significance was retained as the peak QTL marker for each of three mapping iterations.
QTL confidence intervals were defined by a 1.5 LOD drop from peak QTL markers. Broad-sense heritability was calculated
using repeat measures of parental and recombinant strain phenotypes, as described previously24.

Generation of near-isogenic lines
NILs were generated by backcrossing N2xCB4856 RIAILs to either parental strain for six generations, followed by six
generations of selfing to homozygose the genome. Primers were optimized to genotype N2xCB4856 insertion-deletion variants
immediately flanking introgression regions of interest. NIL reagents, primers, and PCR conditions are detailed in S1 Methods.

Mutant strains
Existing C. elegans mutants (alg-4(tm1184); alg-3(tm1155), ergo-1(tm1860), prg-1(n4357), ben-1(tm234)) were propagated
alongside N2 and CB4856 to assay albendazole-response phenotypes. The prg-1 mutant strain was backcrossed to N2 for
10 generations. Independent prg-1 deletion strains were generated by CRISPR/Cas9-mediated gene editing using Cas9
ribonucleoprotein25. A co-CRISPR strategy targeting dpy-10 was used to improve efficiency of screening for edits26. All Cas9
reagents were purchased through IDT (Skokie, IL). Alt-R tracrRNA (IDT, 1072532), dpy-10 crRNA, and each prg-1 crRNA
(oECA2002 and oECA2003) were combined and incubated at 95◦C for five minutes. Cas9 nuclease (IDT, 1074181) was added
and the mix was incubated at room temperature for five minutes. Finally, the dpy-10 repair template was added, and the final
volume was brought to 5 µL with nuclease-free water. The final concentrations are as follows: tracrRNA 13.6 µM, dpy-10
crRNA 4 µM, each prg-1 crRNA 9.6 µM, Cas9 23.8 µM, and dpy-10 repair construct 1.34 µM. The mix was centrifuged
at maximum speed for five minutes, mouth pipetted into a pulled injection needle (World Precision Instruments, 1B100F-4),
and injected into young adult N2 and CB4856 animals. Each injected animal was placed onto an individual 6 cm NGM plate
approximately 18 hours post-injection. Roller F1 animals were placed onto individual 6 cm NGM plates when they reached the
L4 stage, or when the Rol phenotype was apparent, and allowed to lay embryos. These F1 animals were then screened for large
deletion events with PCR using primers oECA2004 and oECA2042. Non-Dpy, non-Rol progeny from edited F1 animals were
propagated until homozygous and verified with Sanger sequencing. Primers and other reagents used to genotype backcross
progeny and to generate CRISPR alleles are outlined in S1 Methods.

Mutant and NIL strain phenotyping assays
NIL and mutant phenotyping assays were carried out with the high-throughput pipeline described above with at least two
independent biological replicates carried out for each strain panel.

Statistical analyses
Phenotype data are shown as Tukey box plots. Analyses were performed using R by one or two-tailed t-test (for two groups and
specific hypotheses about direction of effect) or one-way ANOVA with Tukey’s multiple comparison test (for more than two
groups). P-values less than 0.05 were considered significant. P-values for all statistical tests are provided in S9 Table.

Gene interval annotation and parasite orthology analysis
C. elegans variants distinguishing N2 and CB485627 were used to annotate QTL intervals with respect to existing gene
annotations. C. briggsae variants distinguish AF16 and HK104 as well as their estimated functional consequences were
produced from genomic sequence and annotation data using SnpEff28. For all C. elegans QTL identified in this study, parasite
orthologs of genes with variants predicted to be of ’moderate’ or ’high’ impact were extracted with custom Python scripts.
Caenorhabditis orthologs from the clade IV gastro-intestinal parasite Stronygloides ratti and the clade III human filarial parasite
Brugia malayi were extracted from WormBase29.
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RNA-Seq pipeline
C. elegans strains N2 and CB4856 were bleach-synchronized and grown at 20◦C for isolation of total RNA from young adult
animals (60 hours post-embryo plating) using a liquid N2 freeze-cracking protocol with TRIzol (Life Technologies). RNA was
collected from four independent biological replicates per strain. Sample RNA concentration and quality were assessed via
Agilent Bioanalyzer. mRNA libraries were prepared from RNA samples using the TruSeq Stranded mRNA Library Prep Kit
with oligo-dT selection (Illumina). All samples were sequenced using the Illumina HiSeq 2500 platform with a single-end 50
bp read setting (University of Chicago Genomics Facility) and demultiplexed for downstream analyses. Mean per-sample yield
was 10.0 Gb for mRNA-seq samples. Reads were adapter and quality trimmed using Trimmomatic30. HiSAT2 and StringTie31

were used to produce raw and TPM (transcripts per million) read counts for annotated genes. DESeq232 was used to identify
differentially expressed genes. The complete RNA-seq pipeline was implemented with Nextflow33 and is publicly available
through GitHub (github.com/AndersenLab/BZRNA-seq-nf).

Data Availability
Linkage mapping and phenotype data and all scripts used in the analyses of these and any other data are available through
GitHub (github.com/AndersenLab/C.-elegans-Benzimidazole-Resistance-Manuscript/). RNA sequencing data are available in
the NCBI SRA under accession number [NUMBER].

Results and Discussion
Natural variation in C. elegans responses to benzimidazole anthelmintics
We examined natural variation in C. elegans responses to four benzimidazoles (albendazole, fenbendazole, mebendazole,
and thiabendazole) that are widely used in human and veterinary medicine. Dose responses were performed on a set of
four genetically diverged strains using a flow-based, large-particle analysis device (COPAS Biosort, Union Biometrica) for
high-throughput quantification of anthelmintic effects on animal fitness traits, including offspring production and growth
rate. This platform enables trait measurements at unprecedented scales in a metazoan system19 (S1 Fig.). In brief, strains
are synchronized and dispensed into 96-well microtiter plates containing anthelmintic drugs or no drug (DMSO). Conditions
are strictly controlled for temperature, humidity, food source, and culture mixing. The COPAS Biosort measures the length,
optical density, and fluorescence (green, yellow, and red) of every nematode from populations grown in 96-well microtiter
plates. This high-throughput platform enables the measurement of animal size, fecundity, and feeding behavior. As C. elegans
grows, animals get longer34, so length measurements are a proxy for developmental stage and growth rate. Fecundity is
assessed by counting the number of offspring produced by a defined number of parent animals in each well. Feeding rate
is quantified by exposing animals to fluorescent microspheres (Fluoresbrite Fluorescent Microspheres, Polysciences Inc.),
which are the same size as bacterial food, and then measuring fluorescence after a defined period of time. Anthelmintic drugs
reduce growth rate, offspring production, and muscle activity, so these traits are directly relevant to anthelmintic mechanisms
of action in parasitic nematodes35, 36. Assay measurements with longer animals, more offspring, and/or more fluorescence
indicate that that strain is more resistant to an anthelmintic than strains with shorter animals, fewer offspring, and/or less
fluorescence. All drugs showed heritable dose-dependent effects for at least one of these major phenotypic categories (S2
Fig.). Drug concentrations that exhibited high broad-sense heritability and that maximized strain-specific differences were
chosen for quantitative genetic mappings. To assess the potential effects of dose on the genetic architecture of drug sensitivity,
two concentrations of fenbendazole and thiabendazole were selected. These sublethal concentrations fall within the range of
previous studies in C. elegans11, 37 and likely correspond to pharmacologically relevant drug accumulation levels in parasitic
nematodes38, 39.

Discovery of quantitative trait loci (QTL) associated with benzimidazole responses in C. elegans
From our dose response assays of four genetically diverse C. elegans strains, we found that the laboratory strain from Bristol,
England (strain N2) and a wild strain from Hawaii, U.S.A. (strain CB4856) differed in responses to benzimidazoles. We
can use the natural differences between these two strains to identify the variants that contribute to divergent anthelmintic
responses. Previously, these two strains were crossed to create a collection of recombinant inbred advanced intercross lines
(RIAILs) to facilitate linkage mapping approaches19, 40. Using 292 RIAILs, we identified 15 quantitative trait loci (QTL) that
that each explain greater than 5% of trait variation in benzimidazole susceptibility (Figure 1A, S1 Table). Many of these QTL
span multiple animal fitness traits (S3 Fig.). The trait groupings can be observed by the correlation structure of measured
parameters and robust across summary statistics (mean, median, 75th quantile, and 90th quantile) for these parameters (S4 Fig.).
Benzimidazole sensitivity involved the contributions of multiple loci for many drug-trait combinations. Within this complex
trait landscape, we identified QTL that are common but also some that are unique across drugs and doses. Drug-specific
QTL provide new leads to explain observed differences in clinical efficacy among benzimidazole compounds. By contrast,
dose-specific QTL reveal the engagement of different genetic determinants of benzimidazole response as a function of drug
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exposure.

We discovered a major QTL associated with the effects of albendazole on animal size traits. This QTL is localized to a 441
kb interval on chromosome IV (15.47 - 15.91 Mb) and explains 36% of albendazole-induced variation in animal length among
the strains (Figure 1B). This major-effect albendazole QTL extends to pharyngeal pumping and is also associated with small
differences in brood size (S3 Fig.). An overlapping QTL associated with animal size and pumping behavior was identified for 30
µM fenbendazole and 20 µM mebendazole. A distinct size and pumping-associated QTL was mapped for 20 µM mebendazole
on the left arm of chromosome V that does not overlap with loci identified for other benzimidazole derivatives. Another highly
significant QTL on chromosome V (14.15 - 14.72 Mb) explains 29% of thiabendazole (125 µM)-induced variation in brood size
between the strains. This QTL extends to length and pharyngeal pumping traits for both 62.5 µM and 125 µM thiabendazole,
and partly overlaps with a QTL associated with differences in pumping behavior in 15 µM fenbendazole. A number of unique
loci with smaller effect sizes were mapped for fenbendazole sensitivity at 15 and 30 µM, with only one overlapping QTL
apparent across the two drug concentrations. Plots of phenotype as a function of peak QTL marker genotype (Figure 1C) show
that the direction of effect varies across drugs and traits, indicating that both N2 and CB4856 strains possess alleles contributing
to both benzimidazole sensitivity and resistance.

Near-isogenic lines recapitulate and narrow major-effect albendazole QTL
The albendazole QTL confidence interval contains 17 protein-coding genes with coding variants and falls within the large
Piwi-interacting RNA (piRNA) cluster on chromosome IV (13.5 - 17.2 Mbs)41. In the linkage mapping experiment, recombinant
strains with the N2 genotype at this chromosome IV QTL locus (15.47 - 15.91 Mb) were more resistant to incubation in 12.5
µM albendazole than those strains with the CB4856 genotype, with CB4856 animals exhibiting a significantly greater decrease
in length (Figure 1C, top). To narrow this interval to a smaller region, we measured the albendazole response phenotypes
of near-isogenic lines (NILs) with QTL genomic regions derived from either the N2 or CB4856 strains introgressed into the
opposite genetic background (Figure 2A). NILs with the N2 genotype spanning the 15.57 - 15.65 Mb interval of chromosome
IV exhibited greater resistance to albendazole compared to the parental CB4856 strain and, conversely, a NIL with the CB4856
genotype in this region was more sensitive to albendazole when compared to the parental N2 strain (Figure 2A, bottom). These
results are consistent with the QTL direction of effect, and we expect that the variant(s) of largest effect fall within this narrowed
interval. Significant differences among NILs within the resistance and sensitive groupings suggest that additional variants and
epistatic interactions within the complete QTL interval influence albendazole susceptibility.

The NIL interval was annotated with known variants distinguishing N2 and CB4856 and their estimated functional conse-
quences (Figure 2B, S2 Table, and S3 Table). The presence of large numbers of annotated piRNAs added to the complexity of
analyzing genome variation in both the complete QTL interval and the NIL-narrowed interval. We considered protein-coding
and non-coding RNA (ncRNA) variation as potentially causal to the albendazole-resistance phenotype. Only three proteins in
the narrowed interval are predicted to have altered functions as a result of single nucleotide variants (SNVs). However, the
plausibility of these specific candidate genes was dampened by a number of factors. Y105C5A.508 is curated as a short and
likely pseudogenic transcript, which shares no homology with proteins in species with available sequence data. Additionally,
we did not detect consistent expression of this gene using RNA-seq in either the N2 or CB4856 strains. The gene pqn-79 has a
predicted coding variant (Thr194Ala) but belongs to a highly redundant protein family that has > 99.5% sequence identity with
at least three other homologs. None of these homologs exhibits coding variation, but the possibility of a dominant-negative
or gene dosage effect cannot be excluded. The gene Y105C5A.8 codes for a protein of unknown function that is predicted to
contain a splice-donor variant, but we found no differences in overall expression (S4 Table) or splice form abundance (S5
Fig) between N2 and CB4856 for this gene. We therefore originally hypothesized that albendazole resistance is more likely a
function of variation in the non-coding RNA (ncRNA) complement, specifically the piRNA-encoding genes. 1,684 SNVs occur
in known piRNAs in the complete QTL interval, and 276 of these fall within the NIL-narrowed interval (S3 Table).

To test this hypothesis, we generated NILs encompassing the broader piRNA-enriched region on chromosome IV (13.5 -
17.2 Mbs). These NIL strains robustly recapitulated the QTL direction of effect (S6A Fig.). Next, we analyzed the responses of
small RNA pathway mutants to albendazole in an effort to perturb the large number of diverse piRNAs. 21U-RNAs/piRNAs are
regulated by the Piwi Argonaute PRG-142. We hypothesized that albendazole sensitivity should be dependent on prg-1 function.
We tested mutants in all three Argonaute genes that encode proteins that interact with primary small RNAs immediately
upstream of WAGO-associated 22G RNA generation (ergo-1, alg-4; alg-3, and prg-1)43. ERGO-1 and ALG-3/4 engage 26G
RNAs, while PRG-1 coordinates the processing of piRNAs. Of the mutations in these genes, a back-crossed prg-1 N2 strain
conferred greater albendazole sensitivity compared to N2 (S6B Fig.). Concerned with the relative sickness of this mutant strain
in no drug (DMSO) control, we generated and tested two independent prg-1 loss-of-function alleles in both the N2 and CB4865
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backgrounds using CRISPR/Cas9 genome editing. These new prg-1 knock-out strains were not significantly different from
wild-type parents in the expected direction of effect across three replicate assays (S7 Fig.). Although we have not identified the
causal genetic locus, it is possible that the factors underlying the albendazole resistance phenotype are a mixture of coding or
regulatory variants that interact and affect gene function. Numerous expression QTL (eQTL) have also previously been mapped
to the major-effect albendazole QTL region, potentially connecting candidate variants to cis or trans regulatory targets that
affect drug sensitivity44 (S5 Table).

Discovery of quantitative trait loci (QTL) associated with benzimidazole responses in C. briggsae
To compare benzimidazole-resistance loci across nematode species, we examined variation in the responses of Caenorhabditis
briggsae strains to the same set of benzimidazole compounds that we studied in C. elegans. Dose responses and heritability
calculations (S8 Fig. and S9 Fig.) were used to select concentrations for linkage mapping experiments. Linkage mapping was
carried out with a collection of 153 recombinant inbred lines (RILs) created using the parental strains AF16 and HK10445, which
led to the discovery of four QTL for the tested drugs (Figure 3A, S10 Fig., and S6 Table). The C. briggsae QTL of largest effect
is found on the left arm of chromosome IV (2.56 - 3.45 Mb) and explains approximately 18% of fenbendazole-induced variation
in fecundity between the parental strains (Figure 3B). QTL of smaller effect were identified on the center of chromosomes V
for thiabendazole and on the left arms of chromosomes V and X for albendazole. No QTL were identified for mebendazole
across the examined set of fitness traits.

Strikingly, the major fenbendazole QTL falls within the primary C. briggsae piRNA cluster (Chr IV: 0 - 6.9 Mb). Despite
tens of millions of years of evolutionary distance46, the most significant C. elegans and C. briggsae benzimdazole QTL were
found to occur in genomic regions that are syntenic between species47 (Figure 4A). The C. briggsae fenbendazole QTL region
contains 84 protein-coding genes with variants (S7 Table), however, none of these genes are orthologous to variant-containing
genes within the C. elegans albendazole and fenbedazole QTL intervals. This result suggests that different gene(s) and
mechanisms account for the drug effects mapped to these syntenic loci across species. piRNA-encoding genes that densely
cover this locus could potentially underlie the fenbendazole-resistance phenotype in C. briggsae, but no piRNAs are shared
between C. elegans and C. briggsae.

Candidate benzimidazole resistant genes are generally conserved in parasitic nematode species
To explore the potential translation of these loci to parasites, we looked at conservation of candidate C. elegans resistance
genes(s) in parasitic nematodes. Specifically, we examined conservation of protein-coding genes that fall within benzimidazole
QTL confidence intervals and contain predicted functional variants. Substantial fractions of these candidate genes have
identifiable orthologs in representative parasites from other clades. Approximately 40% of the 5,434 candidate resistance
genes across all identified QTL have orthologs in the clade III human filarial parasite Brugia malayi and the clade IV model
gastro-intestinal parasite Strongyloides ratti, and 31% are conserved across all three species (Figure 4B and S8 Table). Despite
a conservative threshold for assignment of orthology pairs, we found a high likelihood that gene(s) validated in this system as
modulators of benzimidazole response have counterparts in parasite genomes. The narrowing of these QTL in Caenorhabditis
species and the validation of the independent effects of genes on phenotypes has the potential to discover novel benzimidazole
modes of action and resistance. Anthelmintic resistance gene variants validated in the genetically tractable Caenorhabditis
species can be evaluated with respect to effect size and mutation type (e.g., gain or loss-of-function). For genes with parasite
orthologs, the effects of gene loss-of-function on parasite drug response can be assayed using targeted genetic perturbation
techniques (e.g., RNA interference) established in various helminth species. The expansion of the helminth genetic toolkit to
CRISPR/Cas9 genome editing48, 49 will pave the way for more precise mappings of mutations and effects. These Caenorhabditis
data complement efforts to improve the resolution of parasite population genomics data50, as well as efforts to carry out genetics
studies in helminth species where feasible51, 52. More broadly, we expect that these approaches and data can hasten better
models and markers for the development of anthelmintic resistance in human and animal parasite control.
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Figure 1. Discovery of benzimidazole response QTL in C. elegans. (A) Results of C. elegans linkage mapping experiments are shown
for the five drug-dose conditions tested. QTL peak markers (circles) and confidence intervals (lines) are depicted. Fill color corresponds to
the QTL significance (LOD) score. Overlapping QTL for a given condition are represented by the trait with the highest significance score. In
total, 15 non-overlapping QTL were identified across these conditions. (B) Linkage mapping plots for the QTL of highest significance for
each drug condition. The plots show genomic position on the x-axis and significance (maximum LOD score across mapping iterations) on the
y-axis. QTL confidence intervals (e.g., chromosome IV: 15.47 - 15.91 Mb for 12.5 µM albendazole) are shaded in gray and the red dashed
line represents the genome-wide significance threshold for the first mapping iteration (LOD score for 12.5 µM albendazole QTL peak marker
= 19.93; LOD threshold = 2.99). (C) Tukey box plots showing the phenotypic split of RIAILs that have either the N2 or CB4856 genotype at
the peak QTL marker position(s).

10/25

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/116970doi: bioRxiv preprint 

https://doi.org/10.1101/116970
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. Narrowing of the albendazole QTL interval using near-isogenic lines. NIL genotypes (A) and corresponding Tukey box
plots of NIL phenotypes (B) are shown with respect to their parental strain. NILs constructed via introgression of N2 into the CB4586
background can be classified into albendazole-sensitive (LJ1206 and LJ1207) and resistant groups (LJ1204, LJ1209, LJ1210, and LJ1212).
This phenotypic separation allows for the tentative narrowing of the QTL interval (chromosome IV: 15.47 - 15.91 Mb) to a much smaller
region (chromosome IV: 15.57 - 15.65 Mb) that contains one or more causative variants. Solid and dashed-vertical lines are used to mark the
original QTL interval and the NIL-narrowed interval, respectively. Statistically significant differences among NILs in the resistant group
suggest that additional variants outside of this narrowed interval contribute to phenotypic variance through epistatic interactions. Comparison
of the N2 parental strain and LJ1203 are consistent with at least one causal variant contained within the narrowed interval. ANOVA with
post-hoc Tukey HSD test was used to compare NILs used in these assays (p-values reported in S9 Table). (C) Variants distinguishing N2 and
CB4856 within the NIL-narrowed interval are highlighted with respect to gene annotations. Candidate albendazole resistance variants include
nonsynonymous and splice-donor variants in protein-coding genes (blue circles). No variants occur within genes encoding many non-coding
RNA biotypes (tRNAs, miRNAs, and snoRNAs), though at least 276 variants occur within annotated piRNAs within the narrowed interval
(S3 Table, not plotted).
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Figure 3. Discovery of benzimidazole response QTL in C. briggsae. (A) Results of C. briggsae linkage mapping experiments are
shown for four tested drugs as grouped by trait category. QTL peak markers (circles) and confidence intervals (lines) are depicted. Fill color
corresponds to the QTL LOD score. In total, four non-overlapping QTL were identified across conditions. (B) Linkage mapping plots are
shown for the QTL of highest significance for each drug, including a major QTL associated with the effect of fenbendazole on brood size, and
to a lesser extent, length and pumping traits. Plots show genomic position along the x-axis and significance (maximum LOD score across
mapping iterations) along the y-axis. The QTL confidence intervals (chromosome IV: 2.56 - 3.45 Mb for 30 µM fenbendazole) are shaded in
gray and the red dashed line represents the genome-wide correction significance threshold for the first mapping iteration (LOD score for
fenbendazole QTL peak marker = 9.97; LOD threshold = 2.75). The fenbendazole QTL explains 18% of trait variation (effect size = 0.70).
(C) Tukey box plots showing the phenotypic split of RIAILs that have either the AF16 or HK104 genotype at the peak QTL marker positions.
AF16 animals are significant more resistant to fenbendazole exposure than HK104 animals, exhibiting much larger brood sizes in the
presence of drug.
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Figure 4. (A) Synteny between major-effect C. elegans albendazole QTL and C. briggsae fenbendazole QTL on chromosome IV.
Circos53 plot showing synteny of orthologous gene pairs on chromosome IV. The outer track shows linkage plots for the C. elegans
albendazole and C. briggsae fenbendazole mappings (red line: LOD scores; blue line: QTL confidence intervals; black line: significance
thresholds). Both QTL intervals fall within major piRNA clusters in both species (piRNA cluster beginning and end sites shaded in blue).
Inner green links represent all orthologs that occur outside of the QTL intervals, yellow links represent protein-coding orthologs with at least
one member inside either QTL interval but with no detected variants (58 pairs), and black links represent orthologs with at least one member
inside either QTL interval and with a detected variant (38 pairs). No orthologs were identified across species that both contained variants and
fell within their respective QTL confidence intervals. This result suggests that different genes and mechanisms account for the drug effects
mapped to these loci. (A) Conservation of candidate C. elegans benzimidazole resistance genes in the parasitic nematodes S. ratti and
B. malayi. Venn diagram showing that a substantial proportion of the QTL-contained protein-coding genes with predicted functional variants
(5,434 total) are conserved in representative clade IV and clade III parasites. Approximately 40% of the candidate resistance genes have
identifiable orthologs in the clade III human filarial parasite Brugia malayi (2,163 of 5,434) and the clade IV model gastro-intestinal parasite
Strongyloides ratti (2,149 of 5,434), and one-third are conserved across all three species (1,685 of 5,434).
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Supporting Information: Figures
S1 Fig. High-throughput sorter assay. Assay detailed in the Methods section.
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S2 Fig. C. elegans benzimidazole dose responses and heritability calculations. Dose responses were carried out with four
genetically diverged strains of C. elegans. Phenotypic responses to four drugs are shown with a representative trait for each
primary trait group (length, brood size, and pharyngeal pumping). Heritability values are shown for doses used in subsequent
linkage mapping experiments.
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S3 Fig. C. elegans benzimidazole QTL grouped by drug and trait. Results of C. elegans linkage mapping experiments are
shown for the six drug-dose conditions tested and separated by correlated trait group. QTL peak markers (circles) and confidence
intervals (lines) are depicted. Fill color corresponds to the QTL LOD score. Overlapping QTL for a given condition-trait group
pair are represented by the trait with the highest significance score.
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S4 Fig. C. elegans summary statistic correlations for trait groupings. The correlation structure (Pearson’s correlation
coefficient) of summary statistics for measured parameters of animal size (time-of-flight (TOF) and optical density (EXT)),
pharyngeal pumping (red and yellow fluorescence), and brood size (norm.n) are shown for each drug and dose combination
used in linkage mapping.
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S5 Fig. C. elegans Y105C5A.8 RNA-seq data. RNA-seq alignment coverage shown for four biological replicates of N2 and
CB4856.
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S6 Fig. (A) piRNA interval NILs recapitulate QTL direction of effect. Reciprocal NILs covering the primary C. elegans
piRNA cluster (chromosome IV: 13.5 - 17.2 Mb) were phenotyped in the presence of 12.5 µM albendazole. Tukey box plots
show drug effects on animal length (75th quantile shown). The introgression of the piRNA cluster from CB4856 into N2
(ECA240) leads to greater albendazole sensitivity compared to N2 (P < 0.001). Introgression of the piRNA cluster from
N2 into CB4856 (ECA241 and ECA242) confers greater albendazole resistance compared to CB4856 (P < 0.001). (B)
Argonaute mutants that converge on the WAGO 22G RNA pathway were phenotyped in 12.5 µM albendazole. ergo-1
and alg-3; alg-4 mutants, which interact with distinct classes of 26G RNAs, do not confer increased albendazole sensitivity
phenotype to the N2 genetic background. Loss of prg-1, the primary Argonaute associated with 21U-RNA/piRNA activity,
confers albendazole sensitivity in the N2 background (prg-1(0) vs N2: p < 0.001). However, despite back crossing, the
prg-1(0) (prg-1(n4357)) strain exhibited slower growth rate and reduced brood size throughout assay propagation. A known
benzimdazole-resistance allele, ben-1, is included as a positive control and basis for comparison of relative effect sizes (prg-1(0)
vs ben-1: p < 0.001). t-tests were used for statistical comparisons (p-values reported in S9 Table).
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S7 Fig. Independent prg-1 loss-of-function alleles in the N2 and CB4856 backgrounds do not alter albendazole re-
sponses. (A) Combined data from three independent replicate assays recapitulate the established NIL effect but do not support
the hypothesis that this effect is prg-1 dependent. Tukey box plots show drug effects on animal length (75th quantile shown).
Individual assays shown in (B) and one-sided t-tests (alpha = 0.05) were used to test whether prg-1(0) in the N2 background
(ECA586 and ECA587) would lead to greater sensitivity compared to N2 (not significant: p = 0.778 for ECA586; p = 0.9997
for ECA587) and that prg-1(0) in the CB4856 background (ECA584 and ECA585) would lead to greater resistance compared to
CB4856 (not consistently significant across replicate days). One-tailed t-tests were used for all comparisons (p-values reported
in S9 Table).
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S8 Fig. C. briggsae benzimidazole dose responses and heritability calculations. Dose responses were carried out with
four genetically diverged strains of C. briggsae. Phenotypic responses to four drugs are shown with a representative trait
for each primary trait group (length, brood size, and pharyngeal pumping). Heritability values are shown for doses used in
subsequent linkage mapping experiments. For thiabendazole, we selected a linkage mapping dose (40 µM) that falls between
the concentrations where heritability is shown.
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S9 Fig. C. briggsae summary statistic correlations for primary trait groupings. The correlation structure (Pearson’s
correlation coefficient) of summary statistics for measured parameters of animal size (time-of-flight (TOF) and optical density
(EXT)), pharyngeal pumping (red and yellow fluorescence), and brood size (norm.n) are shown for each drug tested.
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S10 Fig. C. briggsae benzimidazole QTL grouped by drug and trait. Results of C. briggsae linkage mapping experiments
are shown for the drug-dose conditions tested and separated by correlated trait group. QTL peak markers (circles) and confidence
intervals (lines) are depicted. Fill color corresponds to the QTL LOD score. Overlapping QTL for a given condition-trait group
pair are represented by the trait with the highest significance score.
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Supporting Information: Methods
S1 Methods Reagents related to NIL and mutant strain assays. Primers and starting RIAILs used in the construction of whole
piRNA-interval NILs. Mutant strains and oligos used to confirm and propagate existing mutant alleles through back-crossing
and to construct genome-edited strains.

C. elegans whole piRNA interval NILs

• piRNA interval: Chr IV: 13.5 - 17.2 Mbs / N2 Size: 526, CB4856 Size: 942
• Left Primers (InDel Left: 13207120)

– oECA904: aacagatactcgccgttgct
– oECA905: atttgtaccacgcgtgacct

• Right Primers (InDel Right: 17356993) / N2 Size: 443, CB4856 Size: 596
– oECA910: gacaacgcccactacgacaa
– oECA911: acccaaccagttgagcacat

• CB4856>N2 NIL (ECA240) / eanIR160 (IV, CB4856>N2) / Starting RIAIL: QX349
• N2>CB4856 NIL (ECA241) / eanIR161 (IV, N2>CB4856) / Starting RIAIL: QX375

IV

349

375

0 5 10 15
Genomic Position (Mb)

C. elegans mutants

• piRNA mutants confirmed and/or backcrossed in N2 background
– ECA270: alg-4(tm1184);alg-3(tm1155) [ALG-3/4 class 26G RNA]
– ECA271: WM158 / ergo-1(tm1860) [ERGO-1 class 26G RNA]
– ECA286: prg-1(n4357) [21-U RNA]: SX922/ECA269 backcrossed to N2 (9x) and selfed (6x)
– FX234: ben-1

• Mutant confirmation PCR primers
– ergo-1(tm1860): oECA1033 AAGCGTACGAACCCGAGCTT / oECA1034 GAGCGGCTGCTCAGAAGACT

• prg-1(n4357) PCR primers for backcrossing
– oECA1019: AGTCGTGGTACAGATCGTAG
– oECA1020: GAGAGGCCGTGGTTCAGGAT
– Wild-type size = 1972, prg-1(n4357) size = 1248 (724 bp deletion)

C. elegans CRISPR prg-1 loss-of-function strains

• Primers and oligos
– oECA2002: GUUAGCCUUCGAAUCAACGG
– oECA2003: CGCUGUGACCGACAAAGCUG
– oECA2004: GGGTACTATCCAACCCGATCTTTTCATTCG
– oECA2042: CGCGTTTCGTGACAATGATAAATGCS (3’ wobble to account for variant between N2 and CB4856)
– dpy-10 crRNA: GCUACCAUAGGCACCACGAG
– dpy-10 repair oligo: CACTTGAACTTCAATACGGCAAGATGAGAATGACTGGAAACCGTACCGCATGCGGT-

GCCTA GGTAGCGGAGCTTCACATGGCTTCAGACCAACAGCCTAT
• Strains

– ECA584: Exon 1-7 deletion (CB4856) and ECA585: Exon 2-7 deletion (CB4856)
– ECA586: Exon 1-7 deletion (N2) and ECA587: Exon 2-7 deletion (N2)

1
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Supporting Information: Tables
S1 Table. C. elegans QTL that explain > 5% of trait variation for all drug-dose combinations tested. Each QTL that was discov-
ered for defined trait groups is annotated with its peak position, confidence interval, estimated variance explained, and effect size.

S2 Table. C. elegans protein-coding gene variants within the albendazole QTL interval. Previously defined variants distinguish-
ing N2 and CB4856 were annotated based on predicted effects on protein function or expression. Variants of “moderate” or
“high” effect are shown for the QTL and the NIL-narrowed interval.

S3 Table. C. elegans piRNA genes within the albendazole QTL interval. The genomic coordinates, gene IDs, and feature IDs
of annotated piRNA genes within the QTL and NIL-narrowed intervals are provided.

S4 Table. C. elegans N2 and CB4856 young adult RNA-Seq data. Read counts (TPM) and p-values for differentially expressed
genes between strains.

S5 Table. C. elegans expression QTL (eQTL) associated with the NIL-narrowed albendazole QTL interval.

S6 Table. C. briggsae QTL that explain > 5% of trait variation for all drugs tested. Each QTL that was discovered for defined
trait groups is annotated with its peak position, confidence interval, estimated variance explained, and effect size.

S7 Table. C. briggsae protein-coding gene variants within the fenbendazole QTL interval. Variants distinguishing AF16 and
HK104 were annotated based on predicted effects on protein function or expression. Variants of “moderate” or “high” effect
are shown for the QTL interval.

S8 Table. Parasite (B. malayi and S. ratti) orthologs of all proteins with variants of “moderate” or “high” impact within C.
elegans QTL identified.

S9 Table. P-values for all statistical tests comparing individual strains (NILs and mutants) with their corresponding parental
strains.
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